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Abstract

We consider a preferential duplication model for growing random graphs, extending
previous models of duplication graphs by selecting the vertex to be duplicated with
probability proportional to its degree. We show that a special case of this model can be
analysed using the same stochastic approximation as for vertex-reinforced random walks,
and show that ‘trapping’ behaviour can occur, such that the descendants of a particular
group of initial vertices come to dominate the graph.
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1. Introduction

Many naturally occurring networks ranging from subcellular biological networks to a variety
of social networks are believed to grow by processes of vertex duplication. Indeed, graph
growing models based on vertex duplications have been the subject of investigation over recent
years (see, for example, [1], [5], [6], [7], and [10]). In most of these models vertices are chosen
for duplication according to a uniform distribution, while in the model of [5] all vertices are
duplicated simultaneously. By contrast, other graph growing algorithms rely on the preferential
attachment of new vertices to highly connected existing ones to reproduce the broad, often scale-
free, degree distributions (see [4] for a survey) found in many real-world networks. Here we
present a generalisation of a duplication graph growing algorithm that is inspired by a ‘friend-
brings-a-friend’ growth process, and reduces to the preferential attachment model in one limit.
We call this growth algorithm preferential duplication.

Our model is defined as follows. Let G0 be a finite (connected) graph with n0 vertices
(labelled with the integers 1, . . . , n0). There are two versions of the model, which we will call
the ‘false twins’ version and the ‘true twins’ version.

In both models, we construct a sequence of graphs (Gn)n∈N by a procedure which, to
construct Gn+1 from Gn, chooses a vertex vn+1 of Gn with probability proportional to its
degree (that is, vn+1 = v with probability

degGn
(v)∑

w∈V (Gn) degGn
(w)

,
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Preferential duplication graphs 573

as in the preferential attachment graph), and duplicates vn+1 together with each of its edges
with probability p, independently of each other. That is, if vn+1 = v, a new vertex v′ is added to
the graph. An edge exists in Gn+1 between v′ and w with probability p if an edge existed in Gn

between v and w, and not otherwise; the existence of edges from v′ to different neighbours of
vn+1 is independent. Additionally, in the ‘true twins’ version of the model only, v′ is connected
to v with probability 1.

In the remainder of this paper we concentrate on the case p = 1; we intend to investigate
the case p < 1 in a later paper. We note that the ‘true twins’ model with p = 0 becomes the
preferential attachment model of [4] with the parameter m = 1.

The behaviour of preferential duplication graphs bears some resemblance to that of a
completely different graph model—that of vertex-reinforced random walks (VRRWs; see [3],
[8], and [11]). For a specific duplication event, with p = 1, the vertex and associated edges
duplicated are simply a reproduction of the existing structure of the duplicated vertex. Therefore,
it is convenient to collapse the new vertex and its associated edges onto the duplicated vertex
and edges, while ‘reinforcing’ that vertex to indicate that such a collapse has taken place. This
process would then be identical to the reinforcement in VRRWs. However, in the former,
vertices are selected for duplication from the graph only as a function of their degree, whereas
in the latter there is an additional constraint that any two successively reinforced vertices must
be neighbours.

We show, in the special case of the preferential duplication model where p = 1, that a
process representing the numbers of descendants of the original vertices becomes ‘trapped’
on certain subgraphs of the initial graph. In other words, given an initial graph G0, we can
find subgraphs of G0 such that there is a positive probability that after a sufficient number of
generations, all new vertices are descendants of vertices in G0. Interestingly, such trapping is
of the same nature as that which has been shown to occur in VRRWs; our proof method is to
show that preferential duplication with p = 1 has a stochastic approximation equation linking
it to the same dynamical system as is linked to VRRWs in [3] and [8]. We conjecture that, with
probability 1, there exists one subgraph that traps the process.

In the ‘false twins’ case we show in Theorem 2.2 that the trapping subgraphs are of the form
S ∪ B, where S is a complete m-partite subgraph of G0 satisfying certain conditions and B

consists of those vertices with a neighbour in S. These trapping subgraphs are the same as those
found in a VRRW on the initial graph G0. In the ‘true twins’ case we show in Theorem 2.3
that the trapping subgraphs are of the form S ∪ B, where S is a maximal clique of G0 and B

again consists of those vertices with a neighbour in S. In both cases any trapping subgraph has
positive probability of trapping the process.

The trapping behaviour we find may give insight into the emergence of certain types of
structure in a variety of complex systems with similar growth properties. In particular, the
principle of a ‘friend-brings-a-friend’ is commonly used in real-world networks (though rarely
with p = 1). Where such growth rules indeed lead to trapping behaviour, we would find that
ancestry may be affected more by nuances such as the specific structure of G0 than merely the
distinctive features of a particular ancestor. Another interesting phenomenon is the symmetry
breaking that can occur in this model, with an initial symmetric graph G0 that has more than one
trapping subgraph. More generally, the fact that trapping appears in two very different models
of graph processes suggests that it may be a more universal property of particular classes of
systems than previously known.
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2. The case p = 1

We show that the case where p = 1 (so the new vertex is an exact copy of the vertex it was
duplicated from) is closely related to a VRRW (see [3], [8], and [11] for more on VRRWs) on
the initial graph.

