A high efficiency 10W MMIC PA for K-b and satellite communications

Paolo Colantonio1, Rocco Giofrè1, Fabio Vitobello2, Mariano López3 and Lorena Cabrìa3

1Department of Electrical Engineering, University of Rome Tor Vergata, via del Politecnico 1, 00133 Rome, Italy;
2Independent Research, Italy and 3TTI Norte, Santander, Spain

Abstract
This paper discusses the design steps and experimental characterization of a monolithic microwave integrated circuit (MMIC) power amplifier developed for the next generation of K-band 17.3–20.2 GHz very high throughput satellites. The technology used is a commercially available 100-nm gate length gallium nitride on silicon process. The chip was developed taking into account the demanding constraints of the spacecraft and, in particular, carefully considering the thermal constraints of such technology, in order to keep the junction temperature in all devices below 160°C in the worst-case condition (i.e., maximum environmental temperature of 85°C). The realized MMIC, based on a three-stage architecture, was first characterized on-wafer in pulsed regime and, subsequently, mounted in a test-jig and characterized under continuous wave operating conditions. In 17.3–20.2 GHz operating bandwidth, the built amplifier provides an output power >40 dBm with a power added efficiency close to 30% (peak >40%) and 22 dB of power gain.

Introduction
The rapid development of the fifth generation (5G) of wireless systems also permeates satellite communications. The integration of satellite and terrestrial networks is probably the key factor in enabling many new services and providing true full coverage. To this end, very high throughput satellites (vHTS) will be deployed, creating new opportunities in the space market [1]. This family of vHTS can offer high capacity (e.g., 1 Terabit/s per satellite) to a larger number of users, thus allowing for a lower cost per gigabit per second. They also increase the network flexibility and operability, since the satellite service can be allocated when and where it is needed [2]. Applications like multimedia distribution, machine-to-machine communications, critical telecommunications, aero and maritime connectivity, network control signaling, back-hauling, and service continuity are well positioned to be the main contributions of satellites to the 5G ecosystem [3]. Future vHTS will make use of Q/V gateways, where the forward payload link will operate in the K-band (i.e., 17.3–20.2 GHz), usually referred to as the Ka-band satellite downlink [4]. The required radio-frequency (RF) power capability in such a bandwidth is about 110 W at saturation, while the number of equipment integrated into the payload is ~150 units. Radio Frequency (RF) power amplifiers (PAs) are one of the key components of a communications satellite’s payload, consuming ~80% of the spacecraft available power. Therefore, its efficiency is of the utmost importance. Traditionally, the demand for such a high power level at high frequencies, has resulted in the adoption of traveling wave tube amplifiers (TWTAs) as the preferred choice for transmitter modules. However, technological advances in linearization techniques, miniaturization, and the use of different materials such as gallium nitride (GaN), have leveled the playing field towards the use of solid state PAs (SSPAs). The latter could be an attractive solution to replace K-band TWTAs, although the efficiency of SSPAs is still lower than that of the tube amplifiers. Indeed, aspects such as lower cost, graceful degradation, form factor, etc., can introduce significant benefits at satellite level. In this context, several monolithic microwave integrated circuits (MMICs) PAs have been recently demonstrated up to K/Q band [5–23].

This paper is an extended version of [23]. It discusses the design and experimental characterization of an MMIC PA implemented on a 100-nm gate length GaN on silicon (GaN/Si) technology and conceived to be the building block of a space-borne SSPA for vHTS covering the full satellite downlink Ka-band. From 17.3 to 20.2 GHz, the realized MMIC delivers an output power (P_{out}) >40 dBm with a power added efficiency (PAE) peak >40% and 22 dB of power gain.

MMIC design
The MMIC is planned to be integrated in the SSPA RF Tray, by combining 16 of them into a radial combiner [24], with the aim of achieving a total output power of 125 W under...
continuous wave (CW) operating conditions, while a single MMIC will be used as a driver, as schematically depicted in Fig. 1. The complete RF tray includes a gain control unit, embedding linear amplifiers, analog variable attenuators, and an analog linearizer, to assure an overall RF gain >70 dB with proper thermal/aging compensation features.

The MMIC is implemented in the commercially available 100-nm gate length GaN-Si process available in OMMIC foundry (D01GH process) [25].

