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STABLE PARALLELIZABILITY OF PARTIALLY ORIENTED FLAG
MANIFOLDSII

Dedicated to Professor K. Varadarajan on the occasion of his sixtieth
birthday.

PARAMESWARAN SANKARAN AND PETER ZVENGROWSKI

ABSTRACT. Inthefirst paper with the same title the authors were able to determine
al partialy oriented flag manifolds that are stably parallelizable or parallelizable, apart
from four infinite families that were undecided. Here, using more delicate techniques
(mainly K-theory), we settle these previously undecided families and show that none of
the manifolds in them is stably parallelizable, apart from one 30-dimensional manifold
which still remains undecided.

1. Introduction. Letny,....nsbeany sequenceof positiveintegerswiths > 2, and
let n = Y1<i<sNi. We regard R" as an inner product space with its standard orientation
in the usual way. Let 0 < r < s. A sequence (Ay,..., As) of pairwise orthogonal
vector subspaces of R" with dimA; = nj for 1 < i < s, and orientation on A for
1 <j <r,iscdled apartialy oriented flag of type (nz.....n | N, ..., 1), OF

simply a p.o. flag. The space M = G(ny,..., Neo| Nesasee e ns) of al p.o. flags of
type (ng, ..., N | Nests - e ns) is a smooth compact manifold of dimension i< nin;,

called a partially oriented (or p.o.) flag manifold. Indeed M can be identified with the
homogeneousspaceO(n) / SO(ny) X - - - x SO(Ny) X O(Nr+1) X - - - X O(ng) in awell-known
manner, from which it obtains its canonical differentiable structure. We stipulate that
whenr = s, eachflag (A4, . . . , As) becoherently oriented sothat thedirect sumorientation
onthevector spaceA; + - - - + As = R" coincideswith the standard orientation onR". When
r =0, M istheusual flag manifold G(n,. ..., ns), and whenr = s, M is the oriented flag

manifold G(n, . ... , ns). Thep.o. flag manifold M isa 2" (resp. 2'~1)-fold covering of the

usual flag manifold G(ny, ..., ns) for 1 <r < s(resp. for r = s). The family of p.o. flag
manifolds (and their tangent bundles) wasfirst studied by K. Y. Lam [9], although many
specia cases such asordinary flag manifolds (which include the classical flag manifolds
G(1,..., 1) and the Grassmann manifolds), the oriented flag manifolds (which include
the oriented Grassmann manifolds), the Stiefel manifoldsVy,; = G(1,...,1 | n—r), and
the projective Stiefel manifolds X,> = G(n — 2 | 1, 1) have been extensively studied

over the past half century.
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Work related to their parallelizability was done by R. Stong [13] and by the present
authors [10], [11]. In particular, the problem of determining which of the p.o. flag
manifolds are stably parallelizable was solved almost completely in [11], apart from four
infinite families of p.o. flag manifolds which were left undetermined. In this paper, using
mainly K-theoretic tools, we show that none of the casesleft unsolvedin [11] are stably
parallelizable with the possible exception of G(6, 1,1 | 1, 1). Our efforts to determine
the stable parallelizability of this 30-dimensional manifold havefailed, although we can
show that its span (which equalsits stable span) is at least 24.

We shall assume without loss of generality thatng > --- > nrandnyy > -+ - > .
We shall prove

THEOREM 1. Lets> 3. With the above notation, the following p.o. flag manifoldsare
not stably parallelizable:
i G&(1...., 11]3,1),
(i) G(,....117,1),
(i) G6.1,....1]| 1,1), withs > 6,
(iv) G(6,1.....1]1,1,1), withs> 4.

Together with Theorem 1.1 of [11], this leads to the following classification theorem
for parallelizability of p.o. flag manifolds:

THEOREM 2.

(A) Lets=2 Assumethat 1 < k < n/2. Then G(n — k, k) = G(R") is stably paral-
lelizableif and only if k = 1, or (n,K) = (4.2). (6,3). Only G(1, 1) =~ S', G(3. 1) =
$.6(7.1) ~ &, (3, 3) are parallelizable.

(B) Let s > 3. With the above notation, the following p.o flag manifolds are stably
parallelizable:

(i) G@3,....3,1,...,1]1,....1),
(iv) G(2,..., 21,....,1|1..., 1),
(v) G(6]1,1),G(6,1]1,1,).
Furthermore all of these are parallelizable except é(2 ..... 2) and é(z ..... 2,1).

(C) Lets> 3. ThenM = G(ny, ..., N | Neets e ng) is not stably parallelizable if M

isnot listed in (B) aboveand if M # G(6,1,1 | 1, 1).

We remark first that new proofsfor (A) in the above theorem have appeared recently,
cf.[8],[12]. Secondly, the proof of Theorem 1isgreatly facilitated by useof the“inclusion
method”, which is now briefly recalled. As above let M = G(ng, ..., N |Np41s ..oy Ng),
N=Zi<i<n.AlsoletL = G(ny. ..., Nr—1|Nr41, ...y Ns), M= Nn—n;. Theinclusion R™ < R",
regarding R™ as the subspace R™ +--- +R™* +0+R™ +...+R™ C R", induces an
evident inclusion i:L — M. Furthermore, it is not hard to see that the normal bundle
of thisembedding istrivial, hencei*(nv) ~ 7. where ~ denotes stable equivalence (for
details cf. [10], [11], or Section 6). In particular, if L is not stably parallelizable then M
is also not stably parallelizable.
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Using this inclusion method (cf. Section 6), we see that the proof of Theorem 1 is
reduced to consideration of the “critical cases’, namely X =G(1 ] 3,1), Y=G(1 | 7,1),
Z=G(6,1,1,1] 1,1) and W = G(6 | 1,1,1), of dimensions respectively 7, 15, 40,
and 21. To handlethesecritical cases, we use Lam’s description [9] of the tangent bundle
of p.o. flag manifolds to show that in each of these cases the tangent bundle 7 is stably
equivalent to a multiple m¢ of a certain canonical bundle ¢ over the manifold under
consideration. We then use the Atiyah-Hirzebruch spectral sequence in the case of X
and Y and the Hodgkin spectral sequencein the case of Z and W to compute enough of
the K-ring in each case to show that the class of 7 is nontrivial, and conclude that the
manifolds under consideration are not stably parallelizable. Although the K-theoretic
computations here are necessarily specific to the four flag manifolds X, Y, Z, W, and are
alsolaborious, it is hoped that the techniques used may serve asabasisfor computations
on a much wider class of flag manifolds. In particular the calculation of K(W) seems
to involve more delicate use of the Hodgkin spectral sequence than has heretofore been
made (compare [2], [3], [11]), and may point the way to further applications.