2.1. Preliminaries and notation

Lemma 2.1. In the ‘false twins’ case, all vertices of Gn will have the same set of neighbours
in Gn as one of the initial vertices 1, . . . , n0.

Proof. The new vertex added to Gn to form Gn+1 has the same set of neighbouring vertices
in Gn+1 as the vertex it is a duplicate of. Hence, if two vertices have the same set of neighbours
in Gn then they will continue to do so in Gm (m > n), and so all vertices of Gn will have the
same set of neighbours in Gn as one of the initial vertices 1, . . . , n0.

This will also hold in the ‘true twins’ case if the set of vertices within distance 1 of each
vertex (i.e. including the vertex itself) is considered.

We will describe a vertex as being descended from an initial vertex i if it was either duplicated
directly from vertex i or duplicated from a vertex descended from vertex i. Hence, all vertices
descended from vertex i have the same set of neighbours in Gn as vertex i.

For n ≥ 0 and 1 ≤ i ≤ n0, let d
(n)
i be the degree of vertex i in Gn, and let c

(n)
i be the

number of vertices of Gn which are descended from vertex i (including vertex i itself). Let Xn

be a random variable taking values in {1, . . . , n0}, whose value is the original vertex that vn is
descended from, so that c

(n+1)
Xn+1

= c
(n)
Xn+1

+ 1 and c
(n+1)
i = c

(n)
i for i �= Xn+1.

Let x
(n)
i be the proportion of vertices of Gn descended from vertex i,

x
(n)
i = c

(n)
i

n + n0
,

and let x(n) be the vector of proportions, x(n) = (x
(n)
1 , x

(n)
2 , . . . , x

(n)
n0 ), which can be regarded

as an element of the (n0 − 1)-dimensional simplex

�n0−1 =
{
x ∈ R

n0−1; xi ≥ 0 for all i,

n0−1∑
i=1

xi ≤ 1

}
.

Let A = (aij )i,j∈V (G0) be the adjacency matrix of G0, and define a σ -algebra

Fn = σ(G0, G1, . . . , Gn).

For the ‘false twins’ case, let f (x) : R
n0 → R

n0 be a function with coordinates given by

fi(x) = xi

∑n0
j=1 aij xj∑n0

k=1 xk

∑n0
j=1 akj xj

= xi(Ax)i

x	Ax
,

and let F(x) = f (x) − x. Following [3], for x ∈ �n0−1, we write Ni(x) = (Ax)i and
H(x) = ∑n0

i=1 xiNi(x) = x	Ax, so that

fi(x) = xiNi(x)

H(x)
and Fi(x) = xi(Ni(x) − H(x))

H(x)
.

Similarly, for the ‘true twins’ case, define N̂i(x) = [(A + I )x]i (where I is the n0 × n0
identity matrix), Ĥ (x) = x	(A + I )x, f̂i (x) = xiN̂i(x)/Ĥ (x), and F̂ (x) = f̂ (x) − x.

For i ∈ {1, . . . , n0}, let ι(i) be the unit vector in R
n0 with 1 in position i and 0s elsewhere.
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2.2. Stochastic approximation and analysis of attractors

Theorem 2.1. In the ‘false twins’case, the sequence (x(n))n∈N satisfies the stochastic approx-
imation equation

x(n+1) − x(n) = 1

n + n0 + 1
F(x(n)) + ε(n+1),

with E(ε(n+1) | Fn) = 0 and where ε(n+1)(n + n0 + 1) is bounded.
In the ‘true twins’case, the sequence satisfies a different stochastic approximation equation,

x(n+1) − x(n) = 1

n + n0 + 1
F̂ (x(n)) + ε(n+1) + R(n+1),

with E(ε(n+1) | Fn) = 0, where ε(n+1)(n + n0 + 1) is bounded and the remainder term R(n) =
O(n−2).

Proof. The graph Gn has n + n0 vertices. The new vertex vn+1 will be descended from
vertex i if and only if the selected vertex vn+1 is. Hence, in the ‘false twins’ case,

c
(n+1)
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c
(n)
i + 1 with probability

c
(n)
i d

(n)
i∑n0

k=1 c
(n)
k d

(n)
k

,

c
(n)
i with probability 1 − c

(n)
i d

(n)
i∑n0

k=1 c
(n)
k d

(n)
k

.

Let aij , 1 ≤ i, j ≤ n0, be the entries of the adjacency matrix of G0. Then d
(n)
i =∑n0

j=1 aij c
(n)
j , so we can rewrite the above as

c
(n+1)
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c
(n)
i + 1 with probability

c
(n)
i

∑n0
j=1 aij c

(n)
j∑n0

k=1 c
(n)
k

∑n0
j=1 akj c

(n)
j

,

c
(n)
i with probability 1 − c

(n)
i

∑n0
j=1 aij c

(n)
j∑n0

k=1 c
(n)
k

∑n0
j=1 akj c

(n)
j

.