Considering the lower thermal conductivity of Si as compared to that of the standard silicon-carbide (SiC) typically adopted in GaN processes [26], a careful technology assessment and power budget analysis was initially carried out. In addition, an accurate thermal evaluation of the technology was performed by using Raman measurement [27].

Technology assessment

A load-pull analysis was carried out on different devices’ periphery, assuming a drain bias voltage \(V_{DD} = 11.25 \, \text{V} \) and a preliminary quiescent drain current of 75 mA/mm (class AB bias condition, as tradeoff for power and PAE). The aim was to identify the most suitable MMIC architecture, together with the size of the devices and their loading impedances, taking into account space constraints. Clearly, the device’s channel temperature \(T_j \) was carefully monitored assuring that its value did not exceed the upper limit of 160°C, in the worst-case condition. In particular, since the MMIC has to operate in CW conditions over a temperature range from \(-10 \) to \(65^\circ\text{C} \) at the SSPA level, which implies a temperature \(T_{BS} \) up to 85°C at the MMIC backside, the \(T = T_j - T_{BS} \) in the MMIC has to be kept <75 °C.

The load pulls were performed at the fundamental frequencies \(f \) in the frequency range from 17.3 to 20.2 GHz. An example is reported in Fig. 2 for the 8 × 100 \(\mu \)m device. Notably, together with the standard contours of output power (blue curves), efficiency (red curves), and gain (green curves), it is also reported the curve corresponding to \(T_j = 160^\circ\text{C} \) (i.e., brown curves, safe area inside). The optimum load of \(\Gamma_{opt} = 0.69 \cdot e^{153} \) was selected as a tradeoff among output power, efficiency and gain, provided that the limit on \(T_j \) was respected.

The effect of the impedance at the second harmonic (2\(f \)) was also investigated. In particular, the second harmonic load-pull reveals a critical region (close to the short-circuit condition) where is experienced a severe drop in the device performances. Fig. 3 shows the obtained behaviors for the 8 × 100 \(\mu \)m device, but a similar one was registered for all devices. As a countermeasure, this region was carefully prevented for all devices in the design of their matching networks.

The main features of each analyzed device were evaluated at 2 dB of gain compression, together with the corresponding \(T_j \) in the worst-case conditions (i.e., \(T_{BS} = +85^\circ\text{C} \)). The results are summarized in Fig. 4. As it can be noted, a power gain of about 9 dB can be obtained from the active devices, with an almost similar PAE of ~60%, with a power capacity that increases with the device active periphery, as expected.

Amplifier architecture

Relying upon the outcomes of the preliminary analysis and accounting for thermal, electrical, and physical constraints of the technology, a three-stage corporate architecture was chosen. Its block diagram is shown in Fig. 5. The final stage is based on
the parallel combination of eight 8 × 100 \(\mu \)m devices, each providing \(\sim 33 \) dBm and 8.0 dB of output power and gain, respectively (see Fig. 4). The driver stage includes four 6 × 100 \(\mu \)m devices (thus, one device 6 × 100 \(\mu \)m in the driver stage driving two devices 8 × 100 \(\mu \)m in the final stage), whereas a pre-driver stage realized by two 4 × 100 \(\mu \)m devices (i.e., still 1:2 splitting) was also adopted in order to fulfill the overall gain requirement.

To simplify the MMIC interconnections, the same dc biasing voltage, i.e., \(V_{DD} = 11.25 \) V, \(V_{GG} = -1.65 \) V, was adopted for all the stages. It corresponds to a quiescent current of 35, 27, and 18 mA for each device in the final, driver, and pre-driver stages, respectively. This choice is the result of a tradeoff between electrical performances and maximum allowed temperature at the device level. In particular, the imposed condition was that the
The quiescent bias point was below the curve of maximum allowed power dissipation.

