A NOTE CONCERNING SIMULTANEOUS INTEGRAL
EQUATIONS

PAUL KNOPP! AND RICHARD SINKHORN?

1. Introduction. In (2) Sinkhorn showed that corresponding to each
positive # X » matrix 4 (i.e., every a;; > 0) is a unique doubly stochastic
matrix of the form D14 D;, where each D;, is a diagonal matrix with a positive
main diagonal. The D, themselves are unique up to a scalar multiple. In (3)
the result was extended to show that D14 D, could be made to have arbitrary
positive row and column sums (with the reservation, of course, that the
sum of the row sums equal the sum of the column sums) where 4 need no
longer be square. The D;, are again unique (up to a scalar multiple). In either
of these situations the D14 D, can be obtained as a limit to the iteration
of alternately scaling the rows and columns of 4 to have the appropriate
sums. These results lead quite naturally to analogous questions in which the
matrices are replaced by continuous functions. It is our intention here to
consider some of these questions. Related problems have been studied by
Hobby and Pyke in (1).

2. The main result.

THEOREM 1. Let M and N be compact topological spaces and u and v non-
negative regular Borel measures on M and N, respectively, such that u(M) > 0
and v(N) > 0. Let h(x,y) and k(x,y) be positive and conlinuous on M X N.
Then there exist funciions f(x) and g(y) positive and continuous on M and N,
respectively, and a positive number ¢ such that fo(x)h(x, y)g(y)du(x) =1 for
all y€ N and [yf(x)k(x,y)g(¥)dv(y) = ¢ for all x € M. The forms
F)h(x, v)g(y) and f(x)k(x, v)g(y) can be obtained as himits to the ileration
of alternately scaling the functions h and k to have the appropriate integrals over
M and N. If, in addition, each non-void open set in M and N has posilive
measure, then the product f(x)g(y) and the number ¢ are unique. The functions
f and g are unique up to a positive scalar muliiple.

Proof. First we demonstrate uniqueness. Suppose (f, g) and (f’, g’) each
satisfy the theorem with positive constants ¢ and ¢/, respectively. We may
suppose that ¢ = ¢/. Then

Received October 28, 1966.

1This author was partially supported by NASA grant NGR-44-005-037.

2This author was partially supported by NASA grants NGR-44-005-037 and NGR-44-005-
021.

855

https://doi.org/10.4153/CJM-1968-082-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-082-4

856 P. KNOPP AND R. SINKHORN

Jaf @), y)g(du(x) = 1, [uf (x)h(x,y)g (¥)du(x) =1, y € N,
and

Inf@k(, 0g@)dr(y) = ¢, [nf ®)k(x,9)d @dv(y) = ¢, x € M.
Put u = f/f' and v = g/g’. Then
max u(x) = u(x:) = c[[wf (x1)k(x1, ¥)0(y)g () dv(y)]
(¢/c') [minv(y)[* < [minov(y)]~?

IIA

and

mino(y) = v(31) = [[ar u(x)f @)h(x, y1)¢ (1) du(x)]?

= [max u(x)]~L.

Since non-void open sets have positive measure, equality is possible in
both cases only if # and v are constant functions. Since equality is forced,
this must be so. It is clear then that uv = 1 and ¢ = ¢’. Thus fg = f'g’.

Define

¢(f, £) = max[yf()k(x, y)g() dv(y) — minfxf(@)k(x, ¥)e(y) dv(y).

Let

Jo®) =1, g) = [[ah(xy) dux)l
An iteration is now constructed in the following way. Begin with (f, go)

above, and set fui1(x) = a,(x)fn(x), gos1(¥) = 0,(¥)g(y), n=0,1,2,...,
where

a,,(x) = [J‘an(x)k(xy y)gn(y) dV(y)]—lr
bn(y) = [fM an(x)fn(x)h(x: y)gn(y) dﬂ(x)]—l-

Let E, = {y € N:b,(y) < [b, + b,]/2}. (In this definition and hereafter
we shall indicate the minimum and maximum values of a function on its

domain of definition by bars under and over the function, respectively.)
Then define

du(x) = [ g, 0, (x)f, (x)E(x, ), (y) dv(y)
and note that

S wrn an () fu () B (%, ¥)g.(y) dr(y) = 1 — d,(x),

where E/, = N — E,.
Then
¢(fn+1, Zot1) = max[a,1(x)]7F — minfa,1(%)]7 = [apa(w2) [T — [@pga(xy) ]!
= [ £ Oufukbugn dv () + [ g1, Gufukbign dv(y) L,

— ([ 50 Oufukigy dv(y) + [ 5y Qufukbugn dv(y) ],

[dn (2) [Bn 4 041/2 + ba[1 — du(x2)]]
— [badn(x1) + [1 = du(x1)][bs + b,]/2]

31 — du(x2) + d,(x1)][b, — b.],

1A
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where x; and x; depend upon #. Since 0 = d,(x) < 1,
31 — dy(x2) + dn(x1)] = 1.