ACKNOWLEDGEMENTS. The authors wish to thank Professor H. K. Farahat for sug-
gesting mgjor simplifications in our proofs of Propositions 10 and 16.

2. Thetangent bundle. LetM =G(ny, ..., N | Mgy s ns), and let ™M denoteits
tangent bundle. For 1 <i < s, let & denote the canonical nj-plane bundle over M whose
fibreover ap.o.flag (Ag, ..., As) isthe vector space A;. One hasthe bundleisomorphism

2.1) S & Ane

1<i<s

where e denotes atrivial line bundle. Note that ¢; is orientable for 1 <j <. It follows
from the above isomorphism that 3, <5 ¢; is also orientable. From Lam’s formula [9],
one has the bundle isomorphism
(2.2) ™M S G
1<i<j<s

We shall now focus on the p.o. flag manifolds X = G(1 | 3,1), Y = G(1 | 7,1),
Z=G(6,1,1,1|1,1),andW =G(6 | 1,1,1). We shall use the following well known
facts about vector bundles in the course of our proof of Theorem 4 (cf. [7], or using the
fact that aline bundleis determined by its first Stiefel-Whitney class):

LEMMA 3. Let ¢ and n bereal line bundles over a paracompact base space. Then
(i) ¢ isorientableif and only if it isisomorphicto a trivial line bundle,

(i) (@ E~e,
(iii) ¢ @ nisorientableif and only if £ ~ .

For avector bundle o over aspace S its classin K(S) (or in KO(S)) will be denoted
[a].

THEOREM 4. With the above notation,
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(i) [X] = 4[&3] + 3 € KO(X),
(i) [7Y] = 8[&3] + 7 € KO(Y),
(iii) [rZ] = 16[¢g] + 24 € KO(2).
(iv) [TW] = 8[£2 @ £3 @ 4] — 3 € KO(W).

Proof of (i). From (2.2), we get (noting &1 & ¢, so from 2.1 [£2] +[&3] = 4)

TXRED(E2PE)DELQELBRNELDEDE D&,

Therefore, using Lemma 3(ii), we get

[7X] = [€2] +[€a] + (4 — [€3])[€3] = 4+ 4[¢s] — 1= 4[¢3] +3.

The proof of (ii) is similar.

Proof of (iii). From Lemma 3(iii), we see that &5 ~ £6. Using 2.1, we how get
[£1] + 2[¢6] = 8in KO(2). Also notethat &, ~ €3 R €4 & e. Substituting thisin (2.2),
we get

[7Z] =3[£1© 5D Ep] +3+[E1@ {5 D €5 @ E6 B 1 @ Eol
= 3([¢a] + [266]) + 3+ 2[€a][€6] + 1
=3-8+4+2[¢6](8— 2[¢])
=28+16[¢) — 4
= 16[¢6] + 24.

Proof of (iv). Notethat £ := &, @ &3 @ {4 is an orientable 3-plane bundle over W,
and &1 @ € & 9. Hence € & M2(€) X & @ 3D 3@ &4 @ €4 @ &. In particular,
[€1% = [€2]2 +[€a]? + [£4]2 + 2[€] = 3+ 2[¢]. Thus, from (2.2), we get

[TW] = [£2© €] + [A3(9)]
=[(9— 9]¢l +[¢]

= 10[¢] - [¢]?
= 10[¢] — 3 —2[¢]
=8[¢] — 3.
This completes the proof. ]

Theproof that X, Y, Z, W are not stably parallelizable, and henceof Theorems1 and 2,
now can be completed by computation of the additive order of [£] — rank(&) in KO(M)
(orinK(M)), where ¢ = &awhenM =X, Y, =¢gwhenM =Z, and § = £, D E3 P &y
when M = W. Thisis donein the following three sections.

3. KO-groups of X and Y. We preserve the notation of the previous section. In
particular X = G(1 | 3.1) and Y = G(1 | 7.1). We shall compute the group KO(X)
using known facts about the projective space RP* and the Atiyah-Hirzebruch spectral
sequence, thus determining the additive order of [¢3] — 1 € KO(X). Computationsfor Y
are generally quite similar and for the most part omitted. We will also use the notation,
for avector bundle « over aspace S, [a] — rank(e) = (a) € KO(S).
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First note that one has the usual projection ps: X — RP?, (A1, Az, Ag) — Az. Under
this map the canonical line bundle ¢ over RP* pulls back to &3. It follows from [1]
that 8[¢3] = 8 € KO(X), or equivaently 8(¢3) = 0. We wish to show that the order of
(¢3) isin fact 8. Of course this will imply 4(¢3) # 0 € KO(X) and consequently, using
Theorem 3(i), that 7X is not stably trivial.