Design steps

Preliminary, all the devices used in the amplifier were made unconditionally stable from dc up to 90 GHz, by adding a standard resistance–capacitance (R–C) stabilization network on the gate path and a resistor in a series on the dc gate biasing access point, if required. Subsequently, the actual implementation of the MMIC started. As the first step, the output combiner was designed accounting for the optimum loads inferred by load-pull simulations on the 8 × 100 μm device, which are reported in Fig. 2. This network was synthesized using a three-section structure, as shown in Fig. 6(a). The load presented across each device is reported in Fig. 6(b) together with the trajectory plotted for both the fundamental frequency and the second harmonic, in a larger carrier frequency range from 17 to 21 GHz. The structure was tailored to allow the possibility to bias the MMIC on both sides (i.e., top and bottom). Moreover, the size of the transmission lines was properly optimized to reduce losses, while simultaneously assuring the capability to withstand the amount of dc current required by all devices under large signal conditions.

The designed combiner exhibited ~0.8 dB of losses, as reported in Fig. 6(c). The resulting performance obtainable from the final stage alone, assuming a TBS = 85°C, is reported in Fig. 7 together with the Tj behavior of the device. The latter was evaluated relying upon the electrothermal model provided by the foundry, as discussed in [27].

Hence, a similar approach was adopted to design the remaining interstage matching networks represented in Fig. 5. The results of the load-pull simulation of the involved devices, i.e., 6 × 100 μm and 4 × 100 μm for the driver and pre-driver stages, respectively, are shown in Fig. 8(b).

Also in these cases, the matching networks were designed assuring the possibility to bias the devices from both sides. For the interstage between driver and final devices, a load transformation from the input impedance (Zin) shown by the 8 × 100 μm device in the driver stage was performed, as shown in Fig. 9, for the bias condition VDD = 11.25 V, ID = 27 mA and ID = 18 mA for the 6 × 100 μm and 4 × 100 μm devices, respectively. The load pulls are computed at 1 dB of gain compression (i.e., correspondingly to Pin = 24.5 dBm for device 6 × 100 μm and Pin = 20.1 dBm for device 4 × 100 μm).

Similarly, the impedance transformation as well as the synthesized matching network between the pre-driver and the driver devices are reported in Fig. 10. In this case, the losses were between 1 and 1.5 dB in the bandwidth.

The MMIC was completed by designing the input matching network to transform the input impedance of the two devices used in the pre-driver into the standard termination of 50 Ω. The structure was fine re-tuned by means of electromagnetic simulations of the entire passive structures. Finally, the odd-mode and parametric oscillations were analyzed by referring to Ohtomo test [28] and by using the STAN tool (pole-zero analysis package described in [29]). The former, based on the evaluation of loop gains, requires avoiding the encirclement of the point (1,0), as reported in Fig. 11. The latter, is based on the analysis of pole-zero loci of the transfer function obtained by perturbing each gate/
Fig. 8. Simulated load pull for the devices used in the driver (a) and pre-driver (b) stages. The former is $6 \times 100 \mu m$, the latter $4 \times 100 \mu m$, both biased with $V_{dd}=11.25$ V and quiescent current $I_{d}=27$ mA and $I_{d}=18$ mA, respectively. The contour plots refer to 1 dB of gain compression.

Fig. 9. Designed interstage matching network between driver and final stages (a) and synthesized load (b). The insertion loss is within 1 and 1.5 dB (c). (a) Interstage matching network between one driver and two final devices. (b) Synthesized loads. (c) Combiner loss.

Fig. 10. Designed interstage matching network from one pre-driver to two driver devices (a) and synthesized load (b). The power losses result within 0.8-1.3 dB (c). (a) Interstage matching network between one pre-driver and two driver devices. (b) Synthesized loads. (c) Combiner loss.
drain of the 14 devices in different power conditions, verifying that there are no real half-plane poles for all power levels.

The photo of the realized amplifier is shown in Fig. 12 (size 5 × 4.4 mm²).

Simulation results

The simulated small-signal performances of the designed MMIC are shown in Fig. 13. The gain (S_{21}) is around 19 dB with an input/output matching better than 15/10 dB.

The large-signal performances as a function of the input power, for the frequency range from 17.3 to 20.2 GHz, are reported in Fig. 14(a). In the same figure are also reported the

Fig. 11. Loop gain simulated by using the Ohtomo test [28], for the frequency from 100 MHz up to 80 GHz. The condition for stable loop is fulfilled if none of the loop gain encircles the point (1, 0) shown in the figure.

Fig. 12. Photo of the realized amplifier (size 5 × 4.4 mm²).

