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Abstract

We study the ruin probability where the claim sizes are modeled by a stationary ergodic
symmetric α-stable process. We exploit the flow representation of such processes, and
we consider the processes generated by conservative flows. We focus on two classes of
conservative α-stable processes (one discrete-time and one continuous-time), and give
results for the order of magnitude of the ruin probability as the initial capital goes to
infinity. We also prove a solidarity property for null-recurrent Markov chains as an
auxiliary result, which might be of independent interest.
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1. Introduction

One of the popular problems of applied probability involves analyzing the exceedance
probability of a threshold u given by

ψ(u) = P

(
sup
t∈T

(S(t)− µ(t)) > u

)
, (1.1)

where S = {S(t), t ∈ T} is a random walk and µ = {µ(t), t ∈ T} is a nonrandom drift term
with an index set T. This quantity has various interpretations in several different fields. In the
context of risk theory and insurance, S can be viewed as the cumulative claim size process,
whereas µ can be viewed as cumulative premium income on the insurance policy. In this case,
we can view the exceedance probability as the ruin probability with initial capital u, or as the
ruin probability, for short. (See [10, pp. 22–24].)

In this study we adhere to the language of insurance, however casually, although the results
can be easily interpreted in other fields, including (but not limited to) queueing and storage/dam
models.

Research on ruin probabilities, in the sense of modern actuarial science, was mainly initiated
in Sweden in the first half of the 20th century. The foundations of the theory were laid down by
Filip Lundberg in his Uppsala thesis (see [13]), while the first mathematically substantial results
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appeared in a series of papers by Lundberg and Harald Cramér. (See [6], [7], [14],and [15].) The
basic model coming out of these first contributions is widely referred to as the Cramér–Lundberg
model (for details see, for instance, [10, p. 22]). Since then there have been numerous extensions
of the classical Cramér–Lundberg model with independent, identically distributed (i.i.d.), light-
tailed claim sizes. More recently however, work in this area has turned to the more realistic
setting of dependent claims. Moreover, empirical evidence in fields including insurance and
financial markets, and the effort by banks, insurance companies, and governmental institutions
to control risk associated with extreme events resulting in ‘large claims’has led to the theoretical
interest in modeling ‘heavy tailed’ phenomena.

In addition, from a theoretical point, the case of heavy-tailed, dependent claims is also
interesting as it raises the question of the possibility of relating the dependence structure of the
heavy-tailed stationary processes underlying the claims to the asymptotic behavior of the ruin
probability. This becomes particularly challenging when the second moment of the claim sizes
is infinite, so that it is not possible to use covariances to quantify the strength and the range of
dependence.

In this study we focus on claim sizes modeled by stationary ergodic symmetricα-stable (SαS)
processes, an important class of heavy-tailed processes. We choose to work with α ∈ (1, 2),
for which the claim process has a finite first moment but infinite second moment, and the ruin
probability with a linear premium process is nontrivial. This, together with the fact that the
probabilistic structure of these processes is relatively well understood, allows us to focus on
the underlying dependence structure in the presence of heavy tails.

Throughout this paper we will assume a constant premium rate, (i.e. a linear drift term).
The setup of SαS claims with T = Z+, deterministic claim arrival processes, and constant

premium rates has been addressed by Mikosch and Samorodnitsky [16], which is the origin
of our current work. Based on the results of [9], the authors have observed that the order of
magnitude of ψ(u) for this model is u−(α−1) in the case of i.i.d. claim sizes. Therefore, this is
the ‘fastest’ rate we can expect the ruin probability to decay in such a model. It is also shown
ibid that for certain claim processes ψ(u) decays as fast as u−(α−1) even when the claim sizes
are dependent. In the tradition of Mikosch and Samorodnitsky, we think of claim processes in
this class as short-range dependent. They also showed that for certain classes of SαS claims,
ψ(u) may decay at a slower rate than u−(α−1). We think of these processes as long-range
dependent.

In this study, we also investigate the case of T = R+ utilizing recent results of [4].
Now let our claim process, X = {X(t), t ∈ T}, be a measurable stationary ergodic SαS

process with α ∈ (1, 2) given in the form

X(t) =
∫
E

ft (x)M(dx), t ∈ T, (1.2)

where M is a SαS random measure on a measurable space (E, E) with a σ -finite control
measure m on E (i.e. M is an independently scattered random measure on E such that

E exp{iλM(A)} = exp{−|λ|αm(A)}, λ ∈ R,

for every A ∈ E , with m(A) < ∞, and {ft }t∈T ⊂ Lα(E, E ,m). (See Section 3.3 of [23].)
As we consider stationary SαS processes we can choose ft to be in a particularly descriptive

form given by

ft (x) = at (x)

[
dm ◦ φt

dm
(x)

]α
f ◦ φt (x), x ∈ E, t ∈ T, (1.3)
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where {φt }t∈T is a nonsingular flow (recall that a flow is a family of measurable maps from
E onto E such that φt1+t2 = φt1 ◦ φt2 for all t1, t2 ∈ T, and φ0 is the identity function on E),
{at }t∈T is a cocycle for this flow (i.e. for every t1, t2 ∈ T, at1+t2(x) = at2(x)at1 ◦ φt2(x) for
m-almost all x ∈ E) taking values in {−1, 1}, and f ∈ Lα(E, E ,m). (See [20].)

This representation is particularly important as it brings up the possibility of relating the
properties of a stationary SαS process to those of a flow and a single kernel. For instance,
Hopf decomposition (see, e.g. [12, pp. 17, 116]) of the flow {φt }t∈T immediately implies
that a stationary SαS process, X, can be written (in distribution) as a sum of two independent
stationary SαS processes

X = XD + XC, (1.4)

where XD is given by representations (1.2) and (1.3) with a dissipative flow, and XC is given
by representations (1.2) and (1.3) with a conservative flow.

In this paper we investigate the asymptotic behavior of the ruin probability when the claims
constitute a stationary SαS process generated purely by conservative flows, i.e. processes of
the form XC given in (1.4).

The case of stationary SαS claims of the form XD is analyzed in a separate study and the
results are presented in [2].

Intuitively, we expect the range of dependence of a stationary SαS process generated by a
conservative flow to be longer than that of a stationary SαS process generated by a dissipative
flow. Although a complete theory of risk processes with claims associated with conservative
flows is lacking at the time of this study, and in general construction of processes generated
by conservative flows is not effortless, factual support for such an intuition is provided by
an example investigated in [16]. In their paper the authors observed a class of conservative
SαS processes constructed through a null-recurrent Markov chain (see [21] for details), and
examined the asymptotic behavior of the ruin probability in a setting where the claims are
modeled as a special case of this class and the premium process is a deterministic linear drift.
Their results showed that the ruin probability ψ(u) in this case may decay at a much slower
rate than u−(α−1) even when the kernel in the integral representation (1.2) is ‘nice’, i.e. in the
context of ruin probabilities, at least the class of processes associated with conservative flows
investigated in their example may be long-range dependent regardless of the kernel. This is
indeed a significant observation as the results given in [2] suggest that in the risk theory context,
for claims generated by dissipative flows, the kernel in the integral representation of the claim
process is the key factor in determining the range of dependence for the process.

In Section 2 of this paper we focus on a related, but more general class of SαS processes
constructed in [21], and studied in [16]. Our main result, which shows that the order of
magnitude of the ruin probability ψ(u) in the setting we describe below is u−γ (α−1)L(u),
where L(·) is a slowly varying function and γ ∈ (0, 1), is a generalization of the result given
in [16]. We also prove a solidarity property for null-recurrent Markov chains as a subsidiary
result, which might be of independent interest.

