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1. Introduction. In (2) Sinkhorn showed that corresponding to each 
positive n X n matrix A (i.e., every atj > 0) is a unique doubly stochastic 
matrix of the form D\AD2, where each Dk is a diagonal matrix with a positive 
main diagonal. The Dk themselves are unique up to a scalar multiple. In (3) 
the result was extended to show that DiAD2 could be made to have arbitrary-
positive row and column sums (with the reservation, of course, that the 
sum of the row sums equal the sum of the column sums) where A need no 
longer be square. The Dk are again unique (up to a scalar multiple). In either 
of these situations the D\AD2 can be obtained as a limit to the iteration 
of alternately scaling the rows and columns of A to have the appropriate 
sums. These results lead quite naturally to analogous questions in which the 
matrices are replaced by continuous functions. I t is our intention here to 
consider some of these questions. Related problems have been studied by 
Hobby and Pyke in (1). 

2. The main result. 

THEOREM 1. Let M and N be compact topological spaces and 11 and v non-
negative regular Borel measures on M and N, respectively, such that JJ,(M) > 0 
and v(N) > 0. Let h(x, y) and k(x, y) be positive and continuous on M X N. 
Then there exist functions f(x) and g(y) positive and continuous on M and N, 
respectively, and a positive number c such that $Mf(x)h(x, y)g(y)dn(x) = 1 for 
all y G N and jNf(x)k(x, y)g{y)dv(y) = c for all x Ç M. The forms 
f(x)h(x,y)g(y) and f(x)k(x, y)g(y) can be obtained as limits to the iteration 
of alternately scaling the functions h and k to have the appropriate integrals over 
M and N. If, in addition, each non-void open set in M and N has positive 
measure, then the product f{x) g (y) and the number c are unique. The functions 
f and g are unique up to a positive scalar multiple. 

Proof. First we demonstrate uniqueness. Suppose (/, g) and (/'', g') each 
satisfy the theorem with positive constants c and c', respectively. We may 
suppose that c ^ cf. Then 
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jMf{x)h(x,y)g(y)dv,(x) = 1, JMf'(x)h(x, y)g'{y)d»{x) = 1, y Ç N, 
and 

ivf(x)Wx,y)g(y)dv(y) = c, jNf(x)k(x,y)g'(y)dv(y) = c', x £ M. 

Put w = / / / ' and v = g/g'. Then 

maxw(x) = w(aci) = c[jNf(xi)k(xu y)v{y)g'(y) dv{y)]~l 

= fcA') [ m m v{y)]~l ^ [min z / ^ ) ] - 1 

and 
minz>(:y) = v(yi) = [fM u(x)f(x)h(x, yi)g'(yi) dfi(x)]-1 

^ [max ^(x) ] - 1 . 

Since non-void open sets have positive measure, equality is possible in 
both cases only if u and v are constant functions. Since equality is forced, 
this must be so. It is clear then that uv = 1 and c = d'. Thus fg = fgf. 

Define 

4>{fig) = ™xJNf(x)k(x,y)g(y) dv(y) - m'mjNf(x)k(x,y)g(y) dv(y). 

Let 
fo(x) = 1, go(y) = [fMh(x,y) dnix)]-1. 

An iteration is now constructed in the following way. Begin with (/0, go) 
above, and set fn+i(x) = an(x)fn(x), gn+i(y) = bn(y)gn(y), n = 0, 1, 2, . . . , 
where 

On(x) = [fjvfn(x)k(xfy)gn(y)dv(y)]-1
t 

h(y) = [JMan{x)fn(x)h(x,y)gn(y) d/jL(x)]-\ 

Let En = {y £ N: bn(y) < [bv + 5„]/2}. (In this definition and hereafter 
we shall indicate the minimum and maximum values of a function on its 
domain of definition by bars under and over the function, respectively.) 
Then define 

dn(x) = JEn an(x)fn(x)k(x, y)gn(y) dv(y) 
and note that 

fE'n<h(x)fn(x)k(x,y)gn(y) dv(y) = 1 - dn(x), 

where E'n = N — En. 

Then 

<l>(fn+i, gn+i) = maxK+^x) ] - 1 - minK+ifx)]"1 = [an+1(x2)]-1 - K+itei)]-"1 

= ijEnanfnkbngndv(y) + JE>n anfnkbngn dv(y)]z=X2 

- [JEn Onfnkbngr, dv{y) + JE>n CLnfvkbngn dv(y)]x=xi 

S [dn(x2)[bn + bn]/2 + bn[l - dn(x2)]] 

~ [bndniX!) + [1 - dn(Xi)][bn + Sn]/2] 

= | [1 - dn{x2) + dn(x!)][bn - bn], 
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where X\ and x2 depend upon n. Since 0 ^ dn(x) S 1, 

J[ l -dn(x2) +dn(x1)] S 1. 

We shall show that the quantity above is in fact bounded away from 1 for 
all n. 