To apply the Atiyah-Hirzebruch spectral sequence, we must first determine the co-
homology of X with Z and Z/2 coefficients. Let p;: X — S* be the bundle pro-
jection (Ar.Ax.As) — A;, whose fibre is RP3. Using the Leray-Serre spectral se-
quence (Z coefficients) and a dimension argument one shows that H(X) = H(X) = 0,
H2(X) ~ H8(X) =~ Z/2, and H’(X) =~ Z. In order to determine H3(X) and H*(X) we
have to determine the differential Z ~ H3(RP?) ~ E3* L E;% =~ H4(S" =~ Z. Thisis
seen to be multiplication by 4 using the map between spectral sequencesinduced by the
projection map Vs, — X. Note that the Stiefel manifold Vs, is fibred by S* over S*
and the projection map Vs, — X isamap of fibre bundles covering the identity map
of S*. Indeed one has the following commutative diagram

K*

Z>HRPY) =B S B WS >z
da| |d
ZoH(SH2E®? = EPxHY S~z

in which {EP.d, } is the spectral sequence for Vs, and x: S — RP? is the standard
double cover. Both the transgression map d, and x* are well-known to be multiplication
by 2. This shows that d, is multiplication by 4. Hence we see that H*(X) ~ 7 /4, and
H3(X) = 0.

Having determined the cohomology groups of X, we now proceed to determine its
ring structure. L et y; denote the generator of H'(X), i = 2.4, 7.

CLAIM. Y2 = 2y, in H4(X).

First note that the projection map X = Vs, — X isauniversal double coveri ng. Let
: X — RP> denote the classifying map of the double covering X — X. Applying the
Borel construction one can replace the space X by a homotopically equivalent space X’
and themap q by abundleprojection X’ — RP> with fibre Vs ». In theresulting spectral
sequence, thelocal coefficients can be shown to constant. In any case the automorphism
groups of Hi(X) are trivial for 1 < i < 6 and hence the corresponding local coefficient
systems are constant in this range. This is all that we need to prove our claim. The
multiplicative property of the spectral sequence, and the fact that H4(X) ~ Z /4 now
establishes our claim. In fact the spectral sequence also shows that y,y, generates the
group H8(X) = Z/2, and y3 = 0 since ds: Eg* — E2° = Z/2 is an isomorphism. We
summarize this in the following proposition. The results for Y can be established in an
entirely analogous manner.

PrROPOSITION 5. (i) Themanifold X is 7-dimensional, its cohomology being given
by H*(X) = Z[y».ya.y7]/ ~ where deg(y;) = i and the ideal of relations is
generated by the elements 2y, Y5 — 2ya, V3, V5, Y2Y7, Yay,
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(i) H*(X;Z/2) = (Z/2)[ y1.y4] /~, deg(y;) = i and theideal of relationsis generated
by v, ¥4,

(iii) themanifold Y is 15-dimensional and H*(Y) = Z[ y2, ys, Y1s] /~, wheredeg(y;) = i
and the ideal of relationsis generated by 2y, Y3 — 2ys, Y2, Y25, Y2Y15, YaYis,

(iv) H*(Y;Z/2) = (Z/2)[ y1.Ys] /~, deg(y;) = i and theideal of relationsis generated
by ¥3. V&-

ProOOF. Parts (i) and (iii) have been proved above. Part (ii) follows from the result
for the integral cohomology algebra and the Leray-Hirsch theorem using the fibration
RP3 < X — S*. Similarly one proves (iv). .

REMARK. In each case of Proposition 5, the given relations of course imply many
other relationsin the ideal. For example, in (i) it is easy to deduce the further relations:
4y,, y3, Y3 ya, and al classeswith deg > 8. Similarly for (ii), (iii), and (iv).

COROLLARY 6. The canonical projection maps j:X — RP* and k:Y — RP®
induce monomorphisms in integral cohomology. Furthermore, j*: HP(RP%;Z/2) —
HP(X;Z/2) and k*: HI(RP?; Z /2) — HY(Y; Z / 2) areisomor phismsfor 0 < p < 3and
0<q<v.

We are now ready to apply the Atiyah-Hirzebruch spectral sequence to compute
KO(X).

One seesthat the non-zero terms along the diagonal in the Atiyah-Hirzebruch spectral
sequence {EP9(X)} for KO(X) are E5P(X),p = 0.1, 2.4. The only possible non-zero
differentials mapping into a term along the diagonal are da: Ey2(X) & HY(X;Z/2)
Z/2 — Ey4(X) = HYX) = Z/4 and dg:Ey N (X) =~ HO(X,Z/2) =~ Z/2 —
E;(X) = H4(X) = Z/4. Using the map of the spectral sequences induced by j one
obtains the following commutative diagram

HORP?; Z /2) ~ EC-Y(RP%) 5 EOL(X) = HO(X; Z /2)
d B
HYRPY) = E*4RPY) - E*4(X) = HY(X),
where the horizontal maps are isomorphismsfrom Corollary 6 and the differential under
consideration for RP" is well-known to be zero [1]. It follows that d,: Eg“l(X) —
E;~*(X) is also zero. Similarly one showsthat ds: E3~%(X) — E5 ~*(X) is zero.

It follows that E5; P(X) = E5P(X) for all p. To complete our calculation of KO(X),
wemake useof the mapj again. Proposition 4(j), (i) showsthat j*: ES P(RP*) ~ 7 /2 —
ES7P(X), p = 1. 2. 4 isinjective. Then the same holds for E, at these positions by the
above remarks on differentials. Consequently j*: KO(RP?) =~ 7/8 — KO(X) is also
injective, whence (£3) = j*(¢) hasorder 8.