In Section 3, we study the ruin probability in continuous time. In particular, we concentrate
on a class of stationary SαS processes associated with conservative flows constructed using a
fractional Brownian motion in [22]. We use a Brownian motion to construct our claim process
and we show that in this setting the order of magnitude of the ruin probability ψ(u) is given by
u−(α−1)/2. We also conjecture that for a claim process associated with a fractional Brownian
motion with self-similarity exponent H ∈ (0, 1), the order of magnitude is u−H(α−1).
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2. A discrete time claim process associated with a conservative flow

2.1. Setup and assumptions

Consider an irreducible, null-recurrent Markov chain, Y = {Yn, n ≥ 1}, on Z with law Ps(·)
on

E = {y = (y0, y1, y2, . . .) : yi ∈ Z, i = 0, 1, 2, . . .}
corresponding to the initial state y0 = s ∈ Z.

Let π = {πs, s ∈ Z} be the σ -finite invariant measure corresponding to the family
{Ps , s ∈ Z} satisfying π0 = 1, and define a σ -finite measure on the cylindrical σ -field of
E by

m(·) =
∞∑

i=−∞
πi Pi (·). (2.1)

Note that this measure is invariant under the shift operator θ : E → E, i.e.

θ(y) = (y1, y2, . . .), y = (y0, y1, y2, . . .) ∈ E.
We will model the claim size process, X = {Xn, n ≥ 1}, with a SαS process defined by

Xn =
∫
E

fn(y)M(dy), y ∈ E, n = 1, 2, 3, . . . , (2.2)

whereM is a SαS random measure on E with control measurem given in (2.1), kernels fn are
given by

fn(y) =
∑
s∈A

as 1{yn=s}, n ≥ 1, y = (y0, y1, y2, . . .) ∈ E,

A ⊂ Z is a finite set, and {as, s ∈ A} are positive real numbers. To avoid triviality assume that
A �= ∅.

It follows from [21] that the process X given by the stochastic integral representation (2.2)
is a stationary mixing process, and in particular is ergodic; furthermore, X is associated with a
conservative flow.

For a given y ∈ E and s ∈ Z, define the number of steps until the chain returns to state s
for the first time as

τs = τs(y) := inf{n ≥ 1 : yn = s}.
Note that by the null-recurrence of the Markov chainEsτs = ∞, for any s ∈ Z. We will further
assume that there is a constant γ ∈ (0, 1) and a slowly varying function L such that

P0(τ0 ≥ n) = nγ−1L(n). (2.3)

For an integer s and a given y ∈ E, define the number of visits to state s in n steps to be

N(s)
n = N(s)

n (y) :=
n∑
j=1

1{yj=s}(y),

and define
η(s)n := N(s)

n nγ−1L(n), s ∈ Z.
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Also, for y ∈ E, s0, s1 ∈ Z, and m ≥ 1, define the time spent in state s1 between the
(m− 1)th and mth visits to state s0 as

W(s0,s1)
m = W(s0,s1)

m (y) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ
(m)
s0 −1∑

j=τ (m−1)
s0

1{yj=s1}, τ
(m−1)
s0 < ∞,

0, τ
(m−1)
s0 = ∞

(here, for s ∈ Z, τ (m)s is the time of mth visit to state s with τ (0)s = 0). Note that as we are
considering a recurrent Markov chain, for any m ≥ 1,

Ps0(τ
(m−1)
s0

= ∞) = 0,

and, under Ps0 , {W(s0,s1)
m , m ≥ 1} are i.i.d. Furthermore, note that

Es0W
(s0,s1)
m = πs1

πs0
, m ≥ 1

(see, for instance, [17, Proposition 2.12.2]).
Finally, for a constant premium rate µ > 0, let the cumulative premium process be given by

µ = {µn = nµ, n ≥ 1},
and define the accumulated claim process S = {Sn, n ≥ 1} by

S0 = 0, Sn =
n∑
i=1

Xn, n = 1, 2, 3, . . . .

Then the ruin probability given in (1.1) can be written as

ψ(u) = P

(
sup
n≥0
(Sn − nµ) > u

)
, u > 0.

2.2. A solidarity theorem for null-recurrent Markov chains and the asymptotic analysis
of the ruin probability

We start by giving a solidarity theorem regarding the tails of the return times to a state for
a Markov chain with property (2.3). This result will be utilized throughout the remainder of
this section, and it will be particularly important in determining the asymptotic behavior of the
moments of the number of visits to a state given the initial state. Related solidarity theorems
regarding the first moment of the number of visits to a state given the initial state has been given
in [24]. However, Teugels’s results on the first moments give the order of magnitude without
calculating the exact multiplicative constant in the asymptotic form. Furthermore, his results
regarding the transition probabilities assume that the slowly varying function given in (2.3) is
monotone increasing. In this study we do not require this. Additionally, in our result below,
we establish the exact asymptotic equivalence by specifying the multiplicative constant.

Theorem 2.1. If (2.3) holds then, for any s ∈ Z,

πs Ps(τs ≥ n) ∼ P0(τ0 ≥ n) as n → ∞.
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Proof. For s = 0 the result holds trivially as π0 = 1. Now fix s ∈ Z \ {0}, and for any state
s̃ ∈ Z let

Ln,s̃ := τ
(N

(s̃)
n )

s̃
and Rn,s̃ := τ

(N
(s̃)
n +1)

s̃

be the time of the last visit to state s̃ before (or at) time n, and the time of the first visit to state
s̃ after n, respectively.

Note that
N
(0)
n∑

m=1

W(0,s)
m = N

(s)
Ln,0

≤ N(s)
n ≤ N

(s)
Rn,0

=
N
(0)
n +1∑
m=1

W(0,s)
m .

In particular,

η(0)n

[
1

N
(0)
n

N
(0)
n∑

m=1

W(0,s)
m

]
= nγ−1L(n)N

(s)
Ln,0

≤ η(s)n

≤ nγ−1L(n)N
(s)
Rn,0

= η(0)n

[
1

N
(0)
n

N
(0)
n +1∑
m=1

W(0,s)
m

]
.

(2.4)

Next observe that, for any two states s0, s1 ∈ Z, it follows from Kolmogorov’s strong law of
large numbers that Ps0 -almost surely (a.s.)

lim
n→∞

1

N
(s0)
n

N
(s0)
n∑
m=1

W(s0,s1)
m = lim

n→∞
1

N
(s0)
n

N
(s0)
n +1∑
m=1

W(s0,s1)
m = Es0W

(s0,s1)
1 = πs1

πs0
. (2.5)

Let (Z1−γ ) be a (1 −γ )-stable subordinator, i.e. a positive increasing strictly (1 −γ )-stable
Lévy motion with

E exp{iλZ1−γ (1)} = exp

{
−C−1

1−γ |λ|1−γ
(

1 − i tan
π(1 − γ )

2

)}
, λ ∈ R,

and C1−γ is the usual constant associated with α-stable variables with α = 1 − γ . In other
words,Z1−γ (1) ∼ S1−γ (σ0, 1, 0), where σ 1−γ

0 = �(γ ) cos(π(1 − γ )/2). In [16] it was shown
that under P0

η(0)n ⇒ Z
γ−1
1−γ (1).

