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Abstract Let R be a prime ring with extended centroid C, ρ a non-zero right ideal of R and let
f(X1, . . . , Xt) be a polynomial, having no constant term, over C. Suppose that f(X1, . . . , Xt) is not
central-valued on RC. We denote by f(ρ) the additive subgroup of RC generated by all elements
f(x1, . . . , xt) for xi ∈ ρ. The main goals of this note are to prove two results concerning the exten-
sion properties of finiteness conditions as follows.

(I) If f(ρ) spans a non-zero finite-dimensional C-subspace of RC, then dimC RC is finite.

(II) If f(ρ) �= 0 and is a finite set, then R itself is a finite ring.
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1. Introduction and results

Throughout this note, R always denotes a prime ring with extended centroid C and ρ

a non-zero right ideal of R. The goal of this note is to study the extension properties
of certain finiteness conditions from one-sided ideals of a prime ring to the whole prime
ring. We were motivated by two elementary observations: (I) if dimC ρC is finite, then so
is dimC RC; and (II) if ρ is a finite subset of R, then so is R. For (I) see [3, Lemma 1].
For (II), since, by the primeness of R, R can be embedded in End(ρ, +, 0) via right
multiplications and End(ρ, +, 0) is a finite set, R itself is a finite ring. In a recent paper
Bell proved the following theorem.

Theorem. Suppose that ρ is of finite index in R and [ρ, ρ] is finite. Then R is either
finite or commutative (see [1, Theorem 2.2]).

Since, in Bell’s Theorem, [ρ, ρ] contains all elements xy−yx for all x, y ∈ ρ, we want to
extend these results above to more generalized forms. In particular, we shall see that, in
Bell’s Theorem, the assumption that ρ is of finite index in R is superfluous. Our point of
view in this note is different from that of [1]. To state our results we require some notation.
For a polynomial f(X1, . . . , Xt) over C, where the Xi are non-commuting indeterminates,
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we denote by f(ρ) the additive subgroup of RC generated by all elements f(x1, . . . , xt) for
xi ∈ ρ. For x, y ∈ R, set [x, y]0 = x, [x, y]1 = [x, y] = xy − yx and [x, y]k = [[x, y]k−1, y]
for k > 1. Also, [ρ, ρ]k denotes the additive subgroup of R generated by all elements
[x, y]k for x, y ∈ ρ. We are now ready to state our results.

Theorem 1.1. Let R be a prime ring with extended centroid C, ρ a non-zero right
ideal of R and f(X1, . . . , Xt) a polynomial, having no constant term, over C. Suppose
that f(X1, . . . , Xt) is not central-valued on RC.

(I) Suppose that f(ρ) spans a non-zero finite-dimensional C-subspace of RC. Then
dimC RC is finite.

(II) Suppose that f(ρ) �= 0 and is a finite set. Then R itself is a finite ring.

Corollary 1.2. Let R be a prime ring with extended centroid C, ρ a non-zero right
ideal of R, and k a non-negative integer.

(I) Suppose that [ρ, ρ]k spans a finite-dimensional C-subspace of RC. Then dimC RC

is finite.

(II) Suppose that [ρ, ρ]k is a finite set. Then R is either commutative or finite.

Proof. In view of Theorem 1.1, it suffices to prove that [ρ, ρ]k �⊆ C unless R is
commutative. Indeed, suppose that [ρ, ρ]k ⊆ C. Then [x, y]k+1 = 0 for all x, y ∈ ρ. In
view of [5, Lemma 1], R is commutative. This proves the corollary. �

We remark that Corollary 1.2 (II) gives a generalization of Bell’s Theorem [1, Theo-
rem 2.2].

2. Proof of Theorem 1.1

To prove Theorem 1.1 we need the following two theorems [2, Theorem 1 (II) (i) and
Theorem 2]. Recall that a prime ring R is called centrally closed if R = RC and that a
right ideal of a ring is called a polynomial identity (PI) right ideal if the right ideal is
itself a PI-ring. We write M2(GF(2)) to stand for the 2 by 2 matrix ring over GF(2), the
Galois field of two elements.

Theorem 2.1. Let R be a centrally closed prime C-algebra and f(X1, . . . , Xt) a non-
zero polynomial over C. Suppose that ρ is a PI right ideal of R such that f(ρ) �= 0. Then
there exists an idempotent e in the socle of R such that ρ = eR and eR(1 − e) ⊆ f(ρ).

Theorem 2.2. Let R be a prime ring with extended centroid C and I a non-zero ideal
of R. Suppose that f(X1, . . . , Xt) is a polynomial over C which is not central-valued on
RC. Then [M, R] ⊆ f(I) for some non-zero ideal M of R, except when R ∼= M2(GF(2))
and f(R) = {0, e12 + e21, 1 + e12, 1 + e21} or {0, 1, e11 + e12 + e21, e22 + e12 + e21}.
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From now on, R is always a prime ring with extended centroid C, ρ a non-zero right
ideal and f(X1, . . . , Xt) a non-zero polynomial, having no constant term, over C. We
denote by dn(X1, . . . , Xn; Y1, . . . , Yn−1) the Capelli polynomial of degree 2n − 1, that is

dn(X1, . . . , Xn; Y1, . . . , Yn−1) =
∑

σ∈Sn

(−1)σXσ(1)Y1Xσ(2) · · ·Yn−1Xσ(n),

where Xi and Yj are non-commuting indeterminates. To apply Theorem 2.1 to our case,
we require the following lemma.

Lemma 2.3. Suppose that f(ρ) �= 0. Then

(I) if the additive subgroup f(ρ) spans a finite-dimensional C-space, then f(ρ)C =
f(ρC)C; and

(II) if f(ρ) is finite, then so are both C and f(ρC).

