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Abstract

Wegive an exponential tail approximation for the extinction time of a subcritical multitype
branching process arising from the SIR epidemic model on a random graph with given
degrees, where the type corresponds to the vertex degree. As a corollary we obtain a
Gumbel limit law for the extinction time, when beginning with a large population. Our
contribution is to allow countably many types (this corresponds to unbounded degrees
in the random graph epidemic model, as the number of vertices tends to 00). We only
require a second moment for the offspring-type distribution featuring in our model.
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1. Introduction

In this paper we consider a continuous-time Markov multitype branching process Z
(Z, (k); t ~ 0, k = 1,2, ...) arising from the susceptible-e-infective-e-recovered (SIR) epi
demic model on a random graph with given degrees. (We mention this connection only as
motivation and do not explain it in detail. If desired, the reader can consult [2] or [7] for
a construction in which the branching process studied here is apparent. See also Remark 2
below.)

Individuals in Z are thought of as infective hosts carrying a number of spores. An individual's
type k ~ 1 is simply the number of spores it has. (We ignore individuals with no spores.) Each
spore, at a given rate fJ > 0, is released and gives rise to a new infective individual. The
new individual has a random type (i.e. number of spores), J say, chosen according to some
given probability distribution, denoted (p j )1=0' (We allow PO > 0, and J = °means that no
new infective is produced.) This leaves one individual of type k - 1 (representing the original
individual after losing a spore, assuming k ~ 2), and another with type J (assuming J ~ 1).
Furthermore, each individual (including its hosted spores) is removed from the population at
rate p ~ 0, leaving nothing in its stead, regardless of type. Thus, an individual of type k has an
exponentially distributed lifetime of rate p + fJk, and is replaced by 0, 1, or 2 individuals.

This is a standard form of multitype branching process. Classical theory provides an
exponential tail approximation for the extinction time in the subcritical case, at least when there
are finitely many types, i.e. (p j )1=0 has finite support (see [5], and [3, Chapter V,Theorem 11.1]
for the single-type result of Sewastjanow). In the general denumerable case, extinction itself is
more delicate, for example extinction can be almost sure even though the expected population
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size tends to 00 [4]. Tail approximations have been made in special cases, such as birth
distributions of linear-fractional form [9]. However, there does not seem to be an applicable
result for our rather simple model. In this paper we require only that (p j )1=0 has a second
moment.

Denote by
qk(t) = JID(Zt 1= 0 I Zo(i) = Oki, i ~ 1),

the probability that the process survives till time t ~ 0 when it begins with a single host
carrying k ~ 1 spores. (We find it more intuitive to speak of hosts and their spore counts in the
sequel, rather than using the branching process terminology of individuals and their type.) The
exponential approximation result we prove is as follows.

Theorem 1. Suppose that ~ := L~o kPk > 0,

J... := p + ,8(1 - ~) > 0, (1)

and
00

Lk2pk < 00.

k=O
Then there exists a constant eE (0, 1] such that, for any a < minlx , ,8},

qk(t) = eke-At (1 + O(ke-at» as t ~ 00

(2)

(3)

(4)as n ~ 00

for all k ~ 1.

The condition in (1) means that Z is subcritical. In the omitted case of u. = 0, no new
hosts occur and qk(t) = e-pt (1 - (1 - e- f3 t)k) is just the probability that the initial host is still
present and at least one of its spores remains.

Remark 1. Any value of e E (0, 1] is possible. Indeed, if p = 0 then all spores behave
independently and form a single-type branching process. The Po + PI + P2 = 1 case is linear
fractional [1, Section IIL5, p. 109] and ql (r) can be computed explicitly. More specifically,
PO + P2 = 1 corresponds to a linear birth and death chain and for PO 1= P2, we have

(po - P2)e- f3(PO-P2)t
ql (t) = f3 .PO - P2e- (PO-P2)t

Thus, the leading constant in Theorem 1 is e= 1 - P2/ Po for any P2 < Po.

Theorem 1 can be used to examine the distribution of the duration of a subcritical epidemic
where there are initially large number of infective hosts. The utility of such a result is perhaps
not immediately apparent, so we remark that the situation described also arises at the end of
a major epidemic, when an outbreak has become so large that it starts shrinking due to there
being few remaining susceptible individuals.