Thus, it follows from (2.4), (2.5), and Slutsky’s theorem that

1

πs
η(s)n ⇒ Z

γ−1
1−γ (1) (2.6)

under P0.
We next show that (2.6) holds under Ps as well. Fix x > 0. Note that for sufficiently large n

P0(η
(s)
n > x, τs ≥ n) ≤ P0(n

γ−1L(n) > x) = 0,

https://doi.org/10.1239/aap/1183667615 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667615


366 U. T. ALPARSLAN AND G. SAMORODNITSKY

and, hence, it follows from the strong Markov property that, for large n,

P0(η
(s)
n > x) = P0(η

(s)
n > x, τs < n)

≤
n−1∑
i=1

P0(n
γ−1L(n)N(s)

n > x | τs = i)P0(τs = i)

≤ Ps(η
(s)
n + nγ−1L(n) > x)P0(τs < n)

≤ Ps(η
(s)
n + nγ−1L(n) > x).

Therefore, we see that

lim
n→∞ P0(η

(s)
n > x) ≤ lim inf

n→∞ Ps(η
(s)
n > x). (2.7)

Now let G0
s be the number of visits to state s before the first visit to 0. (Observe that G0

s has a
geometric distribution under Ps .) Then, for x > 0,

Ps(η
(s)
n > x) = Ps(η

(s)
n > x, τ0 ≥ n)+ Ps(η

(s)
n > x, τ0 < n)

≤ Ps(τ0 ≥ n)

+ Ps[nγ−1L(n)G0
s + nγ−1L(n)(N(s)

n −G0
s ) > x, τ0 < n].

(2.8)

Choose δ ∈ (0, 1 − γ ). Note that, as n → ∞,

nδ+γ−1L(n)G0
s

ps−→ 0.

Then, as n tends to infinity,

Ps[nγ−1L(n)G0
s + nγ−1L(n)(N(s)

n −G0
s ) > x, τ0 < n]

≤ Ps(n
γ−1L(n)G0

s > n−δ)
+ Ps[n−δ + nγ−1L(n)(N(s)

n −G0
s ) > x, τ0 < n]

= Ps[n−δ + nγ−1L(n)(N(s)
n −G0

s ) > x, τ0 < n] + o(1).

(2.9)

However, by the strong Markov property and Slutsky’s theorem we have

Ps[n−δ + nγ−1L(n)(N(s)
n −G0

s ) > x, τ0 < n]

=
n−1∑
i=1

Ps[n−δ + nγ−1L(n)(N(s)
n −G0

s ) > x, τ0 = i]

=
n−1∑
i=1

P0(n
−δ + nγ−1L(n)N

(s)
n−i > x)Ps(τ0 = i)

≤ P0(n
−δ + nγ−1L(n)N(s)

n > x)Ps(τ0 < n)

≤ P0(n
−δ + η(s)n > x)

∼ P0(η
(s)
n > x).

(2.10)

Combining (2.8)–(2.10) we have

Ps(η
(s)
n > x) ≤ P0(η

(s)
n > x)+ o(1). (2.11)

It follows from (2.7) and (2.11) that (2.6) also holds under Ps .
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Now define ân := inf{k : πsk1−γ L−1(k) ≥ n}. Then, for y > 0,

Ps

(
τ
(n)
s

ân
≤ y

)

= Ps(N
(s)

[yân] ≥ n)

= Ps

[
1

πs
η
(s)

[yân]
πsâ

1−γ
n L−1(ân)

n

L(ân)

L(yân)

(yân)
γ−1L(yân)

[yân]γ−1L([yân]) ≥ yγ−1
]
.

By the slow variation of L,

lim
n→∞

[
πsâ

1−γ
n L−1(ân)

n

L(ân)

L(yân)

(yân)
γ−1L(yân)

[yân]γ−1L([yân])
]

= 1.

Therefore, it follows from (2.6) holding under Ps , Slutsky’s theorem, and the self-similarity of
the stable subordinator that as n goes to infinity, for y > 0,

Ps

(
τ
(n)
s

ân
≤ y

)
∼ P(Zγ−1

1−γ (1) ≥ yγ−1) = P(Z1−γ (1) ≤ y),

i.e. â−1
n τ

(n)
s ⇒ Z1−γ (1) under Ps . Consequently (see, for instance, [23, Theorem 1.8.1, p. 50]),

Ps(τs > x) = xγ−1L̂(x),

for a slowly varying function L̂, and moreover

Ps(τs > ân) ∼ 1

n
, n → ∞.

Thus,

â
γ−1
n L̂(ân) ∼ 1

n
, n → ∞. (2.12)

Furthermore, defining an := inf{k : k1−γ L−1(k) ≥ n}, we immediately see that

a
γ−1
n L(an) ∼ 1

n
, n → ∞. (2.13)

In addition,

lim
n→∞

an

ân
= π

1/(1−γ )
s . (2.14)

Consequently, it follows from (2.12)–(2.14), and the fact that L̂ is slowly varying that, as n
tends to infinity

L̂(an) ∼ L̂(ân) ∼ π−1
s L(an),

and so

lim
n→∞

L̂(n)

L(n)
= lim
n→∞

L̂(a[n1−γ L−1(n)])
L(a[n1−γ L−1(n)])

= π−1
s ,

which gives the desired result.

https://doi.org/10.1239/aap/1183667615 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667615


368 U. T. ALPARSLAN AND G. SAMORODNITSKY

Define

ψ0(u) = Cα

2

∫
R

sup
n≥0

(hn(x))
α+

(u+ µn)α
dx + Cα

2

∫
R

sup
n≥0

(−hn(x))α+
(u+ µn)α

dx, u > 0,

where

Cα =
(∫ ∞

0
x−α sin x dx

)−1

.

The following two results can be established via Theorem 2.1 and an argument parallel to
that used in [16].

Proposition 2.1. Given (2.3) the following relation holds:

ψ(u) ∼ ψ0(u) as u → ∞.

Lemma 2.1. For s ∈ Z,

m(τs = k) = πs Ps(τs ≥ k), k = 1, 2, . . . ,

and
m(τs ≤ n) ∼ γ−1nγL(n) as n → ∞.

The next theorem establishes the main result of this section by showing that the ruin
probabilityψ(u)may decay very slowly as the initial capital u increases in the setting described
above. Note that, unlike Theorem 3.2 of [16], this result is only stated for γ ∈ (0, 1), as the
solidarity property proved in Theorem 2.1 was shown only for these values of γ . However,
we expect the solidarity property to hold for γ = 1 as well, which in turn should make the
following result extendable to this case.

Theorem 2.2. Under assumption (2.3) the following relation holds:

ψ(u) ∼
(∑
s∈A

asπs

)α
Aα,γ µ

γ (α−1)−αu−γ (α−1)L−(α−1)(u) as u → ∞,

where

Aα,γ = Cαβ(γ, γ (α − 1))

2
E

(
sup
t≥1

t − 1

Z1−γ (t)

)α(1−γ )
,

and β(·, ·) is the beta function.

In light of Proposition 2.1, to prove Theorem 2.2 it is enough to show the result for ψ0(u).
We start by fixing s0 ∈ A.

Lemma 2.2. The following relation holds:

g(u) := Es0

[
sup
n≥0

(∑
s∈A asN

(s)
n

u+ n

)α]

∼
(∑
s∈A

asπs

)α
E

(
sup
t≥1

t − 1

Z1−γ (t)

)α(1−γ )
u−γαL−α(u) as u → ∞.
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Proof. It is easy to see, by (2.5) and the argument given in (2.4), that

lim
n→∞

∑
s∈A

asN
(s)
n

N
(s0)
n

=
∑
s∈A

asπs

πs0
, Ps0 -a.s. (2.15)

Also, as shown previously, note that

1

πs0
η(s0)n ⇒ Z

γ−1
1−γ (1) under Ps0 .