Fig. 13. Simulated small-signal S-parameter.
output power delivered by the devices in the driver (Po_D) and pre-driver (Po_PD) stages, respectively, which operate in almost linear conditions. This is also confirmed by the dynamic load lines of the devices, simulated across the intrinsic current source, reported in Fig. 15. For a fixed input power of 20 dBm, i.e., identified as the nominal operating point of the amplifier, the corresponding simulated frequency behavior is reported in Fig. 14(b). As it can be noted, a PAE higher of 35% is achieved with an output power of 40 dBm (10 W) and a gain of 20 dB in the target bandwidth (highlighted in the same figure).

Fig. 16 shows the thermal map of the chip obtained by running an electro-thermal simulation (by using HeatWave simulation software) for a fixed input power of 20 dBm, assuming T_{ref} = 85°C and for the overall stack (below MMIC) a thermal resistance R_{th,stack} = 0.28°C/W. (a) Two-dimensional view at MMIC level; (b) Three-dimensional view to see the temperature spread in the vertical section.
tool from Keisight) assuming a base plate temperature of 85°C and also taking into account for the R_{TH} of the mounting stack. As expected, the hottest devices are those in the final stage, and the highest temperature is reached at the center of the devices. Nevertheless, the maximum temperature does not exceed the limit of 160°C.

![Figure 17](image1.png) **Fig. 17.** Comparison between simulated (dash) and measured scattering parameters of 10 samples. (a) S_{11}, (b) S_{21}, and (c) S_{22}.

![Figure 18](image2.png) **Fig. 18.** Comparison between simulated (dashed lines) and measured (continuous lines) power performances. The latter refers to the same MMIC version located in different wafer positions, to test the reproducibility of the results on the wafer.

![Figure 19](image3.png) **Fig. 19.** (a) MMIC mounted in the package. (b) Zoom on the MMIC area.
Measurement results

The chip was initially characterized on-wafer in pulsed condition (pulse repetition time 10 μs with 1% duty cycle) and in both small- and large-signal conditions. The small-signal performances measured from several MMICs at the nominal bias conditions are reported in Fig. 17 together with the simulations. A frequency shift of about 500 MHz towards lower frequencies was registered. Nevertheless, a small-signal gain (S_{21}) close to 25 dB was registered, with an input/output return loss better than 7 and 5 dB, respectively, and with a negligible variation among all the measured chips. The difference between the measured and simulated gains is essentially related to the pulsed condition and the inaccuracy of the active device model in predicting small-signal behavior as compared to non-linear situations (as highlighted later).

The MMICs were then characterized on-wafer under large-signal conditions, in the same pulsed condition and at the nominal bias point, i.e., $V_{DD}=11.25$ V and total current absorption of 1 A, with $P_{in}=15$ dBm.

Fig. 20. Small-signal measured results in CW condition. The reference ports are the test-jig input/output RF ports (i.e., SMA connectors) and TRL calibration was considered.

Fig. 21. Measured CW performance of the packaged MMIC (black lines are the simulation at MMIC level). The bias point is $V_{DD}=11.25$ V and total current absorption of 1 A, with $P_{in}=15$ dBm.
output power, gain, and PAE (continuous lines) are reported in Fig. 18, compared with the simulated counterparts (dashed lines).

Notably, in this case, the model prediction is closer to the measured results, even if a slightly higher P_{out} was obtained under pulsed condition. Specifically, an output power in excess of 40 dBm (10 W) together with a PAE above 34% (peak of 39% in the middle of the bandwidth) and a gain larger than 22 dB were recorded in the frequency range from 17.3 to 20.2 GHz.

The MMIC was then tested under CW operations. However, at this stage, the chosen assembly was not optimized and is intended to provide only a quick information concerning electrical performance. In particular, the die was mounted using epoxy glue and, as shown in Fig. 19, the test jig was made of copper, while the die was mounted using epoxy glue and, as shown in Fig. 19, the test jig was made of copper, while