Theargument for Yiscompletely analogous, showingj*: KO(RP?) =~ 7 /16 — KO(Y)
injective, and completes the proof of (i) in the following theorem. We remark that with
alittle extraeffort in reassembling the short exact sequencesrelating the usual quotients

https://doi.org/10.4153/CJM-1997-065-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-065-1

STABLE PARALLELIZABILITY 1329

of successivefiltrations of KO(X) with EP; P one can also prove (ii) in this theorem. We
oEit this since only (i) is needed for our present purposes. We also remark that finding
KO(Y) seems more difficult, dueto terms E5 ® # 0 for p > 8.

THEOREM 7.
(i) Theorder of (¢3) € KO(X) is 8, and the order of (¢3) € KO(Y) is 16.
(i) KOX)~7/8@®Z/2.

4. Calculation of K(Z). In this section we compute K(Z), where Z is, as before,
G(6,1,1,1] 1.1). It will be convenient to think of Z as consisting of flags (A, . .. . As)
inR™ where A, Ay, As. As areoriented, dimA; = 6, dimA; = 1, 2 < i < 6. Wecanthen
readily identify Z with the homogeneousspace SO(11) / (SO(6) x S(O(1) x O(1)) x {1})
where SO(6) x S(O(l) X O(l)) x {1} is the subgroup of SO(11) which preserves the
p.o. flag (R6. Re;, Reg, Rey, Reyo, Reps) (thefirst, fourth, fifth, and sixth subspacesof this
flag being oriented) in Z. We wish to apply the Hodgkin spectral sequenceto compute
the complex K-ring of the space Z. This method has been used in [2] to compute the
K-ring of the projective Stiefel manifolds X4, . More recently Barufatti and Hacon [3]
have computed the K-ring for any projective Stiefel manifold using the Hodgkin spectral
sequence. It turns out that our computation is very similar to the case of Xg»> which is
not surprising since as a homogeneous space Xg.2 = SO(8)/ SO(6) x S(O(1) x O(1)),
and thereis afibration Xg> — Z — Vi1 3. The following calculation is arranged so that
steps4.1, 4.2 and 4.3 arethe same asin the calculation of K(Xg2) and werefer to [2], [3]
for further details on these steps.

As afirst step in applying the Hodgkin spectral sequence, we must express the space
Z asaquotient G/H with 71(G) torsion free. This is achieved by using the universal
(double) cover ¢:Spin(11) — SO(11). Thus we see that Z = Spin(11)/H, where
H = Spin(6) x Z/2 C Spin(8) C Spin(11), the factor Z/2 being generated by the
elementw = e; - - - eg € Spin(8). (For basic facts about spin groups see[7].)

Thenext step isto understand the structure of the complex representationring RHasan
RSpin (11)-moduleviatherestriction mapj #: RSpin (11) — RH, wherej: H — Spin (11).

4.1. Asin[2], [3] RH =~ RSpin(6) ® RZ /2 = Z[ p1. A}, A3] @ Z[ Y]/ (y? + 2y), where
p1 denotes the first Pontrjagin class, A3, A; are the half-spin representations each of
degree 4. Theclassy isthe degree zero class x — 1 where x is the representation defined
by the nontrivial character H — Z /2 C U(1). One has relations on the Pontrjagin
classesp;:

(I) P2 = A;Ag — 4p1 — 16,

(i) ps =203 — 4p, — 16p; — 64,
where Az = A + A5

4.2. Leti:H — Spin(8) and let k: Spin(8) — Spin(11). Thenj = ko i. The map i*
can be calculated asin [2] or [3] to obtain

(i) py:=i%(Py) =8y +(1+y)py,

(ii) 5 :=i%(P2) = —(Bypy + 48y) + py,
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(i) p5 :=i#(P3) = 128y + 24yp; + dyp, + (1 +y)ps,
(iv) i%(62) = (y +2)3 + 8y,
whered, = A, — 2.

4.3. Itiswell-known that
K*: RSpin (11) = Z[P1. P2. P3, P4. As] — Z[P1. P2. A}, A;] = RSpin(8)

is given by
(i) KKP) =P, 1<i<4,
(i) K*(Ds) = 2.

4.4. Sincej* =i* o k*, it follows that
() j*Py=p. 1<i<3,
(if) i%(65) = 2(y + 2)d3 + 16y,
(iii) j#(Pa) = —128y — 2y(ps + 4py + 16p1).
Thefirst two are trivial, while (iii) can be computed from 4.2 and 4.3 using the relation
P4 = A2 — 4P3 — 16P, — 64P; — 256 in RSpin(8).

4.5.  Thenext step is to compute Tor ggyin 11)(RH. Z), which yields the Ex-term of the
Hodgkin spectral sequence. This is achieved by applying the change of rings theorem
([4], p. 349) LetA\ = Z[Pl, P2. P3] C RSpln(ll), andletA = RSpIn(ll)/<P1 Pz. P3> =~
Z[P4.55]. We set B = RH /( p. p5. p5) so that j# definesamap §: A — B making B a
module over A. One readily seesthat RH is free asaZ[y. p1, pz, ps] / (y? + 2y)-module
with basis {1, 63 } U {(63)™ }m>1. From 4.2 and the fact that (1 +y) is a unit in RH, it
followsthat Z[ y. p1. p2. psl /(Y2 +2y) = Z[ y. p}. P> P3l / (Y? + 2y) isfree over A on basis
{1, y}. Thereforeit follows that RH is A-free. Now an application of the change of rings
theorem shows that

Tor;(Tor;(RH. 7)., Z) = Tor A(B, Z) 2 Tor gsyin(11)(RH. Z).

4.6. We now describe the structure of B asan algebraover A. Let §: A =~ Z[P4, §5] —
B = Z[y.6%.63]/~ denote the map induced by j*. Therelationsin B are
(i) y==-2y,

(i) 63+ 1653 — 64y =0,

(iii) 6363 +4é3+16y =0,
and 6 is given by

(iv) 6(P.) = 128y.