Therefore, Slutsky’s theorem now gives

∑
s∈A

asη
(s)
n = η(s0)n

[∑
s∈A

asN
(s)
n

N
(s0)
n

]
⇒

(∑
s∈A

asπs

)
Z
γ−1
1−γ (1) under Ps0 . (2.16)

Moreover, by Theorem 2.1 and an argument similar to that of Proposition 3.4 of [19] we can
show that all power moments of η(s)n converge under Ps . In particular, this together with the
continuous mapping theorem imply that, for any δ > 0, {(η(s)n )α+δ}n≥1 are uniformly integrable
under Ps . Thus, it follows from Theorem 6.5.1 of [18] that

sup
n≥1

Es[(η(s)n )α+δ] < ∞.

Next, for any s �= s0, observe that by the strong Markov property and Hölder’s inequality,
we have

sup
n≥1

Es0 [(η(s)n )α+δ] = sup
n≥1

Es0{(nγ−1L(n))α+δEs0 [(N(s)
n )α+δ | τs]}

= sup
n≥1

Es0{(nγ−1L(n))α+δEs[(1 +N
(s)
n−τs )

α+δ]}

≤ 2α+δ−1 sup
n≥1

{(nγ−1L(n))α+δ + Es[(nγ−1L(n))α+δ(N(s)
n−τs )

α+δ]}

≤ 2α+δ−1
{

1 + sup
n≥1

Es[(η(s)n )α+δ]
}

< ∞.

So the ‘crystal ball condition’(see, for example, [18, p. 184]) is satisfied; hence, we conclude that
{(η(s)n )α}n≥1 are uniformly integrable under Ps0 . This, together with the fact that {(η(s0)n )α}n≥1
are uniformly integrable under Ps0 , implies that {(∑s∈A asη

(s)
n )

α}n≥1 are uniformly integrable
under Ps0 as (∑

s∈A
asη

(s)
n

)α
≤ [#(A)]α−1

∑
s∈A

aαs (η
(s)
n )

α.

Then, recalling (2.16) and using the continuous mapping theorem, we see that

lim
n→∞Es0

(∑
s∈A

asη
(s)
n

)α
=

(∑
s∈A

asπs

)α
EZ

α(γ−1)
1−γ (1).
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In particular, we have

Es0

(∑
s∈A

asN
(s)
n

)α
∼

(∑
s∈A

asπs

)α
nα(1−γ )L−α(n)EZ−α(1−γ )

1−γ (1) as n → ∞.

Now for any K > 0 consider

gK(u) := Es0

[
sup

0≤n≤uK

(∑
s∈A asN

(s)
n

u+ n

)α]
,

and

gK(u) := Es0

[
sup
n>uK

(∑
s∈A asN

(s)
n

u+ n

)α]
.

An argument similar to that given in Lemma 3.4 of [16] yields

lim
K↑∞ lim sup

u→∞
uαγ Lα(u)gK(u) = 0. (2.17)

We will next bound gK(u). First, notice it is shown in [16] that as u tends to infinity

sup
0≤n≤uK

uγL(u)N
(0)
n

u+ n
⇒ sup

1≤t≤K+1

(
t − 1

Z1−γ (t)

)1−γ
under P0.

We can use the same argument and Theorem 2.1 to easily see that

sup
0≤n≤uK

uγL(u)N
(s0)
n

πs0(u+ n)
⇒ sup

1≤t≤K+1

(
t − 1

Z1−γ (t)

)1−γ
under Ps0 . (2.18)

Next observe that, for m ≥ 1,

sup
0≤n≤uK

uγL(u)
∑
s∈A asN

(s)
n

u+ n

≤
m−1∑
n=0

uγL(u)
∑
s∈A asN

(s)
n

u+ n
+ sup
m≤n≤uK

uγL(u)
∑
s∈A asN

(s)
n

u+ n

≤ m2
∑
s∈A

asu
γ−1L(u)+ sup

m≤n≤uK

[
uγL(u)N

(s0)
n

u+ n

(∑
s∈A

asN
(s)
n

N
(s0)
n

)]

≤ m2
∑
s∈A

asu
γ−1L(u)+

[
sup
m≤n

∑
s∈A asN

(s)
n

N
(s0)
n

][
sup

0≤n≤uK
uγL(u)N

(s0)
n

u+ n

]
.

(2.19)

Furthermore, for ε ∈ (0, 1) define

Tε := inf

{
k ≥ 1 :

∑
s∈A

asN
(s)
n

N
(s0)
n

≥ (1 − ε)
∑
s∈A

asπs

πs0
, n ≥ k

}
.
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It follows from (2.15) that Tε is finite Ps0 -a.s. Then,

sup
0≤n≤uK

uγL(u)
∑
s∈A asN

(s)
n

u+ n

≥ sup
Tε≤n≤uK

[
uγL(u)N

(s0)
n

u+ n

(∑
s∈A

asN
(s)
n

N
(s0)
n

)]

≥ (1 − ε)
∑
s∈A

asπs

πs0

[
sup

Tε≤n≤uK
uγL(u)N

(s0)
n

u+ n

]

≥ (1 − ε)
∑
s∈A

asπs

πs0

[
sup

0≤n≤uK
uγL(u)N

(s0)
n

u+ n
− sup

0≤n≤Tε

uγ L(u)N
(s0)
n

u+ n

]

≥ (1 − ε)
∑
s∈A

asπs

πs0

[
sup

0≤n≤uK
uγL(u)N

(s0)
n

u+ n
− uγ−1L(u)Tε

]
.

(2.20)

Note that, as u goes to infinity,

uγ−1L(u)Tε
ps0−→ 0.

Now recalling (2.18) and Slutsky’s theorem, then letting u go to infinity in (2.19) and (2.20),
and finally letting m in (2.19) go to infinity and ε in (2.20) go to zero, we conclude that

sup
0≤n≤uK

uγL(u)
∑
s∈A asN

(s)
n

u+ n
⇒

(∑
s∈A

asπs

)
sup

1≤t≤K+1

(
t − 1

Z1−γ (t)

)1−γ
under Ps0 .

Moreover, note that, for any fixed K > 0,

(
sup

0≤n≤uK
uγL(u)

∑
s∈A asN

(s)
n

u+ n

)α
≤ (constant)

(∑
s∈A

asη
(s)
[uK]

)α
,

and the variables on the right-hand side are uniformly integrable under Ps0 implying that

{
sup

0≤n≤uK

(
uγL(u)

∑
s∈A asN

(s)
n

u+ n

)α}
u≥0

are uniformly integrable under Ps0 . Thus, in particular, applying the continuous mapping
theorem we have

lim
u→∞ u

αγ Lα(u)gK(u) = lim
u→∞Es0

[
sup

0≤n≤uK

(
uγL(u)

∑
s∈A asN

(s)
n

u+ n

)α]

=
(∑
s∈A

asπs

)α
E

(
sup

1≤t≤K+1

t − 1

Z1−γ (t)

)α(1−γ )
.

In addition, it was shown in [16] that, for any p > 0,

E

(
sup
t≥1

t − 1

Z1−γ (t)

)p
< ∞;
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hence, letting K increase to infinity and recalling (2.17), we have

lim
u→∞ u

αγ Lα(u)g(u) =
(∑
s∈A

asπs

)α
E

(
sup
t≥1

t − 1

Z1−γ (t)

)α(1−γ )
< ∞.

Proof of Theorem 2.2. Note that

2ψ0(u)

Cα
=

∫
E

sup
n≥0

(
∑n
k=1 fk(y))

α+ + (− ∑n
k=1 fk(y))

α+
(u+ nµ)α

m(dy)

=
∞∑

i=−∞
πiEi

[
sup
n≥0

(∑
s∈A asN

(s)
n

u+ nµ

)α]
.