Corollary 1. Adopt the setting ofTheorem 1. Suppose that for each n ~ 1,we have a sequence
Zk, k ~ 1 ofnatural numbers such that L~o kZk ~ 00, and

00 ( 00 ) I+(a/)..)
Lk2zk = 0 Lkzk
k=O k=O

for some a > 0 satisfying the condition in Theorem 1.
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(5)

Suppose that Zo(k) = Zk for every k and T := inf{t ~ 0: Z, = OJ. Then, for any fixed
W E lR,

p(AT :::: 10(2f kZk) + w ) --+ e-e-
w

as n --+ 00.

k=O

The double exponential distribution on the right-hand side of (5) is known as the Gumbel
distribution. It arises from taking the maximum of a large number of independent random
variables with exponential tails, and thus is common in the context of branching process
extinction times [5], [6], [8].

Remark 2. When studying the SIR epidemic on a random graph with given degree sequence,
one typically constructs (or 'reveals') relevant parts of the graph while the disease spreads,
via a device known as the configuration model; see [7] and the references therein. For the
benefit of readers familiar with the configuration model approach, it is worth noting that the
'spores' in this paper correspond to half-edges, and a 'host' is just a vertex in the graph. To
apply our result, the probability distribution (Pk)~O should be a size-biased transform of the
graph degree distribution. In particular, our second moment condition translates to a third
moment requirement for the vertex degree distribution. The details of a pathwise coupling, and
conditions needed for it to hold with high probability, are left for future work.

The proofs of Theorem 1 and Corollary 1, in Sections 2 and 3, respectively, occupy the
remainder of this paper.

2. Proof of Theorem 1

The general idea is to show that qk(t) rv kq, (r), as t --+ 00, by controlling the dependencies
between spores of the same host; see Lemma 1 below. First we need preliminary bounds on
ql (t). Let us fix a < min{A, ,B}. Suppose that initially there is a single host with one spore.
Let R denote its Exp(p) removal time, and F the Exp(,B) release time of its single spore. The
process survives till a given time t > 0 if and only if either the spore is released before t (and
necessarily before the host is removed) and its progeny persist till time t, or neither the spore
;s released nor the host removed by t. Thus,

from which we obtain the differential equation

00

qi (t) = -(p + f3)ql (t) + f3 L Pkqk(t),
k=O

t ~ 0, ql (0) = 1. (6)

This also follows from the Kolmogorov backwards equations, but deriving it from the integral
is a useful warmup for the calculations below.

Now suppose there is initially a host with k ~ 2 spores. Survival of the process till time t
implies that at least one of the k initial spores, or its progeny, persist till t. It follows that
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qk(t) ~ kq, (t). Using this inequality with (6) yields

00

qi (t) ~ -(p + f3)ql (t) + f3L kpkql (t) = -Aql (t),

k=O

and so eAtql (t) is nonincreasing in t. It is positive and so the limit

P. WINDRIDGE

exists. We have C~ 1 by monotonicity of eAtql (r) and the fact that ql (0) = 1.
It will later transpire that c> O. For now we will lower bound qi (t) by truncating the spore

count distribution (Pk)~O' More precisely, take any positive e < min{A, fJ} - a, and choose
ko ~ 1 large enough that L~~l kpi. > J1- - sf fJ. Our branching process Z dominates a modified
process in which spore counts of new hosts are distributed as J I{J:Sko), where J r-v (Pk)~O'

This modified process has finitely many types, and so the exponential tail approximation of [5]
applies, with decay rate p + fJ - fJL~~1 kp; < A+e. In particular, there exists CI = CI (e) > 0
such that

ql (t) ~ CI e-(A+£)t for all t ~ O.

Lemma 1. For all k ~ 1, we have

(7)

(8)

Proof. As already mentioned we have qk(t) ~ kq, (t). For the lower bound, suppose that
there is initially a single host with k ~ 2 spores. Let Ti, i = 1, ... , k denote the total time that
spore i, or its progeny, persist for. Thus,

The Bonferroni inequality yields

(9)

where we used P(TI > t) = ql (r), and the fact that any pair of times have the same joint
distribution. If p = 0 then TI and T2 are independent and there is nothing to prove. In the
sequel, we assume that p > 0 and control the dependency between the T, using the fact that
the progeny of different spores behave independently.