(V) 0(0s) = 2(y + 2)63 + 16y.

The relations (i)—(iii) above follow from 4.2 and the well-known expressions for
A3A7 and (A% +A3)? in terms of the Pontrjagin classes. Indeed one obtains the following
relations from 4.2: p; = 8y, p, = —48y, and p3 = 128y. The above relations (i)—iii) can
then be derived from 4.1 by substitution. Equations (iv) and (v) above follow from 4.4
(note that p3 + 4p, + 16p; = 64y in B).

One can now compute Tor 3(B. Z) using the Koszul resolution of Z. This leads to
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PROPOSITION 8. TorJ(B. Z) = B/(2(y+2)é3+16y), Tor x(B.Z) = Bu/((2(y+2)63+
16y)u), and Tor 4(B. Z) = 0, for q > 2.

Here u = U + 4yV, where U, V are the standard Koszul generatorsin degree 1 with
di(U) = 128y, di(V) = 2(y + 2)63 + 16y. As in [2] we can now conclude that the
Hodgkin spectral sequence collapses and then apply [2] 6.1-6.5 to conclude that K*(Z)
isisomorphic to Tor A(B, Z). Therefore we obtain

THEOREM 9. K°(Z) = B/(2(y + 2)63 + 16y) =~ Z[y. 55,631/ ~, where the relations
are
(i) y¥+2y=0,
(ii) 2+ 1653 — 64y =0,
(iii) 6363 +4d3+16y =0,
(iv) 2(y+2)o3+16y =0,
and b3 = 63 +63.

REMARK. From the above theorem it follows that
0=y(2(y+ 25+ 16y) = 16y* = —32y.

That is 32y = 0. Therefore (ii) above reducesto the relation
(i) 65+ 1663 = 0.
Taking into account Theorem 4(iii) above, our proof that Z is not stably parallelizable
is completed by the next result.

PrOPOSITION 10. The additive order of yin K(2) is 32.

ProOOF. From the aboveremark 32y = 0, so we shall complete the proof by showing
that 16y # 0 in a certain quotient ring R of K°(Z) (abusing notation slightly by writing
y for the image of y in R). Indeed, we obtain R by adjoining, to K°(2), the relations

% =63 = d (whence s = 2d), and d? = yd = 0. One easily checks that the resulting
ringis
R:=Z[y.d]/(y* +2y,8d + 16y, d* yd).
To analyzethisring let usintroduce an “intermediate” ring

T:=2Z[y.d]/(y*+2y.d? yd).

Itistrivial to verify that asaring T isthe abelian group Z & Z & Z, with generators 1, y, d
and multiplication given by 1 is the multiplicative identity, y* = —2y, yd = d® = 0.
Next, we clearly have R~ T /J, wherethe ideal J = (85 + 16y) C T. Now let J/ be
the abelian subgroup of T generated by 85 + 16y and 32y. It is clear that J/ is an ideal
sothat J c J’. On the other hand it is easy to check that J/ C J. Therefore we see that
J =J’. It followsthat asan abelian group, Risisomorphicto Z & Z @ 7, with generators
1,y.d, modulo the abelian subgroup generated by 32y, 8d + 16y. A simple exercise in
elementary divisors now showsthat (again as abelian groups) R~ Z 7 /32 Z /8 with
respective generators 1.y, d + 2y. ]
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5. Calculation of K(W). Wefirst expressWas Spin(9)/H whereH = ¢*1(SO(6) X
D), with ¢:Spin(9) — SO(9) being the double covering; D denotes the diagonal
subgroup of SO(3) and SO(6) x D C SO(6) x SO(3) C SO(9). We let Q = ¢~1(D),
G = Spin(9). We wish to apply the Hodgkin Spectral Sequenceto compute K*(W).

5.1. Computationof RH. First notethat D o~ 7 /2 Z /2. Denoting the standard basis
of R°bye..... &, itiseasy to check that Q = {1, +-e;eg, teg€9, €769 }. One has

(e768)? = (€7€9)° = (es@0)? = —1, (e76s)(ese0) = &v€y7,  EfC.

Hence Q isisomorphic to the quaternion group {+1, +i, &j, £k} of order 8. The calcu-
lation of RQ, its complex representation ring, is a fairly routine exercise in the use of
characters (cf. [5], pp. 22—23); neverthelessit will be useful for usto give afew details.
Clearly Q has an irreducible representation of dimension 2 over C, obtained from the
guaternion algebra. More precisely, we regard H as the left C-vector spaceV =C ¢ C
where (z1,22) € V isidentified with z; + 2§, 21,2 € C. Now V becomes a complex
Q-module where

€763 - (21, 2) = (zl, —2l) €86y (21, 22) = (2. 20)-

We shall denote the class of V in RQ by g. Since Q/{+1} — D ~ 7/2® Z/2,
we obtain (irreducible) 1 dimensional representations of Q induced from D on which
—1 € Q actsastheidentity. They arethetrivial representation 1, and X, Y, Z where e;eg
actson X as—1 and egeg actsas1 on X. On Y, e;eg actsas 1, and egeg actsas —1. On Z
both e;e5 and egey act as —1. We shall denotetheir classin RQ by 1. X. y, z respectively.
Clearly one has x? = y? = 72 = 1, and xy = z Using characters one readily finds that
a? = (1+x)(1+y) in RQ. The basic facts about representations of finite groups now show
that RQ = Z[x, y. q] /~, the relations being
(i) ¥ =y>=1.

(i) &= (1+x)(1+y).