(2.21)

ForA = {s0}, the desired result easily follows from the strong Markov property, Lemma 2.1,
Theorem 2.1, Lemma 2.2, and the proof of Theorem 3.2 of [16].

For A �= {s0} write

∑
s∈A

asN
(s)
n =

∑
s∈A\{s0}

as(G
s0
s 1{τs≤τs0 ∧n} ∧N(s)

n )

+
[∑
s∈A

asN
(s)
n −

∑
s∈A\{s0}

as(G
s0
s 1{τs≤τs0 ∧n} ∧N(s)

n )

]
,

(2.22)

where, for any states s1, s2 ∈ Z and y ∈ E,

Gs2s1 = Gs2s1(y) :=
τs2 (y)∑
i=1

1{yi=s1},

i.e. Gs0s is the number of visits to state s before the first visit to state s0. (Note that Gs2s1 has a
geometric distribution under Ps1 .)

Now we collect some intermediate results, which will be combined at the last stage.
Observe that

∞∑
i=−∞

πiEi

[
sup
n≥0

(∑
s∈A\{s0} as(G

s0
s 1[τs≤τs0 ∧n] ∧N(s)

n )

u+ nµ

)α]

≤
∞∑

i=−∞
πiEi

[( ∑
s∈A\{s0}

sup
n≥0

(
asG

s0
s 1{τs≤τs0 ∧n}
u+ nµ

)

)α]

=
∞∑

i=−∞
πiEi

[( ∑
s∈A\{s0}

asG
s0
s

u+ τsµ

)α]
, (2.23)

then it follows from Hölder’s inequality and Fubini’s theorem that

∞∑
i=−∞

πiEi

[( ∑
s∈A\{s0}

asG
s0
s

u+ τsµ

)α]
≤ [#(A)]α−1

∑
s∈A\{s0}

∞∑
i=−∞

πiEi

[(
asG

s0
s

u+ τsµ

)α]
,
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and by the strong Markov property it follows that

∑
s∈A\{s0}

∞∑
i=−∞

πiEi

[(
asG

s0
s

u+ τsµ

)α]

=
∑

s∈A\{s0}
aαs

∞∑
i=−∞

∞∑
k=1

πiEi

[(
G
s0
s

u+ τsµ

)α ∣∣∣∣ τs = k

]
Pi (τs = k)

=
∑

s∈A\{s0}
aαs Es[(Gs0s + 1)α]

∞∑
k=1

(u+ kµ)−αm(τs = k).

(2.24)

So by Lemma 2.1, as u → ∞,

∞∑
i=−∞

πiEi

[( ∑
s∈A\{s0}

asG
s0
s

u+ τsµ

)α]
≤ (constant)(u+ µ)−(α−1)

= o(u−γ (α−1)L−(α−1)(u)).

(2.25)

Additionally, by the strong Markov property, Lemma 2.1, Theorem 2.1, Lemma 2.2, and
Lemma 3.6 of [16], we have

∞∑
i=−∞

πiEi

[
sup
n≥τs0

(∑
s∈A asN

(s)
n − ∑

s∈A\{s0} asG
s0
s

u+ nµ

)α]

=
∞∑
k=1

m(τs0 = k)Es0

[
sup
n≥0

( ∑
s∈A asN

(s)
n

u+ (n+ k)µ

)α]

= µ−α
∞∑
k=1

P0(τ0 ≥ k)g

(
k + u

µ

)

∼ 2(
∑
s∈A asπs)αAα,γ

Cα
µγ (α−1)−αu−γ (α−1)L−(α−1)(u) as u → ∞.

(2.26)

Furthermore, notice that Gs0s = G
s0
s 1{τs<τs0 } ≤ G

s0
s (u + τs0µ)/(u + τsµ). Consequently,

by (2.25) we have

∞∑
i=−∞

πiEi

[(∑
s∈A\{s0} asG

s0
s

u+ τs0µ

)α]
= o(u−γ (α−1)L−(α−1)(u)) as u → ∞. (2.27)

Now, for any M > 0,

∞∑
i=−∞

πiEi

(
sup
n≥τs0

(
∑
s∈A\{s0} asG

s0
s )(

∑
s∈A asN

(s)
n − ∑

s∈A\{s0} asG
s0
s )

α−1

(u+ nµ)α

)

≤
∞∑

i=−∞
πiEi

(
sup
n≥τs0

(
∑
s∈A\{s0} asG

s0
s ) 1{∑s∈A asN

(s)
n <(M+1)

∑
s∈A\{s0} asG

s0
s }

(
∑
s∈A asN

(s)
n )1−α(u+ nµ)α

)

+ 1

M

∞∑
i=−∞

πiEi

(
sup
n≥τs0

(∑
s∈A asN

(s)
n − ∑

s∈A\{s0} asG
s0
s

u+ nµ

)α)
,
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and it follows from (2.26) and (2.27) that, as u → ∞,

∞∑
i=−∞

πiEi

(
sup
n≥τs0

(
∑
s∈A\{s0} asG

s0
s )(

∑
s∈A asN

(s)
n − ∑

s∈A\{s0} asG
s0
s )

α−1

(u+ nµ)α

)

≤ (M + 1)α−1
∞∑

i=−∞
πiEi

[(∑
s∈A\{s0} asG

s0
s

u+ τs0µ

)α]

+ 1

M
µ−α

∞∑
k=1

P0(τ0 ≥ k)g

(
k + u

µ

)

∼ M−1 2(
∑
s∈A asπs)αAα,γ

Cα
µγ (α−1)−αu−γ (α−1)L−(α−1)(u).

However, as M > 0 is arbitrary we conclude that

∞∑
i=−∞

πiEi

(
sup
n≥τs0

(
∑
s∈A\{s0} asG

s0
s )(

∑
s∈A asN

(s)
n − ∑

s∈A\{s0} asG
s0
s )

α−1

(u+ nµ)α

)

= o(u−γ (α−1)L−(α−1)(u)) as u → ∞.

(2.28)

Lastly, observe that

n < τs0 �⇒
∑
s∈A

asN
(s)
n −

∑
s∈A\{s0}

as(G
s0
s 1{τs≤τs0 ∧n} ∧N(s)

n ) = 0,

n ≥ τs0 �⇒ Gs0s 1{τs≤τs0 ∧n} ∧N(s)
n = Gs0s ,

(2.29)

and notice by the convexity of the function c(x) = xα for x ≥ 0, for any x0, y0 ≥ 0, we have

(x0 + y0)
α − xα0

y0
≤ α(x0 + y0)

α−1 ≤ α(xα−1
0 + yα−1

0 )

�⇒ (x0 + y0)
α ≤ xα0 + αxα−1

0 y0 + αyα0 .