We shall show that the quantity above is in fact bounded away from 1 for
all n.

For each n > 0 define f,(x) = ¥ M,_;'f,(x) and %.(y) = KM, 1g.(y),
where M, = ||aufulls = [ 1 @0 (2)fo(x) du(x), n = 0, and set fo(x)=h"*/u(M),
20(y) = B[ s h(x,y) du(x) " (M). It readily follows that ||f,/|; = &= and
|Z2/|. < B~ if one observes that

b (0)a(y) = [[ar 6a(X)fu(®)h(x, 3) dp ()] £ BM,L

Consequently,

an(©)fu (%) = [[x k(x, 9)Z.(y) dv(y) 1t Z k-3 /v(N)
and

2(y) = (@) (x, 3) du(x)]* = Akt
and therefore
i hk
an()fa(©)E (x, ¥)g(¥) = an(x)fn(x)k(x, )8 () 2 ;71—5;(11\7_) >0

for all #» and all x and y.
Let @ = hk/4hk and suppose that for some #

1 —a <31 —d(x) +du(x1)] £ 1.
Then
1 —2a< dn(xl) —_ dn(.?h) é d,,(xl) é 1,
which gives
0=1-—4d,(x1) < 2a, 0 =d,(x) < 2a,
ie.,
0= [fE’ﬂ Qy nkgn dV(y)]r=11 < 2a,

0 = [f 5, aufokgy () )imsr < 20
Then we would have
0 < [Bk/RRI(B,) + v(E)/v(N) = Wb/ < 4a,
a contradiction. Thus
31— du(xy) + du(x))] S 1 —a=0<1,
for all #. Furthermore, from the definitions of ¢ and b we see that

(dn)—l é bn .S_ (a—n+l)_l é (Qn+1)_1 é E é (g’n)-l;

hence,
[571» - .bn] = [(Qn)—l - (dn)_l]'
Then
¢(fr+1’ gn+1) é 0[(2'7:)*1 - (dn)—ll = 0¢(fm gn»)y
and
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& (fo, 82) = 0°¢(fo, g0) = K" — 0 as n— .

It follows that there is a number ¢ > 0 such that b, T¢, b, | ¢, a, T 1/c,
@, | 1/¢ so that a,(x) converges uniformly to 1/¢ and b,(y) uniformly to c.
Next consider the infinite product (cdy) (cdy) ... (cd,) ... . Since

[(Qn)—l - (dn)_l] é Ken’

we have

1 =ci, = (1 —c'Kg)!
and thus
(1) 0 = log ca, = log(l — ¢™1K6")71,

if n is sufficiently large so that 1 — ¢~1K6* > 0. The ratio test shows that
> log(l — ¢ 1K6")~! converges. Thus the product (cdo) (cdi) ... (cdy) . . .
converges. Consequently, there is an R > 0 such that (cd,) (cdy) . . . (ca,) = R
for all n. Note that

'Cn+1]l‘7z+1(x) - cnfn(x)' = c"ica,,(x) - lffn(x)
< ean(x) — 1|(cdy) (cay) . .. (c@no1)fo(x) < |ca,(x) — 1R

and therefore, if m > 9,
m—1 m—1

2) | fulx) = ChHE)] 2 20 [ i (x) — )] £ 20 Jean(x) — 1R,
n=p n=p

But from [(a,)™! — (@,)7'] < K6" (1 — ¢'K6" > 0) we see that

—Ko Sca,(x) — 1= Ko

c + K¢" = ¢ — K¢"
and, therefore,
, Ko"
j— < _
3) can(®) = 1] £~

By the ratio test, K6"/(¢c — K6") is summable. Thus, |ca,(x) — 1] is sum-
mable, uniformly on M. It follows that ¢"f,(x) converges uniformly on M
to a continuous limit f(x). Since (b, — b,) = K6",

(4) 0 < log ¢ b, < log(1 + ¢1K6"),
and since Y oolog(l + ¢~1K@") converges, so must 112, (¢~1b,). Thus there
is a number R’ > 0 such that I, (¢c-'b;) < R’ for all #, whence
[ g1 (¥) — g @) = ¢ bu(y) — clg(¥)
< U by — b)) R'go(y) = ¢ 'R’ ||go| . KO",

(3)
and therefore

© lc"gn(¥) — " ()| = m; e a1 (@) — ¢ g ()]

m—1
< "Z=:pc“R' || go] |.K6".

It follows that ¢g,(y) converges uniformly on N to a continuous limit g(y).
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Since
o Fa ()b, 3)ga(y) du(x) = 1
and
i@k (e, 9)ga(y) dv(y) = 1,
then
fM Cnfn(x>h<xv y)c‘"g,,(y) d#(x) =1
and

S 1 ()R (x, ¥)c g, () dv(y) = ¢,
and, consequently,

(7)  [uf@h(x, y)e(y) dulx) =1, [y f)k(x 3)g) dv() = c.
At this point it is clear that f and g are positive.