(i) ax=q=qy.
To compute RH first notethat H ~ Spin (6) x, /2Q. Indeed one hasthe multiplication map
w: Spin (6) x Q — Spin(9), which is a homomorphism of groupsbecausea-b=b- a
for every a € Spin(6) and b € Q. It is obvious that H = Imy and that Kery =
{(1,2), (=1, —-1)}. It followsthat H = Spin(6) x;,, Q, where Z /2 actson Spin(6) x Q
viathe involution (a. b) — (—a. —b). Therefore

. z/2
RH = (R(Spm(G) x Q))
= (Rspin(6) @ RQ) /%,
and one also hasinjections Spin (6) — H, Q — H.

LEMMA 11. Let 6:Spin(6) x Q — Spin(6) x Q denote the involution f(a.b) =
(—a, —b). Then ¢ induces the automor phism#*: RSpin (6) ©® RQ — RSpin (6) ® RQ =
Z[ P1, A;‘, Ag‘, XY, q] /N’ where
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(i) 6*(p1) = p1.

(i) 0%(83) = —43,
(i) () =x, 6% (y) =y.
(iv) 6*(q) = —q.

PrROOF. We omit the proof, which involves a straightforward verification.

COROLLARY 12.

RH

12

Z[ p1. P2, (83)%. (83)%. 030, B30, X, Y] /~
Z[ pa. p2. Pa] [ (83)%, 830, A3 0. X, | /~ .

12

The relations are, when expressed over the polynomial algebra Z[ p1. p2, ps], as
follows:
(i) ¥=y>=1.
(i) (A30)% = (83)*- (1+X)(1+Y).
(ili) (A30)? = (pa+2p2+8p1+32— (83)%) - (L+X)(L +Y),
(iv) (A30)(A30) = (P2 +4p1+16) - (1+x)(1+Y),
(V) (Aga)x = (Az0q)y = Azq.
(Vi) Aza)x=(830)y =450,
(vii) (8%)* = (B%)*(ps + 2pz + 8py +32) — (P2 + 4py + 16)%,
(viil) (A3)°(850) = (A30) - (p2 +4py + 16).
(%) (83)%(830) = ps(A30) + (2850 — Az ) - (p2 + 4py + 16).

We caution the reader that AZq and A3 g are not a product in RH, indeed g is not in RH
athough ? isin RH.

5.2. Therestriction map j#: RSpin (9) — RH.

Recall that RSpin(9) = Z[P1. P, P3, A4]. 1t will be useful to define the class w :=
X+y+xy—3=0%—4 € RH. Note that «? = —4w and hence " = (—4)" 1w for any
integer n > 1.

LEMMA 13. Therestriction map j#: RSpin (9) — RH is given by
(i) j*(P1) = p1+w = py,

(i) j*(P2) = p2 + wp1 =: 5.

(iii) j*(P3) = ps +wp2 =: P,

(iv) j*(Ps) = paw,

(V) j*(0g) = B3 - q = A5+ A5 0.

PROOF. Letu;, u~! havetheir usual meaning as elements of the representation ring of
the standard reference torus T*, so that the P; are the elementary symmetric polynomials
in

WHuZ—2,.. . G+ U2 -2
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Note that uﬁ + u;z —2is"“concentrated” on the subgroup S = {cos2r6+sin 27 - e;eg :
0 <0 < 1} C T4 the ‘standard’ maximal torus of Spin(9). Also, the subgroup Sis
the standard maximal torus of Spin(3) C Spin(6) Xz, Spin(3) which is contained in
Spin (9) and based on the last three coordinates, €. eg. & € R°. Now
_ _ 1 . 1
(f+ 157 ~ D)) = (i + 152~ 2)cos(2r- ) +sin(2r- 7 Jeren
— eZTxl(%) +e27ri(7% )
= —4.

Also,

(0? — 4)(eres) = (X +Yy+xy — 3)(eres)

—1+1-1-3=-4.

In Spin(3) C Spin(9), the element egey is conjugate to ezeg € S(as Sis the maximal
torusof Spin(3)). It followsthat (u3+u, 2 — 2), which representsan element of RSpin (3),
assumes the same value at egeg as at e;e5. Hence

(U2 + Uz 2 — 2)(eses) = (9 — 4)(es&9) = —4

Also (UF +u;2—2)(+1) = 0 = (g — 4)(+1). Hence (u3 +u, 2— 2) correspondsto (7 — 4).
Now Lemma 13(i)—(iv) follows immediately from this.

To establish (v), one first proceeds as above to show that us + Uzt = 1@ A €
R(Spin(6) x Spin(3)) restricts to 1 @ q € R(Spin(6) x Q); indeed both take values
0, 0, 2, —2 respectively one;eg, €6y, 1, —1. Theimageof A, =TT, (Ui+u; 1) under j# can
then be seen to bethe element A3q+A; q € RH. ThisisbecauseIT%, (Ui +ut) = Ag €
R(Spin(6) x Spin(3)) mapsto the element (A} +A37)q = Ajq+A;q € R(Spin(6) x Q)
which isactually in RH. This gives (v). ]

5.3. Changeofrings. LetA =Z[P1,P,, P3], andlet
A =RSpin(9)/(A*) = Z[A,)].
LetB=RH /(P;,P},P}). Then Bisan A-module.
THEOREM 14. Tor gs(RH, Z) =~ Tor A(B, Z), as graded algebras.
ProOF. We apply the change of rings theorem:
Tor 3(Tor A (RH. Z). Z) == Tor pg(RH. 2).

and show in fact that the spectral sequence (on the left) collapses (in fact lives in one
line) and yields the required isomorphism.

The only non-trivial statement to verify is that RH is A-flat, and this is done in the
next lemma (in fact it is A-free).