(2.30)

So it follows from (2.21), (2.22), (2.29), and (2.30) that

2ψ0(u)

Cα
≤

∞∑
i=−∞

πiEi

[
sup
n≥τs0

(∑
s∈A asN

(s)
n − ∑

s∈A\{s0} asG
s0
s

u+ nµ

)α]

+ α

∞∑
i=−∞

πiEi

[
sup
n≥τs0

(
∑
s∈A\{s0} asG

s0
s )(

∑
s∈A asN

(s)
n − ∑

s∈A\{s0} asG
s0
s )

α−1

(u+ nµ)α

]

+ α

∞∑
i=−∞

πiEi

[
sup
n≥0

(∑
s∈A\{s0} as(G

s0
s 1{τs≤τs0 ∧n} ∧N(s)

n

)

u+ nµ

)α]
. (2.31)

Finally, the desired result follows from (2.23), (2.25), (2.26), (2.28), and (2.31).
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3. A continuous time stationary SαS process associated with a conservative flow

In this section we consider a class of continuous-time claim processes X generated by a
conservative flow. The construction of the class of such processes is due to Samorodnitsky [22].
Samorodnitsky constructed a SαS random measureM(·) using a standardH -fractional Brown-
ian motion, a centered, stationary increment Gaussian process, with self-similarity exponent
H ∈ (0, 1). (See [23, pp. 318–339] or [8, pp. 43–55] for details on this process.) He then
used M to describe a SαS process X represented by a stochastic integral, and showed that
this process is generated by a conservative flow for a certain class of kernels in the integral
representation.

In this section we look at the Brownian motion case (H = 1
2 ), and we pick a fairly simple

kernel in this class to show that even then (at least in the context of risk theory) the process is
long-range dependent.

The continuous-time model in the insurance is of interest as an approximation in the presence
of high-frequency claims which are irregularly spaced. The model can also be applied in the
context of fluid queues and storage/dam processes. We continue to use the insurance risk theory
language, however informally, and we give further details below.

3.1. Setup and preliminaries

Let B = {B(t), t ∈ R} be a standard Brownian motion. Pick E = C(−∞,∞), and let m
be a σ -finite cylindrical measure on E defined by

m(A) =
∫

R

P(B ∈ A− y) dy, A a cylindrical set,

i.e. m is the (infinite) law of the Brownian motion shifted according to the Lebesgue measure
on R. Define

ϕ(x) := (1 − |x|) 1{(1−|x|)∈[0,1]}, x ∈ R.

Note that ϕ : R �→ [0,∞) is Hölder continuous with exponent one, even, nonincreasing on
[0,∞), and ϕ ∈ Lα(R,B, λ). Clearly, the Hölder function

H(x) = sup
x≤s<t

ϕ(s)− ϕ(t)

t − s
, x ≥ 0,

also belongs to Lα(R,B, λ). Furthermore, define

X(t) =
∫
E

ϕ(xt )M(dx), t ∈ R, x = (xs, s ∈ R),

where M is a SαS random measure on E with control measure m. It is shown in [22] that the
process X = {X(t), t ∈ R} is a well defined stationary SαS process, and is generated by a
conservative flow.

Now let the process S = {S(t), t ≥ 0} be given by

S(t) :=
∫ t

0
X(s) ds, t ≥ 0.
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Note that, for any T ∈ (0,∞),

∫ T

0

(∫
E

ϕ(xs)
αm(dx)

)1/α

ds ≤ T

(
sup

0≤s≤T

∫
E

ϕ(xs)
αm(dx)

)1/α

≤ T

(∫
E

sup
0≤s≤T

ϕ(xs)
αm(dx)

)1/α

.

However, it was shown in [22] that

b(T ) :=
(∫

E

sup
0≤s≤T

ϕ(xs)
αm(dx)

)1/α

is finite. Thus, it follows from Theorem 11.3.2 of [23] that

∫ T

0
|X(s)| ds < ∞ a.s.

In particular, the process {S(t), t ∈ [0, T ]} is well-defined for any T ∈ (0,∞) and, hence, S

is also well defined.
Next, let

ht (x) :=
∫ t

0
ϕ(xs) ds.

It follows from Theorem 11.4.1 of [23] that

S(t) =
∫
E

ht (x)M(dx) a.s., t ≥ 0.

Now, with T = R+, the ruin probability given in (1.1) becomes

ψ(u) = P

(
sup
t≥0
(S(t)− µt) > u

)
, u > 0.

Lastly, for u > 0, let

ψ0(u) := Cα

2

∫
R

sup
t≥0

(
ht (x)

u+ tµ

)α
dx = Cα

2

∫
R

E

[
sup
t≥0

(∫ t
0 ϕ(B(s)+ y) ds

u+ tµ

)α]
dy,

where µ > 0 is the deterministic drift rate and Cα = (
∫ ∞

0 x−α sin x dx)−1.

3.2. Asymptotic behavior of the ruin probability

We first prove the asymptotic equivalence of the ruin probability, ψ(u), and ψ0(u) as u goes
to infinity.

Proposition 3.1. In the above setting,

ψ(u) ∼ ψ0(u) as u → ∞.
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To prove Proposition 3.1, we need the following two lemmas.

Lemma 3.1. The following relation holds in the setting described above:

‖ht (·)‖Lα(E,E ,m) = O(t(α+1)/2α), t → ∞.

Proof. Let {l(x, t), x ∈ R, t ≥ 0} be a jointly continuous local time process of B (see
[8, p. 52] for a brief definition or [3] for details). As an immediate consequence of the self-
similarity of the Brownian motion, local time process has the following scaling property: for
any c > 0,

{l(c1/2x, ct), x ∈ R, t ≥ 0} d= {c1/2l(x, t), x ∈ R, t ≥ 0}. (3.1)

Moreover, all moments of l(x, t) are finite, and are uniformly bounded in all real x and all real t
in a compact set. (See, for instance, [5] for details.)

Now, by Hölder’s inequality and Fubini’s theorem, we have

‖ht (·)‖αLα(E,E ,m) =
∫
E

hαt (x)m(dx)

=
∫

R

E

[(∫ t

0
ϕ(B(s)+ y) ds

)α]
dy

=
∫

R

E

[(∫
R

ϕ(x + y)l(x, t) dx

)α]
dy

≤
∫

R

E

[(∫ 1−y

−1−y
l(x, t) dx

)α]
dy

≤ 2α−1
∫

R

E

(∫ 1−y

−1−y
lα(x, t) dx

)
dy

= 2α
∫

R

E

[
lα(x, t)

]
dx,

and by (3.1) we have
∫

R

E[lα(x, t)] dx = tα/2
∫

R

E

[
lα

(
x√
t
, 1

)]
dx

= tα/2
∫

R

E

[
lα

(
x√
t
, 1

)
1{sup0≤s≤1 |B(s)|≥|x/√t |}

]
dx

≤ tα/2
∫

R

[
E

[
l2

(
x√
t
, 1

)]]α/2[
P

(
sup

0≤s≤1
|B(s)| ≥

∣∣∣∣ x√t
∣∣∣∣
)](2−α)/2

dx

≤ (constant)t(α+1)/2
∫

R

[
P

(
sup

0≤s≤1
|B(s)| ≥ |x|

)](2−α)/2
dx.

(The last inequality is due to the fact that the moments of the local time are uniformly bounded.)
Finally, the desired result follows by observing that

∫
R

[
P

(
sup

0≤s≤1
|B(s)| ≥ |x|

)](2−α)/2
dx < ∞

as the supremum of a bounded Gaussian process has Gaussian-like tails. (See, for instance, [1].)
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Lemma 3.2. There exists an ε̃ ∈ (0, 1) such that the process Ỹ = (Ỹ (t), t ≥ 0) defined by

Ỹ (t) := (t + 1)ε̃−1S(t), t ≥ 0,

is a.s. bounded.

Proof. It follows from Proposition 7.4 of [4] and Lemma 3.1 that there exists an ε0 > 0
such that the process

((n+ 1)ε0−1S(n), n = 0, 1, 2, . . .)

is a.s. bounded.
Furthermore, note by the stationarity of X, for any ε̃ ∈ (0, 1),

P

(
sup

n=0,1,2,...

supn≤t≤n+1 |S(t)− S(n)|
(n+ 1)1−ε̃ ≥ λ

)

≤
∞∑
n=0

P

(
sup

n≤t≤n+1
|S(t)− S(n)| ≥ λ(n+ 1)1−ε̃

)

=
∞∑
n=0

P

(
sup

0≤t≤1
|S(t)| ≥ λ(n+ 1)1−ε̃

)

≤
∞∑
n=0

P

(
sup

0≤s≤1
|X(s)| ≥ λ(n+ 1)1−ε̃

)
.