COROLLARY 1. Under the hypothesis of the theorem, the functions f and g and
the quantity ¢ are continuously dependent upon h and k.

Proof. Let hy and %, be positive and continuous on M X N and let p be
such that 0 < p < % min(ho, ko). Denote by D the collection of all ordered
pairs (h, k) which are positive and continuous on M X N and such that
[|h — hollo < p and ||k — ko||, < p. It readily follows that h — hy < p,
ho —h < p, k — ko < p, ko — k < p for any (I, k) € D, whence, for any such
(h' k)Y

g@_ > Qlo - P)(]_Zo —p)

4hk = 4(ho + p) (ko + p)

Let ) = 1 — . Then 0 < 1 — kk/4hk < 6,.
If (b k) € D and if go(y) = [[a h(x, v) du(x)]"Y, it follows that

[(ho + p)u (M) = |lgolle < [(ho — p)u (M)
Also, if K = ¢(fo, go),

= ao > 0.

(Fo + p)v(N) _ (ko — p)v()
(ho — p)u(M)  (ho+ p)u(M)
If as(x) = [fnk(x, ¥)go(y) dv(y)],
o ot o) _ o

(ko — p)v(IV)
For the given (A, k) € D, @, £ @441 £ ¢! £ Gup1 = G, for all m, and therefore

0<c? = Co—l.
Equations (1) and (4) show that there exists an Ry > 0 such that R £ R,
and R’ £ R, for all (%, k) € D.
Thus (2) and (6) may be written, respectively, as
—1
) S Kobo" ]
m I < —_—my
1" — holle = Z [Co — Kb Ro

n=p

0=K= = K.

0<a

and
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m—1
e ™gm — ¢ gl = 2 c0”" Rol(ko — p)u(M)] K obo"
n=p

for all (k, k) € D. Thus ¢f, = f and ¢"g, — g uniformly on D. It follows
that f and g depend continuously on % and k. The second equation in (7)
shows that the quantity ¢ likewise depends continuously on % and k.

COROLLARY 2. Let A and B be positive n X n matrices. There exist diagonal
matrices Dy and D, with positive main diagonals and a positive number ¢ such

that D1ADs and c¢cD3BD; are stochastic. The number ¢ is unique and the D; are
unique up to a scalar multiple.

3. Consequences.

THEOREM 2. Let M and N be compact topological spaces and let u and v be
non-negative regular Borel measures on M and N, respectively, such thal
w(M) > 0 and v(N) > 0. Let H(x,y), F(x), and G(y) be posiitve and con-
tinuous on M X N, M, and N, respectively, such that f a Fdu = fN G dv. Then
there exist functions f(x) and g(y) positive and continuous on M and N, re-
spectively, such that [y f(x)H(x, y)g(y) dv(y) = F(x) and

Jaf)H(x, y)g(y) du(x) = G().

The form f(x)H (x,y)g(y) can be obtained as a limit lo the ileration of alter-
nately scaling the function H to have the correct integrals over M and N. If, in
addition, each mnon-void open set in M and N has positive measure, then
fx)H(x, y)g(y) 1s unique and the funciions f and g are unique up to a positive
scalar multiple.

Proof. Use h(x,y) = H(x,y)/G(y) and k(x,y) = H(x,vy)/F(x). It re-
mains to show that ¢ = 1.
Given 0 < ¢ = ¢, pick n so that ¢ — € < [a,(x)]"! < ¢ + e. Then

Jar (6 = ) F(x) du(x) < [a [F(x)/an(x)] du(x) < [2 (c + €)F(x) du(x)
or
(¢ = f s F(x) du(x) < [a du(®)f w f2 (@) H (x, 3)g.(y) dv(y)
< (c+ &)fa Flx) du(x).
Using Fubini’s theorem and cancelling fM F(x) du(x) = fN G(y) dv(y), we
get c —e<1<c¢+ e Thus ¢ = 1.

Some interpretations of Theorem 2 are listed below.

CoroLLARY 1 (Sinkhorn (3)). Let A be a positive n X m matrix and let
Pl e ooy Tuy C1y o« « , Cy De given posilive numbers with Y r; = > c;. Then there
exists a unique matrix of the form D1AD, with row sums r; and column
sums c;, where Dy and D, are diagonal matrices with positive main diag-
onals. The D, are themselves unique up to a scalar multiple.

https://doi.org/10.4153/CJM-1968-082-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-082-4

INTEGRAL EQUATIONS 861

COROLLARY 2. Let hi(x), B = 1,...,n, be positive and continuous on [0, 1].
Let F(x) be positive and continuous on [0, 1] and let ry,...,r, be positive
numbers such that

1
fF(x)dx=rl+...+rn.

There exists a unique collection of functions Hy(x), k = 1,...,n, on [0, 1] of
the form f(x)h;(x)gy such thal

1
fHL(x) dx = 7,
0

while 3_H(x) = F(x). The function f(x) is positive and continuous on [0, 1]
and each g, > 0. The funciion f(x) and the numbers g, are themselves unique
up to a scalar muliiple.
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