For each n > 0 define fn(x) = hr* M^r1 fn(x) and gn(y) = A*Mn_ign(y), 
where M"w = |K/W||i = jM a«(x)fn(x) dn(x), « ê O , and set f0{x) = h-*/p(M), 
go(y) = h*[$Mh{x, y) dii(x)]-lii(M). I t readily follows that ||/n||i = A~* and 
] 12» 11 oo = ^ _ ï if o n e observes that 

h(y)gn(y) = [JMan(x)fn(x)h(x,y) dfxix)]-1 ^hrlMn-
1. 

Consequently, 

an(x)fn(x) = [jNk(x,y)gn(y)dv{y)]~i ^ k~^/v{N) 
and 

ln(y) = [JMfJx)h(x,y) d^ix)]-1 ^ hrllf 
and therefore 

hk i 
an(x)fn(kx)k(x1y)gn(y) = an(x)/n(x)£(x, y)gn(y) ^ ^JTÂn > ° 

for all w and all x and y. 
Let a = hk/4:hk and suppose that for some n 

1 - a < J[l - 4 fcO + 4 0 i ) ] ^ 1. 
Then 

1 — 2a < dn(xi) — dw(x2) ^ dn(xi) ^ 1, 
which gives 

0 ^ 1 - djxi) < 2a, OS dn(x2) < 2a, 
i.e., 

0 ^ [§E>nanfnkgndv(y)]x=xl < 2a, 

0 ^ [Js„û^wfe& d?(:y)Lr-« < 2a. 

Then we would have 

0 S [hk/hk][v(En) + v(E'n)]/v(N) = **/]Wc < 4a, 

a contradiction. Thus 

| [1 - dn(x2) + dn(xi)] S 1 - a = 9 < 1, 

for all ?z. Furthermore, from the definitions of a and b we see that 

fe)-1 ^ 6, g (â^x)-1 ^ (ftn-i)-1 ^ 6» g (o,)-1; 
hence, 

[6, - bn] è [(a,)"1 - (ân)-l]. 

Then 

and 
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*(/*, gn) S W o , go) = K6n -> 0 as n - • *>. 

I t follows that there is a number c > 0 such that bn f c, bn I c, an | 1/c, 
â„ j . 1/c so that an(x) converges uniformly to 1/c and b„(y) uniformly to c. 
Next consider the infinite product (cd0) (cd\) . . . (cân) . . . . Since 

[(&)"1 ~ (a»)"1] ^ ^ , 
we have 

1 ^ ^ ^ (1 - c-lKBn)~l 

and thus 

(1) 0 ^ logcdn ^ log(l - c-lK6n)-\ 

if w is sufficiently large so that 1 — c~1Kdn > 0. The ratio test shows that 
J2 log(l — c~lKQn)~l converges. Thus the product (cd0) (câi) . . . {cdn) . . . 
converges. Consequently, there is an R > 0 such that (cd0) (cdi) . . . (cdn) S R 
for all n. Note that 

\cn+lfn+1(x) - cnfn(x)\ = cn\can(x) - l\fn(x) 

^ \can(x) — l|(câ0) (câi) . . . (can-dfofr) ^ |raw(x) - l\R 

and therefore, if m > />, 
m—1 m—1 

(2) \cmfm(x) - c%(*)| ^ £ k"+1/re+i(*) - <*/„(*) | ^ £ k W - 1[#. 
w=7? n=p 

But from [ ( a j " 1 - (âw)_1] ^ i£0w (1 - c~lK6n > 0) we see that 

-K6n ^ , x , ^ Kdn 
An ̂  can(x) — 1 ^ 

and, therefore, 

(3) \can(x)-l\<-~^. 

By the ratio test, Kdn/ (c — Kdn) is summable. Thus, \can(x) — 1| is sum-
mable, uniformly on M. I t follows that cnfn(x) converges uniformly on M 
to a continuous l imi t / (x) . Since (5W — bn) S Kdn, 

(4) 0 ^ log c- 1 ^ ^ log(1 + r W ) , 

and since S5T=o log(l + c_1i£0w) converges, so must n^=0 (c~lbn). Thus there 
is a number i?' > 0 such that II^o (c~lbk) ^ R' for all w, whence 

l ^ - ^ + i t y ) - ^g»(y) l = ^ * - i | bn(y) - c\gn(y) 

S c-Hbn - bn)R'g*(y) S c-iR' \\go\LKd\ 
and therefore 

m— 1 

|c-mgm(y) - c-%(y)\ g £ k~re~W:v) - ^«.601 
(6) "=" 

n=v 

It follows that c~ngn(y) converges uniformly on TV to a continuous limit g(y). 
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JMfn(x)h(xJy)gn(y) dfx(x) = 1 

JNfn+i(oc)k(x,y)gn(y) dv(y) = 1, 

JMCnfn(x)h(x,y)crngn(y)dn(x) = 1 

JN cn+1fn+1(x)k{x, y)c~ngn(y) dv(y) = c, 
and, consequently, 

(7) JMf(x)h(x,y)g(y) dfx(x) = 1, jNf(x)k(x, y)g(y) dv(y) = c. 

At this point it is clear that f and g are positive. 

COROLLARY 1. Under the hypothesis of the theorem, the functions f and g and 
the quantity c are continuously dependent upon h and fe. 