LEMMA 15. RH is A-free.
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PROOF. One has maps of Lie groups Spin(6) <— Spin(7) — SO(7), where the
second map is the universal double covering map. Asiswell known, these maps induce
monomorphisms RSO(7) — RSpin(7) — RSpin(6), which we regard as inclusions.
Observe that RSpin(7) = Z[p1, Pz, &3] = Z[p1. P2, ps][As] / ~ = RSO(7)[As]/ ~ is
free over RSO(7) =~ Z[ p1, p2. p3], since Az satisfies a monic quadratic relation over
Z[ p1, P2, ps] and this generates all relationsin RSpin (7). Thusabasisfor RSpin (7) over
RSO(7) is{1, Az} . Similarly we note

RSPIN(6) & Z[ pr. . 831 & Z[ pr. pa. Acl (3] /~ = RSpin (7)[A3] /~.

whereall the relationsin RSpin (6) over RSpin (7) arise from the single monic quadratic
polynomial (A3)? = (A3)(A%) — p2 — 4ps — 16. Again we conclude that RSpin (6) is free
over RSpin(7) with basis {1, A7 }. Combining the abovewe seethat RSpin (6) is free over
RSO(7) with basis {1, Az, AL, AsA%}. Using AL + A7 = Ag, it is clear that an equivalent
basis for RSpin (6) over RSO(7) = Z[ p1, P2, ps] is S:= {1, A%, A3, (A)?}.

Note that one has the relation
1 0 0O 1 1
w 1 0 0)fps|_|P;
0w 1 0f|lp| |r
0 0 w 1/ \ps Ps

Now, observethat RH is generated asa Z[ ps., p2, ps]-algebraby (A%)?, A3q, A3, X, Y.
From Corollary 12, we seereadily that {(A3)2, (%)X, (A%)?y, (A%)*xy, A3q, A3 d, 1. X, Y,
Xy} is a generating set for RH as a module over Z[ p1, p2. ps]. From the above re-
lation between the p1, p2, p3, and p}. p5. p5, it follows easily that Z[ py. p2, ps][x.y] =
Z[ Py, Pb, P51[X. y]. Using this and the relations (i), (v), and (vi) of Corollary 12, one can
show that the same set generates RH as a module over Z[ pi, p,. p5]. We claim that in
fact RH isafree Z[ pi, p5. p5]-module with basis

{(03)%, (83)7% (B3)°y: (83)>xy, £30, A3 0, 1, X, Y, Xy}

Supposethere exist elements o, 3, 7,6, &, 11, . g, h, k € Z[ p;. p5. p5] such that
() (f+gx+hy+kay)(Q3)? +a + Bx+7y +6xy + 030+ 1A =0 in RH.
Wemust showthata =3=v=6=e=n=f=g=h=k=0.

Note that under the restriction map ¢1: RH — RSpin(6), x — 1,y +— 1, “q —
2" (the quotes signifying a shorthand for A3q — 2A%, etc.). It follows that w — 0, and
consequently ¢1(p{) = p; for 1 <i < 3. Since ¢ is an algebra map, we see that for any
polynomial P(p') = P(p. p5. p5). 61 (P(P')) = P(p1. 2. p3) = P(p).

Applying ¢1 to (x) we seethat, in RSpin (6),

(f(p)+a(p)+h(p) +K(p)) (A3)* + (a(p) +B(P) +Y(P) +6(P)) +2:( P)A3 +2(P)Az = 0.
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Since SisaZ[ p1. p2, p3]-basis for RSpin (6), it followsthat (p) = n(p) = 0, and
(1a) f+g+h+k=0, a+p8+7+6=0

inZ[ p1, P2. p3], wherewe havewritten f for f (p), etc. Since Z[ p1, p2, ps] isapolynomial
algebra and hence a free object in the category of commutative rings with unit, e(p) =
n(p) =0 impliesthat <(p’) = n(p’) = 0.

Now let QSX: RH — RSpin(6) be the ring homomorphism defined by pi — pj,
(A5)? — (A})?, and setting x = —1,y = +1, “q = 0". Under this map, p} — p1 —
4,p, — pp — 4p1, p§ — Ps — 4p2. Let p: RSpin (6) — RSpin(6) be the abelian group
homomorphism defined as follows: On the polynomial algebraZ[ p1, p2, p3],p isthering
homomorphism such that p; — p1 +4, p2 — p2 +4p1 + 16, p3 — p3 + 4p, + 16p; + 64.
Then extend the map p to the whole of RSpin (6) by mapping each of the basis elements
1,A3. A5, (A%)? to itself, so that p(am) = p(@)p(m) for any a € Z[ p1, po. ps), and m €
RSpin (6). Finally, let ¢x = p o ¢x. We define ¢y, and ¢,y similarly. Note that for any
P(p) € Z[ p}. P5. 3], we have

dx(P(p")) = p(P(P1 — 4. p2 — 4p1. Pz — 4p2))
= P(p(p1— 4). p(P2 — 4p1). p(Ps — 4p2)) = P(p) € Z[ p1. p2. Ps].
Now using e = = 0in Z[ p. p. p5], and applying ¢y to (x) we obtain
(1b) f—g+h—k=0. a—f+Y-6=0

in Z[ p1, p2. p3] (as beforef = f(p), etc.). Applying ¢y and ¢y, we similarly obtain

(1¢) f+g—h—k=0, a+B—-7—-6=0,
(ad) f—g—h+k=0, a—B—7+6=0.
(f o 1 1 1 1
gl _~_ (ﬂ _(1 -1 1 -1
Therefore A h =0=A 5 , whereA= 1 1 -1 -1
\k \6 \1 -1 -1 1

Since Ais nonsingular, (in fact AA' = 4l) wegetf =g=h=k=0=a=03=7=4§in
Z[ p1. P2, Ps]- Since Z[ py, p2. ps] isapolynomial algebra, it followsthatf =g=h=k =
0=oa=p=7=46inZ[p).p, ps]. Hence RH isfree over Z[ p}. p. p]. "

5.4. Calculation of Tor 3(B, Z). Letn: A — B bethe map induced by the restriction
homomorphism j# RSpin (9) — RH. One has B = Z[(A})?, A3d. A3, X, Y] / ~ where
the relations are as in Corollary 12 and with p; = —w, p2 = —4w, p3 = —16w. The map
n: A =~ Z[As] — Bisgiven by n(As) = Aq + A3 9. To compute Tor (B, Z) we make
use of the Koszul resolution.