Proof. (I) Suppose that dimC f(ρ)C = n < ∞. Then

dn+1(f(x11, . . . , x1t), . . . , f(xn+11, . . . , xn+1t); y1, . . . , yn) = 0 (2.1)

for all xij ∈ ρ and all yi ∈ R. Since ρ and ρC satisfy the same generalized polynomial
identities (GPIs) [4, Lemma 2], equation (2.1) still holds for all xij ∈ ρC and all yi ∈ RC.
In view of [7, Theorem 7.6.16], for xij ∈ ρC the n + 1 elements f(x11, . . . , x1t), . . . ,
f(xn+11, . . . , xn+1t) are C-dependent and so dimC f(ρC)C � n. But since f(ρ)C ⊆
f(ρC)C, we conclude that f(ρ)C = f(ρC)C as asserted.

(II) Suppose that f(ρ) is a finite set. Write

f(X1, . . . , Xt) =
m∑

i=1

fi(X1, . . . , Xt), (2.2)

where fi(X1, . . . , Xt) is the homogeneous part of f(X1, . . . , Xt) of degree i for 1 � i � m.
Suppose on the contrary that C is infinite. Choose m distinct elements β1, . . . , βm in C

and then a non-zero ideal I of R such that βiI ⊆ R. Then βiρI ⊆ ρ for each i. Applying
a standard determinant argument to equation (2.2) we see that fi(ρI) is finite for each
i. Since f(ρ) �= 0, we see that fj(ρ) �= 0 for some j. Thus we may assume from the
start that f(X1, . . . , Xt) is homogeneous of degree m � 1. Suppose that f(ρ) consists
of � elements. Since C is an infinite field, we can choose µ1, . . . , µ�+1 in C such that
µm

i �= µm
j for i �= j. Let J be a non-zero ideal of R such that µiJ ⊆ R for each i. In view

of [4, Lemma 2], there exist xi ∈ ρJ , 1 � i � t, such that f(x1, . . . , xt) �= 0. Now, we see
that µm

i f(x1, . . . , xt) = f(µix1, . . . , µixt) ∈ f(ρ) for each i. This derives a contradiction,
as the set {µm

i f(x1, . . . , xt) | 1 � i � � + 1} consists of � + 1 elements. Thus C is a finite
field. By (I) we see that f(ρ)C = f(ρC)C. But since f(ρ) and C are finite sets, this
implies that f(ρC) is a finite set, proving (II). �
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Lemma 2.4. Let R be a centrally closed prime C-algebra with non-zero socle H.
Suppose that e is a non-trivial idempotent in H.

(I) If dimC eR(1 − e) < ∞, then R is finite dimensional over C.

(II) If eR(1 − e) is a finite set, then R is a finite ring.

Proof. (I) Suppose that dimC eR(1 − e) = n < ∞. Note that e and 1 − e are C-
independent. Thus we see that

Sn+1(eX1(1 − e)Y, . . . , eXn+1(1 − e)Y )

is a non-trivial GPI for R, where Sn+1(X1, . . . , Xn+1) is the standard polynomial of
degree n + 1. Since R is centrally closed, it follows from Martindale’s Theorem [6] that
R is a strongly primitive ring. By assumption, e ∈ H and so dimC eRe < ∞. Thus
dimC eR = dimC eRe + dimC eR(1 − e) < ∞. That is, R contains a non-zero right ideal
eR, which is finite dimensional over C. In view of [3, Lemma 1], dimC R < ∞ follows.
This proves (I).

(II) Since eR(1−e) �= 0, we choose x0 ∈ R such that ex0(1−e) �= 0. But Cex0(1−e) ⊆
eR(1 − e), so the finiteness of eR(1 − e) implies that C is a finite field. By (I), R is finite
dimensional over C and so R is a finite ring, proving (II). �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. (I) Suppose that f(ρ) spans a non-zero finite-dimensional
C-subspace of RC. It follows from Lemma 2.3 (I) that 0 �= f(ρC) is finite dimensional
over C. Clearly, ρC is a PI right ideal of RC. Note that RC is a centrally closed prime
C-algebra. In view of Theorem 2.1, there exists an idempotent e in the socle of RC such
that ρC = eRC and eRC(1 − e) ⊆ f(ρC) as f(ρC) �= 0. If e �= 1, applying Lemma 2.4
we conclude that dimC RC is finite. Suppose next that e = 1. Then ρC = RC. Since
f(X1, . . . , Xt) is not central-valued on RC, by Theorem 2.2 there exists a non-zero ideal
I of RC such that [I, RC] ⊆ f(ρC) unless R = RC ∼= M2(GF(2)). There is nothing to
prove for the exceptional case. Therefore, we may assume that [I, RC] ⊆ f(ρC) and so
dimC [I, RC] < ∞, implying that R itself is a PI-ring. Applying Posner’s Theorem yields
that dimC RC is finite.

(II) Suppose that f(ρ) �= 0 and is a finite set. By Lemma 2.3, f(ρC) is a finite set.
Clearly, in this case ρC must be a PI right ideal of R. In view of Theorem 2.1, there
exists an idempotent e in the socle of RC such that ρC = eRC and eRC(1−e) ⊆ f(ρC).
If e �= 1, Lemma 2.4 implies that R is a finite ring. Otherwise, e = 1 follows and so
ρC = RC. As in the argument given in (I), we may assume that R �∼= M2(GF(2)). By
Theorem 2.2 there exists a non-zero ideal I of RC such that [I, RC] ⊆ f(ρC) and so
[I, RC] is a finite set. But since R is not commutative, [I, RC] �= 0 and so C must be
finite. Now, RC is a PI-ring with C a finite field. It is now clear that R itself is a finite
ring, proving (II). �
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