Also, it was shown in [22] that the process X is a.s. sample continuous. Consequently,
(X(s), s ∈ [0, 1]) is a.s. bounded. Then it follows from Theorem 10.5.1 of [23] that

∞∑
n=0

P

(
sup

0≤s≤1
|X(s)| ≥ λ(n+ 1)1−ε̃

)
≤ C

∞∑
n=0

[
λ(n+ 1)1−ε̃

]−α
,

for some positive constant C. Hence, for any ε̃ < (1 − α−1), we see that

lim
λ→∞ P

(
sup

n=0,1,2,...

supn≤t≤n+1 |S(t)− S(n)|
(n+ 1)1−ε̃ ≥ λ

)
= 0.

Consequently, for any such ε̃, it follows from the monotone convergence theorem that the
process (

(n+ 1)ε̃−1 sup
n≤t≤n+1

|S(t)− S(n)|, n = 0, 1, 2, . . .

)

is a.s. bounded.
The desired result follows by picking ε̃ ∈ (0,min{ε0, (1 − α−1)}) and observing that

sup
t≥0

|Ỹ (t)| ≤ sup
n=0,1,2,...

(n+ 1)ε̃−1|S(n)| + sup
n=0,1,2,...

(n+ 1)ε̃−1 sup
n≤t≤n+1

|S(t)− S(n)|.

Proof of Proposition 3.1. Pick ε̃ > 0 such that Ỹ is a.s. bounded and define a process
Y = (Y (t), t ≥ 0) by

Y (t) := [log(tµ+ 2)]1+ε

tµ+ 2
S(t), t ≥ 0.
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Note that, for any ε > 0,

[log(tµ+ 2)]1+ε

tµ+ 2
= o((t + 1)ε̃−1) as t → ∞.

Then, as ε̃ > 0 is picked such that Ỹ is a.s. bounded, we see that, for any ε > 0, Y is a.s.
bounded. Now, the proposition follows from Theorem 4.1 and Remark 4.2 of [4].

What follows is the key step for the proof of the main theorem of this section.

Lemma 3.3. For any y ∈ R, as u → ∞, the following relationship holds:

g(u, y) := E

[
sup
t≥0

(∫ t
0 ϕ(B(s)+ y) ds

u+ t

)α]
∼ u−α/2E

[
sup
t≥0

(
l(0, t)

1 + t

)α]
.

Proof. Fix y ∈ R. For K > 0 start by defining

gK(u, y) := E

[
sup
t≥uK

(∫ t
0 ϕ(B(s)+ y) ds

u+ t

)α]
,

and

gK(u, y) := E

[
sup

0≤t≤uK

(∫ t
0 ϕ(B(s)+ y) ds

u+ t

)α]
.

Observe, by Hölder’s inequality and Fubini’s theorem, that

gK(u, y) ≤
∞∑
j=1

E

[
sup

uK2j−1≤t≤uK2j

(∫ t
0 ϕ(B(s)+ y) ds

u+ t

)α]

≤ u−α
∞∑
j=1

E

(∫ uK2j

0 ϕ(B(s)+ y) ds

1 +K2j−1

)α

≤ 2αu−α
∞∑
j=1

E

(∫ 1−y
−1−y l(x, uK2j ) dx

K2j

)α
,

and, by (3.1) and Hölder’s inequality,

u−α
∞∑
j=1

E

(∫ 1−y
−1−y l(x, uK2j ) dx

K2j

)α

= u−α
∞∑
j=1

E

[√
uK2j

∫ 1−y
−1−y l(x/

√
uK2j , 1) dx

K2j

]α

≤ 2α−1u−α/2K−α/2
∞∑
j=1

2−jα/2
∫ 1−y

−1−y
E

[
lα

(
x√
uK2j

, 1

)]
dx.

Then, it follows from the fact that the local time has moments of all orders finite and uniformly
bounded in all real x,

lim
K↑∞ lim sup

u→∞
uα/2gK(u, y) = 0. (3.2)
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Next we will investigate gK(u, y). Start by noting that

sup
0≤t≤uK

√
u

∫ t
0 ϕ(B(s)+ y) ds

u+ t
≤ u−1/2

∫ uK

0
ϕ(B(s)+ y) ds

≤ u−1/2
∫ uK

0
1{B(s)∈[−1−y,1−y]} ds

= u−1/2
∫ 1−y

−1−y
l(x, uK) dx,

and it follows from Hölder’s inequality that, for any δ > 0,
(

sup
0≤t≤uK

√
u

∫ t
0 ϕ(B(s)+ y) ds

u+ t

)α+δ
≤ 2α+δ−1

u(α+δ)/2

∫ 1−y

−1−y
lα+δ(x, uK) dx.

Consequently, by Fubini’s theorem and (3.1) we have

sup
u>0

E

(∣∣∣∣ sup
0≤t≤uK

√
u

∫ t
0 ϕ(B(s)+ y) ds

u+ t

∣∣∣∣
α+δ)

≤ sup
u>0

2α+δ−1

u(α+δ)/2E
(∫ 1−y

−1−y
lα+δ(x, uK) dx

)

= 2α+δ−1 sup
u>0

∫ 1−y

−1−y
E

[
lα+δ

(
x√
u
,K

)]
dx.

However, local time l(x, t) has moments of all orders finite and uniformly bounded in all real
x and all t in a compact set. Thus, we conclude that

sup
u>0

E

(∣∣∣∣ sup
0≤t≤uK

√
u

∫ t
0 ϕ(B(s)+ y) ds

u+ t

∣∣∣∣
α+δ)

< ∞,

and it follows from the ‘crystal ball condition’ (cf. [18, p. 184]) that, for any y ∈ R, the family
{(

sup
0≤t≤uK

√
u

∫ t
0 ϕ(B(s)+ y) ds

u+ t

)α}
u>0

is uniformly integrable.
Next, observe that(

u−1/2
∫ ut

0
ϕ(B(s)+ y) ds, t ≥ 0

)
⇒ (l(0, t), t ≥ 0),

in C[0,∞) as u → ∞. (See, for instance, [8, p. 52] for details.) Thus, for any continuity point
z ≥ 0 of the distribution of sup0≤v≤K [l(0, v)/(1 + v)], as u → ∞,

P

(
sup

0≤t≤uK
u1/2

∫ t
0 ϕ(B(s)+ y) ds

u+ t
≥ z

)

= P

(
u−1/2

∫ uv

0
ϕ(B(s)+ y) ds ≥ (1 + v)z for some v ≤ K

)

∼ P(l(0, v) ≥ (1 + v)z for some v ≤ K)

= P

(
sup

0≤v≤K
l(0, v)

1 + v
≥ z

)
.
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Hence, we conclude that, as u → ∞,

sup
0≤t≤uK

u1/2
∫ t

0 ϕ(B(s)+ y) ds

u+ t
⇒ sup

0≤t≤K
l(0, t)

1 + t
,

and therefore, by the continuous mapping theorem,

(
sup

0≤t≤uK
u1/2

∫ t
0 ϕ(B(s)+ y) ds

u+ t

)α
⇒

(
sup

0≤t≤K
l(0, t)

1 + t

)α
.