0—AD -2 A%, 7_ 0.
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where d; isdefined by D — A4 — 16, and dy is the augmentation map.
Thus Tor 3 (B. Z) is the homology of the chain complex

0—BD—B—0.
D — A3q+A;q— 16.

HoisB/(A3q+A;q—16) ~ Z[A})2 ALg. X, Y] /~ wheretherelations are those coming
from Corollary 12 (with p; = —w, p2 = —4w, ps = —16w), together with A7 q = 16—AZq.
We write them out explicitly:

(i) ¥*=y*=1,

(i) (A30)% = (B> +X)(L+Y) = (B3)*(w +4),
(i) (Aza)x = (Aza)y = Aga,
(iv) (A3)°(830) = 32730 — (16 — AZ0)(16 — 8w)
= 32A%q + 16A5q — 8A30w — 167
= 48M%q — 256.
(v) 16((A%)? — 4n%q+16) =0,
(vi) 16x =16y =16, 16w =0,
(vi) (432 —16)*=0.

PROOF. Itisclear that p; = —w, p2 = w? = —4w, p3 = —w® = —16w in Ho and that,
sincej#(As) = AL+ Azqin RH, onehas Afq+ A3 q =16 in Ho.

Using Ajq + Azq = 16, and the relations Agx = Ag, Az 0x = A3 Q; we get 16x =
Afgx+Az0x = Ajq+A5;9 =16 in Ho. That is, 16x = 16. Similarly 16y = 16. It follows
that 16w = 16(x+y+xy — 3) = 0. In particular pz = 0. We shall only verify relation (vii),
the rest of them are similarly established.

By Corollary 12(vii) and substituting for py, p2, ps, we get

(83)* = (83)*(ps +2p2 + 8p1 +32) — (P2 +4py + 16)°
= (A3)%(0 — 8w — 8w + 32) — (—4w — 4w + 16)°
= 32(A%)? — (16)%

Therefore (A3)* — 32(A%)2 + 162 = 0, i.e., ((A5)2 — 16)° = 0.
Asin [2] we conclude that
KO(W) = Ho = B/ (Asq — 16) =~ Z[(A3)*. A30. X. Y|/~ . .

5.5. Order of w.

PROPOSITION 16. 8w # 0in KO(W).
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PrROOF. Asin the proof of Proposition 10, we will produce a homomorphic image R
of K(W) and show that theimage of 8w isnon-zeroin R. Indeed we have an epimorphism

r:K(W) — R:=(Z/16)[u, V] / {U? + 2u,V* + V),

where r((A%5)?) = 0, r(A30) = 0, r(X) = u+1,r(y) = v+ 1. It is aroutine matter to
verify that r respectsthe relationsin K(W) and is therefore well-defined. Also note that
r(w) = uv+ 2u+ 2v, so to complete the proof it suffices to show that 8uv # 0. Thisis
accomplished by representing R as a subring of the ring of 4 x 4 matrices over Z /16.

Indeed let
(0 0 0 O
{1 -2 0 0
USlo 0 o0 o
\0 0 1 -2
and let
(O 0 0 O
|10 0 0 O
V=110 2 o
\O 1 0 -2
Then one checksthat U? + 2U = 0, V?+ 2V =0, and
(0 0O 0 O
_ {0 0 0 O
vU=UuV = 00 0 0
\1 -2 -2 4
It follows that one obtains a representation of Rby u— U, v +— V. Clearly 8UV # 0,
completing the proof. n

6. Proof of Theorem 1. We are now ready to prove Theorem 1, using the infor-
mation obtained about the spaces X, Y, Z, W and the inclusion method mentioned in the
Introduction. To apply this method, note that any flag manifold in Theorem 1(i) isfibred
by X = G(1] 3,1), i.e, themap G(1. ....1 | 3.1) — G(5. 1. .... 1) obtained by combining
the last three orthogonal subspaces of any p.o. flag x € G(1.....1 | 3,1) to asingle
(oriented) 5-dimensional subspace, has fibre X. As mentioned in the Introduction, the
resulting inclusion X — G(1, ..., 1 | 3, 1) hastrivial normal bundle (cf. [10], p. 456, or
simply note that this is clearly true for the fibre inclusion of any locally trivial smooth
fibration of smooth manifolds). Now from Theorem 4(i) and Theorem 7(i), it follows
that X is not stably parallelizable. Hence none of the flag manifolds in 1(i) can be sta-
bly parallelizable. Parts (ii) and (iii) are proved exactly the same way, using Theorem
4(ii), (iii), Theorem 7(ii), and Proposition 10.

To prove part (iv), asin the other cases, we need only show W is not stably paralleliz-
able. Using Theorem 4(iv),

(TW) =[tW] — 21 = 8([52 B &P &y — 3).

Next observethat the complexification of £, B 3P &g representstheelemerltx+y+xy =
w + 3 in K(W) by the a-construction. It follows, in K°(W) (indeed in KO(W)), that
(c(rW)) = 8w, and the proof is now a direct consequence of Proposition 16. ]
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