Proof. Let fe0 and feo be positive and continuous on M X N and let p be 
such that 0 < p < | min(fe0, feo). Denote by D the collection of all ordered 
pairs (h, fe) which are positive and continuous on M X N and such that 
||fe — ^o||oo < P a n d ||fe — feo||oo < P- I t r e a d i l y fol lows t h a t h — fe0 < p, 
h0 — h < p, k — ko < p, fe0 — fe < p for a n y (fe, fe) G D, w h e n c e , for a n y s u c h 
( A , * ) , 

fefe (fe0 — p) (feo — p) 

Ï££ > 4(fe0 + p)(feo + p) = a° > °' 
Let do = 1 - ao. Then 0 ^ 1 - fefe/4/ïfe ^ 60. 

If (fe, fe) Ç Z> and if g0(y) = [JM fe(x, 3/) dju(x)]-1, it follows that 

[(So + P ) P ( M ) ] - 1 ^ llgolL ^ [(Ao ~ P )M(M)] -^ . 

Also, if K = 0(/o>go), 

n < r r < (fco + PHN) ... (*o ^ P H A Q _ ^ 
U = * = (feo - p)/x(ilf) (feo + p) /*(M) A ° ' 

If a0(x) = [fNk(x, y)go(y) dv(y)]~l, 

(feo + P)H(M) - i 

(feo - p)v(N) 

For the given (fe, fe) G D, an ^ aw+i ^ c - 1 ^ <zn+i ^ ân for all w, and therefore 

0 < c-1 ^ ^o"1. 

Equations (1) and (4) show that there exists an R0 > 0 such that R ^ R0 

and 2Î' ^ 2?0 for all (fe, fe) G D. 
Thus (2) and (6) may be written, respectively, as 

n=p LCo — J^OUO J 

and 
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m— 1 

\\c~mgm - c-pgp\U ^ E c0
_1i?o[(Ao - p)»(M)}-1Klfio

n 

for all ih, k) Ç D. Thus c% —>/ and c_wgw —> g uniformly on D. It follows 
that / and g depend continuously on h and k. The second equation in (7) 
shows that the quantity c likewise depends continuously on h and k. 

COROLLARY 2. Let A and B be positive n X n matrices. There exist diagonal 
matrices D\ and D2 with positive main diagonals and a positive number c such 
that D1AD2 and cD2BDi are stochastic. The number c is unique and the Dt are 
unique up to a scalar multiple. 

3. Consequences. 

THEOREM 2. Let M and N be compact topological spaces and let fx and v be 
non-negative regular Borel measures on M and N, respectively, such that 
fi(M) > 0 and v(N) > 0. Let H(xyy)1 F(x)1 and G(y) be positive and con­
tinuous on M X N, M, and N, respectively, such that \M F d\x = JN G dv. Then 
there exist functions fix) and g(y) positive and continuous on M and N, re­
spectively, such that JNf(x)H(x, y)g(y) dv{y) = F(x) and 

fMf(x)H(x,y)g(y)dfji(x) = G(y). 

The form f(x)H(x, y)g(y) can be obtained as a limit to the iteration of alter­
nately scaling the function H to have the correct integrals over M and N. If, in 
addition, each non-void open set in M and N has positive measure, then 
f(x)H(x, y)g{y) is unique and the functions f and g are unique up to a positive 
scalar multiple. 

Proof. Use h(x,y) = H(x,y)/G(y) and k(x, y) = H(x, y)/F(x). It re­
mains to show that c = 1. 

Given 0 < e ^ c, pick n so that c — e < [an(x)]~l < c + e. Then 

JM (C — e)F(x) dix(x) < j M [F(x)/an(x)] dfx(x) < JM (c + e)F(x) dfx(x) 
or 

(c - e)JM F(x) dfi(x) < jMd/jiix)jNfn(x)H(x, y)gniy) dviy) 

< (c + e)fM Fix) dfxix). 

Using Fubini's theorem and cancelling JM Fix) d^ix) = j ' N Giy) dviy), we 
get c — e < 1 < c + e. Thus c = 1. 

Some interpretations of Theorem 2 are listed below. 

COROLLARY 1 (Sinkhorn (3)). Let A be a positive n X m matrix and let 
r 1, . . . , rn, ci, . . . , cm be given positive numbers with YLri — !Lcj> Then there 
exists a unique matrix of the form D1AD2 with row sums rt and column 
sums Cj, where D\ and D2 are diagonal matrices with positive main diag­
onals. The D i are themselves unique up to a scalar multiple. 
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COROLLARY 2. Let hk(x), k = 1, . . . , n, be positive and continuous on [0, 1]. 
Let F(x) be positive and continuous on [0, 1] and let ri, . . . , rn be positive 
numbers such that 

J F(x) dx = r\ + . . . + rn. 
0 

There exists a unique collection of functions Hk(x), k = 1, . . . , n, on [0, 1] of 
the form f(x)hk{x)gk such thai 

J Hk(x) dx = rk o 

while Y^Hk(x) — F{x). The function f(x) is positive and continuous on [0, 1] 
and each gk > 0. The function f(x) and the numbers gk are themselves unique 
up to a scalar multiple. 
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