Now, recalling the uniform integrability, Theorem 6.6.1 of [18] implies that

lim
u→∞ u

α/2gK(u, y) = E

[(
sup

0≤t≤K
l(0, t)

1 + t

)α]

and, thus,

lim
K↑∞ lim

u→∞ u
α/2gK(u, y) = E

[(
sup
t≥0

l(0, t)

1 + t

)α]
.

Lastly, recalling (3.2) we have

lim
u→∞ u

α/2g(u, y) = E

[(
sup
t≥0

l(0, t)

1 + t

)α]
.

Now we state our theorem.

Theorem 3.1. The following relation holds:

ψ(u) ∼ Cα√
2π

E

[
sup
t≥0

(
l(0, t)

1 + t

)α]
β

(
1

2
,
α − 1

2

)
µ−(1/2)(α+1)u(1/2)(1−α), u → ∞,

where β(·, ·) is the beta function.

To prove Theorem 3.1, we need the following lemma.

Lemma 3.4. For y ∈ R, let

I (u, y) :=
∫ ∞

0
v−1/2g(u+ v, y) dv.

Then, as u → ∞,

I (u, y) ∼ u(1/2)(1−α)E
[

sup
t≥0

(
l(0, t)

1 + t

)α]
β

(
1

2
,
α − 1

2

)
.

Proof. Choose K > 0. Define

I1(u, y) :=
∫ ∞

uK

v−1/2g(u+ v, y) dv and I2(u, y) :=
∫ uK

0
v−1/2g(u+ v, y) dv.

Note, by the monotonicity of g, that

I1(u, y) ≤
∫ ∞

uK

v−1/2g(v, y) dv.
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Fix ε > 0. Then it follows from Lemma 3.3 that, for sufficiently large u,

I1(u, y) ≤ (1 + ε)E

[
sup
t≥0

(
l(0, t)

1 + t

)α] ∫ ∞

uK

v−(1+α)/2 dv

and, hence,

lim
K↑∞ lim sup

u→∞
u(1/2)(α−1)I1(u, y) = 0. (3.3)

Also, by Lemma 3.3 we have for any K > 0, as u → ∞,

I2(u, y) ∼ E

[
sup
t≥0

(
l(0, t)

1 + t

)α] ∫ uK

0
v−1/2(u+ v)−α/2 dv

= u(1/2)(1−α)E
[

sup
t≥0

(
l(0, t)

1 + t

)α] ∫ K

0
x−1/2(1 + x)−α/2 dx.

The desired result follows by letting K ↑ ∞, taking (3.3) into account, and observing that

∫ ∞

0
x−1/2(1 + x)−α/2 dx = β

(
1

2
,
α − 1

2

)
.

Proof of Theorem 3.1. By Proposition 3.1 it is sufficient to show the result for ψ0(u). For
u > 0 write

2ψ0(u)

Cα
=

∫
R

E

[
sup
t>0

(∫ t
0 ϕ(B(s)+ y) ds

u+ tµ

)α]
dy

=
∫ −1

−∞
E

[
sup
t>0

(∫ t
0 ϕ(B(s)+ y) ds

u+ tµ

)α]
dy

+
∫ 1

−1
E

[
sup
t>0

(∫ t
0 ϕ(B(s)+ y) ds

u+ tµ

)α]
dy

+
∫ ∞

1
E

[
sup
t>0

(∫ t
0 ϕ(B(s)+ y) ds

u+ tµ

)α]
dy

=: I1(u)+ I2(u)+ I3(u).

Start by noting that, by Hölder’s inequality we have

lim sup
u→∞

u(1/2)(α−1)I2(u) = lim sup
u→∞

u(1/2)(α−1)
∫ 1

−1
E

[
sup
t>0

(∫
R
ϕ(x + y)l(x + t) dx

u+ tµ

)α]
dy

≤ 2 lim sup
u→∞

u(1/2)(α−1)E

[
sup
t>0

(∫ 2
−2 l(x, t) dx

u+ tµ

)α]

≤ 22α−1 lim sup
u→∞

u(1/2)(α−1)E

[
sup
t>0

∫ 2
−2 l

α(x, t) dx

(u+ tµ)α

]

and, therefore, by (3.1) and the fact that the supremum of the local time l(x, t), for all real x
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and t in a compact set, has moments of all orders finite, we have

lim sup
u→∞

u(1/2)(α−1)I2(u) ≤ 22α−1 lim sup
u→∞

u(1/2)(α−1)E

[
sup
t>0

tα/2
∫ 2
−2 l

α(x/
√
t, 1) dx

(u+ tµ)α

]

≤ (constant) lim sup
u→∞

u(1/2)(α−1) sup
t>0

( √
t

u+ tµ

)α

= (constant) lim sup
u→∞

u(1/2)(α−1)
(√

u/µ

2u

)α

= 0.

(3.4)

Let τ [y] := inf{t ≥ 0; B(t) = y} be the first passage time to a level y ∈ R, and observe that

I1(u) =
∫ −1

−∞
E

[
sup

t>τ [−1−y]

(∫ t
0 ϕ(B(s)+ y) ds

u+ tµ

)α]
dy

=
∫ −1

−∞
E

[
sup
t>0

(∫ t+τ [−1−y]
0 ϕ(B(s)+ y) ds

u+ (t + τ [−1 − y])µ
)α]

dy

=
∫ −1

−∞
E

[
sup
t>0

(∫ t+τ [−1−y]
τ [−1−y] ϕ(B(s)+ y) ds

u+ (t + τ [−1 − y])µ
)α]

dy.

Also, recall that, for v > 0 and y ∈ R,

P(τ [y] ∈ dv) = |y|√
2πv3

e−y2/2v dv

(cf. [11, p. 80]). Then it follows, from the strong Markov property for Brownian motion and
Fubini’s theorem, that

I1(u) =
∫ −1

−∞

∫ ∞

0
E

[
sup
t>0

(∫ t
0 ϕ(B(s)− 1) ds

u+ (t + v)µ

)α]
P(τ [−1 − y] ∈ dv) dy

=
∫ ∞

0
E

[
sup
t>0

(∫ t
0 ϕ(B(s)− 1) ds

u+ (t + v)µ

)α] ∫ −1

−∞
−1 − y√

2πv3
e−(−1−y)2/2v dy dv

= 1

µα
√

2π

∫ ∞

0
g

(
v + u

µ
,−1

)
v−1/2 dv.

Similarly,

I3(u) = 1

µα
√

2π

∫ ∞

0
g

(
v + u

µ
, 1

)
v−1/2 dv.

Finally, note that

I1(u) = 1

µα
√

2π
I

(
u

µ
,−1

)
and I3(u) = 1

µα
√

2π
I

(
u

µ
, 1

)
,

and, hence, recalling (3.4) and using Lemma 3.4 we have

2ψ0(u)

Cα
= 1

µα
√

2π

[
I

(
u

µ
,−1

)
+ I

(
u

µ
, 1

)]
+ o(u(1/2)(1−α))

∼ 2√
2πµ(1/2)(α+1)

E

[
sup
t≥0

(
l(0, t)

1 + t

)α]
β

(
1

2
,
α − 1

2

)
u(1/2)(1−α), u → ∞.
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Remark 3.1. All the results of this section prior to Theorem 3.1 are valid for generalH ∈ (0, 1).
This fact, together with the observation of parallels between the main results of this section and
the previous section, lead us to believe that the result given in Theorem 3.1 should still hold
with 1

2 replaced by any H ∈ (0, 1). However, our proof requires the use of the strong Markov
property which is only valid in the case where H = 1

2 .
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