Suppose that FI and F2 denote the independent Exp(f3) release times of spores 1 and 2,
and R denotes the Exp(p) removal time of the host. Then, ignoring the null events {R < t and
Ti, F, > t}, we have

P(TI, T2 > t) = peR, FI, F2 > t) + 2P(TI, F2, R > i, and FI < t)

+ P(TI, T2 > i, and FI, F2 < t). (10)

The first probability on the right-hand side is simply e-(p+2{J)t. The second probability can be
bounded by writing it as an integral against the spore release time, and then using qk (t) ~ kq, (t),
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assuming A i= f3, otherwise the last integral evaluates to t. In both cases,

IP(Tl, F2, R > i, and Fi < t) == 0 (e-(p+2fJ)t + (1 + t)e-(P+fJ+A)t)

== O(e-(p+2fJ)t + e-(fJ+A)t).

1199

(11)

Finally, we turn to the third probability on the right-hand side of (10). Consider the
probability g(t, r) that a given spore is released before time r > 0 (assuming the host is
not removed first) and has progeny who persist till time t ::: r. Repeating calculations similar
to those in (11) shows it satisfies

for A i= {J,

otherwise the bracketted term is r. Thus, the probability that two given spores are released
before time r (ignoring removal of the host) and bear progeny persisting till time t ::: r satisfies

g(t, r)2 ::s C2e-2At (e 2(A-fJ)r + 1+ r 2)

for some constant C2 > O. Integrating (12) against the removal time density yields

lP'(TI, T2 > t, and FI, F2 < t) = it g(t, r)2lP'(R E dr) + g(t, t)2lP'(R > t)

== O(e-2At + e-(p+2fJ)t + (1 + t 2)e-(2A+p)t)

== O(e-2At + e-(p+2,B)t).

Armed with these estimates, we return to (10) and find that

and using (7), we have

lP'(TI, T2 > t) = O(e-(p+2/3-A-e)t +e-(/3-e)t +e-(A-e)t).
ql (t)

(12)

(13)

Now, P + 2{J - A == {J(1 + ji,) > {J. So, each negative exponent in (13) is at least a by our
choice of e. The desired relationship (8) now follows from the Bonferroni inequality (9).
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We will now prove that c> 0, i.e. that qi (t) really does decay like e-At. Apply Lemma 1 to
obtain

00 00 ( 00)
L Pkqk(t) 2: L kpiq, (t) - 0 ql (t)e-at L k 2Pk
k=O k=O k=O

= ql (t)(JL + O(e-at)),

using the assumption (2) that L~o k2 Pk < 00. Combining this with (6) for ql (t) yields

d q' (t)
-(lnql(t) + At) = _1_ + A
dt ql (t)

fJ 00

= -(p +,8) + - LPkqk(t) + A
ql (t) k=O

(14)

for some constant C3 > o. Integrating both sides, we obtain

Hence, c= limt--+oo eAtq l (z) 2: exp( -C3/a) > O.
Finally, eAtqi (t) is nonincreasing so ql (t) 2: ce-At. Moreover, using (14) again, we obtain

But exp( O(e-at)) = 1 + O(e-at) as t -+ 00 and so (3) holds for k = 1. The result for k 2: 2
follows from (8).

Remark 3. The proof in [5] (for finitely many types) uses a linear approximation to (6) its
analogues for qk, k 2: 2. A general result about perturbations of linear equations is then applied
to derive (3). We took a different approach here due to not finding a suitable perturbation result
for infinite systems of differential equations.

3. Proof of Corollary 1

Take t = ten) := A-l(ln(cL~okzk)+ w), so t > 0 for large enough n. Using the
branching property, Theorem 1, and finally assumption (4), we have

00

In P(T ~ t) = In IT (1 - qk(t))Zk

k=O
00

= L Zk ln(l-qk(t))
k=O

00

~ - LZkqk(t)
k=O
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:s -ce-At i».+°(e-(a+A)( 'tk2Zk)
k=O k=O

- -e-w o( L~ok2Zk )
- + (L~o kZk)l+(a/A)

---+ -e-was n ---+ 00.

1201

On the other hand, (4) implies that the maximum number of spores z, :== max{k: Zk ~ 1}
of any initial host satisfies Z* == O(L~o kZk). So, for any k :::s Z*, we have

qk{t) :s kq) (z) :s ke-At:s w A ~:x, ---+ 0 asn ---+ 00.
e C k=O kZk

This implies that qk(t) < ! eventually (for any k with Zk ~ 1) and, consequently,

In(1 - qk(t)) ~ -qk(t)(1 + qk(t)) ~ -qk(t) - k2e- 2At,

using the inequality In(1 - h) ~ -h(l + h) for h :::s !. It follows that

as n ---+ 00, as in the upper bound.
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