Table 1. Comparison with other GaN MMICs PAs

<table>
<thead>
<tr>
<th>Ref</th>
<th>Year</th>
<th>Techn.</th>
<th>W (μm)</th>
<th>V_{DD} (V)</th>
<th>Cond. (CW/Puls.)</th>
<th>Freq. (GHz)</th>
<th>P_{out} (dBm)</th>
<th>PAE (%)</th>
<th>Gain (dB)</th>
<th>MMIC size (mm²)</th>
<th>Pow. density (W/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5]</td>
<td>2019</td>
<td>GaN/SiC</td>
<td>0.15</td>
<td>18</td>
<td>CW</td>
<td>18.5–19.5</td>
<td>40</td>
<td>37.5</td>
<td>28</td>
<td>4.5 × 4</td>
<td>1.6a</td>
</tr>
<tr>
<td>[6]</td>
<td>2019</td>
<td>GaN/SiC</td>
<td>0.15</td>
<td>18</td>
<td>CW</td>
<td>17–21</td>
<td>40,3</td>
<td>35.5</td>
<td>22</td>
<td>4 × 3.4</td>
<td>2.2b</td>
</tr>
<tr>
<td>[7]</td>
<td>2019</td>
<td>GaN/SiC</td>
<td>0.2</td>
<td>n.a.</td>
<td>n.a.</td>
<td>18.75</td>
<td>42</td>
<td>36</td>
<td>n.a.</td>
<td>5 × 4.5</td>
<td>n.a.</td>
</tr>
<tr>
<td>[8]</td>
<td>2019</td>
<td>GaN/SiC</td>
<td>0.15</td>
<td>20</td>
<td>Puls.</td>
<td>18–40</td>
<td>40</td>
<td>20</td>
<td>n.a.</td>
<td>3.2 × 2.8</td>
<td>2.6</td>
</tr>
<tr>
<td>[9]</td>
<td>2019</td>
<td>GaN/SiC</td>
<td>0.15</td>
<td>20</td>
<td>CW.</td>
<td>18.5–24</td>
<td>Δ35</td>
<td>40</td>
<td>25</td>
<td>4 × 2</td>
<td>2.8d</td>
</tr>
<tr>
<td>[10]</td>
<td>2016</td>
<td>GaN/SiC</td>
<td>0.25</td>
<td>32</td>
<td>CW</td>
<td>18–19</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>3.5 × 4.5</td>
<td>4.6</td>
</tr>
<tr>
<td>[11]</td>
<td>2016</td>
<td>GaN/SiC</td>
<td>0.15</td>
<td>20</td>
<td>CW</td>
<td>21–22.4</td>
<td>40</td>
<td>33</td>
<td>20</td>
<td>3.4 × 2.5</td>
<td>3.1</td>
</tr>
<tr>
<td>[12]</td>
<td>2017</td>
<td>GaN/SiC</td>
<td>0.2</td>
<td>28</td>
<td>n.a.</td>
<td>17–20</td>
<td>40</td>
<td>38</td>
<td>20</td>
<td>n.a.</td>
<td>2.6</td>
</tr>
<tr>
<td>[13]</td>
<td>2011</td>
<td>GaN/SiC</td>
<td>0.15</td>
<td>20</td>
<td>CW</td>
<td>21–23</td>
<td>37</td>
<td>47</td>
<td>17</td>
<td>3.4 × 2</td>
<td>4.2c</td>
</tr>
<tr>
<td>[15]</td>
<td>2013</td>
<td>GaN/SiC</td>
<td>0.25</td>
<td>28</td>
<td>C.W.</td>
<td>22</td>
<td>36</td>
<td>34</td>
<td>16</td>
<td>2.25 × 2</td>
<td>3.7</td>
</tr>
<tr>
<td>[18]</td>
<td>2016</td>
<td>GaN/SiC</td>
<td>0.25</td>
<td>28</td>
<td>C.W.</td>
<td>18–19</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>3.5 × 4.5</td>
<td>3.1</td>
</tr>
<tr>
<td>T.W.</td>
<td>2020</td>
<td>GaN/Si</td>
<td>0.1</td>
<td>11.25</td>
<td>Puls.</td>
<td>17.3–20.2</td>
<td>40</td>
<td>35</td>
<td>20</td>
<td>4.4 × 5</td>
<td>1.6</td>
</tr>
<tr>
<td>T.W.</td>
<td>2020</td>
<td>GaN/Si</td>
<td>0.1</td>
<td>11.25</td>
<td>CW</td>
<td>18–20.2</td>
<td>39</td>
<td>28</td>
<td>20</td>
<td>4.4 × 5</td>
<td>1.6d</td>
</tr>
</tbody>
</table>

a $T_{\text{gs}} = 35^\circ \text{C}$. b Packaged, 5 dBc, $T_{\text{BP}} = 90^\circ \text{C}$. c Doherty configuration. d Packaged.
all the MMIC gate pads were collapsed on a single external access point, available on both sides. The same for the drain pads. The amplifier was characterized under CW conditions by using a Peltier cell to control the base plate temperature.

The small-signal behavior measured at the nominal bias point, with a $T_{BP} = 25^\circ\text{C}$ is shown in Fig. 20. In the same figures are also reported the performances obtained with a lower voltage $V_{DD} = 9\,\text{V}$, showing almost the same behavior.

The large-signal performance measured at the nominal bias point in CW and at 4 dB of gain compression, i.e., with a fixed input power of $\sim 15\,\text{dBm}$, are reported in Fig. 21, without applying any compensation for the bond wires and lines used to connect the MMIC to the package. An output power $>39\,\text{dBm}$ was obtained between 18 and 20 GHz, with a power added efficiency close to 30%, which is the highest value reported in this frequency range for GaN-Si devices.

The packaged MMIC was also characterized over temperature, by controlling the latter at the bottom of the test-jig with a Peltier cell, and changing the reference temperature from 20 to 40°C and 60°C. Taking into account the thermal resistance of the material stack (i.e., package and epoxy glue), which implies approximately a 25°C of the temperature increase, at the backside of the MMIC the estimated temperature results to be about 45, 65, and 85°C, respectively. The measured results are reported in Fig. 22, where the input power level is kept constant in all cases. As it can be noted, the variation of the performances is limited.

Finally, the performances of the realized MMIC are compared with state-of-the-art results in the same frequency range given in Table 1 and graphically in Fig. 23. Notably, the results achieved with the GaN/Si technology used in this design and, above all, accounting for de-rating and temperature constraints, which pose severe challenges during the design phases, compared pretty well with those obtained using GaN/SiC technologies. Consequently, the reported results demonstrate the ability of GaN/Si technology to be a valid alternative to GaN/SiC technology also for spacecraft applications.

Conclusion

In this paper, the design and experimental results of an MMIC PA developed on the 100-nm gate length GaN-Si commercial process (D01GH from OMMIC) have been discussed. The PA has been designed to operate in the frequency range from 17.3 to 20.2 GHz for space applications, and in particular for the next generation K-band HTS spacecraft. Accounting for space de-rating rules and severe temperature constraints, an output power larger than 40 dBm with a power added efficiency above 30% (with a peak higher than 40%) and 22 dB of power gain have been demonstrated with pulsed measurement at wafer level. The MMIC has been then assembled in a preliminary carrier (not fully optimized) for the CW characterization. The latter demonstrates quite stable performances over a large temperature range, showing an output power and PAE larger than 39 dBm and 28%, respectively, at 85°C of the backside temperature.

Acknowledgments

This project was received funding from the European Union’s Horizon 2020 Space Research and Innovation Program under grant agreement no. 821830.

The authors are grateful to OMMIC for performing the on-wafer characterization.

References

interests include the design and reliability aspects of RF and Power GaN HEMTs, MMICs with a particular attention to space qualifications.

Mariano López is a senior RF engineer, graduated in telecommunications engineering in 1997 by the University of Cantabria (Spain), and working for the TTI since 2000. Before, he was working as a RF engineer in the Communications Department of the University of Cantabria. He has been the manager of several R&D and commercial projects in the RF domain, devoted to develop customized equipment as RF transceivers, SSPAs, low noise amplifiers, etc. based on customer requirements at different frequency bands, from L to Ka.

Lorena Cabría received the Telecommunications Engineering and the Ph.D. degrees (with and Extraordinary Doctoral Prize) from the University of Cantabria, Santander, Spain, in 2001 and 2007, respectively. Between 2001 and 2011, she worked as a Research Associate in the RF and Microwave Group at the University of Cantabria. Currently, she is working as a project manager at the TTI, Santander, Spain. Her main research interests include RF and microwave integrated circuits, intermodulation distortion control on RF and microwave applications, high efficiency power amplifiers, emerging wireless transmitter architectures and the development of SSPAs for particle accelerators and for satellites.