Hence, this can be treated as a generalisation of the Pólya urn model where category i is chosen
with probability

c
(n)
i

∑n0
j=1 aij c

(n)
j∑n0

k=1 c
(n)
k

∑n0
j=1 akj c

(n)
j

= fi(x
(n))

instead of with probability simply proportional to c
(n)
i .

We see that

x
(n+1)
i − x

(n)
i = 1

n + n0 + 1
(1 − x

(n)
i ) 1{Xn+1=i} − 1

n + n0 + 1
x

(n)
i (1 − 1{Xn+1=i}),

and, hence,

x(n+1) − x(n) = 1

n + n0 + 1
(ι(Xn+1) − x(n)).

Taking conditional expectations,

E(x(n+1) − x(n) | Fn) = 1

n + n0 + 1
(f (x(n)) − x(n)).
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Letting

ε(n+1) = 1

n + n0 + 1
(ι(Xn+1) − f (x(n))),

we conclude that E(ε(n+1) | Fn) = 0 and that ε(n+1)(n + n0 + 1) is bounded, giving the result.
In the ‘true twins’ case,

d
(n)
i =

n0∑
j=1

aij c
(n)
j + c

(n)
i − 1.

So the probability that some vertex descended from vertex i is chosen for duplication is

p
(n)
i = c

(n)
i

(∑n0
j=1 aij c

(n)
j + c

(n)
i − 1

)
∑n0

k=1 c
(n)
k

∑n0
j=1(akj c

(n)
j + c

(n)
k − 1)

= x
(n)
i

(∑n0
j=1 aij x

(n)
j + x

(n)
i − 1/(n + n0)

)
∑n0

k=1 x
(n)
k

∑n0
j=1(akj x

(n)
j + x

(n)
k − 1/(n + n0))

,

so

p
(n)
i = x

(n)
i (N̂i(x

(n)) − 1/(n + n0))

Ĥ (x(n)) − 1/(n + n0)

= x
(n)
i N̂i(x

(n))

Ĥ (x(n))
+ x

(n)
i (N̂i(x

(n)) − Ĥ (x(n)))

Ĥ (x(n))(Ĥ (x(n))(n + n0) − 1)

= f̂i (x
(n)) + O(n−1).

Hence, stochastic approximation theory [2], [9] relates the behaviour of x(n) to the behaviour
of the continuous-time dynamical system given by the function F(x). This is the same stochastic
approximation as occurs for vertex-reinforced random walks in [3] and [8].

An attractor for a flow � on a metric space (M, d) is defined (e.g. in [2]) to be a subset
A ⊆ M which is invariant under � and has a neighbourhood W such that d(�tx, A) → 0 as
t → ∞ uniformly for x ∈ W .

In [3], a stable equilibrium for the dynamical system of interest is defined as being an
equilibrium where all eigenvalues of the Jacobian matrix are nonpositive. This does not
necessarily imply that the stable equilibrium is in an attractor.

As H is a Lyapunov function for the stochastic approximation, and letting L(x) be the limit
set of the process (x(n))n∈N, we can conclude the following.

Corollary 2.1. If A is an attractor of the continuous-time dynamical system given by the
function F(x) (or F̂ (x)), then P(L(x) ⊆ A) > 0. Furthermore, L(x) consists of equilibria for
the dynamical system, and H(x(n)) (or Ĥ (x(n))) converges as n → ∞.

Proof. The first statement follows from Theorem 7.3 of [2] and the second statement follows
from Proposition 6.4 of [2].

We now discuss the attractors and stable equilibria for the dynamical system in the ‘false
twins’case. First consider the case where G0 is a complete m-partite graph. In this case vertices
which belong to the same part have the same neighbours and so are indistinguishable, so we
can just consider the case where G0 is a complete graph on m vertices. The convergence of the
stochastic approximation in this case is discussed in [8].
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We now consider finding attractors for the dynamical system in more general graphs. Con-
sider the case where G0 contains a subgraph consisting of a ‘core’ S and its outer boundary B,
S being a complete m-partite graph, S = V1 ∪V2 ∪ · · · ∪Vm, and B consisting of exactly those
vertices which are outside S but have a neighbour in S. We have already dealt with the case
where S is the whole graph above, so without loss of generality assume that n0 /∈ S. In [11]
such a subgraph is defined to be a trapping subgraph if, for any vertex v in B, two criteria are
met:

1. there is at least one part of S, Vi , such that v is not connected to Vi ;

2. there is at least one vertex in x′ ∈ S \ Vi such that v is not connected to x′.

The following result shows that trapping subgraphs (under the definition in [11]) produce
attractors of the dynamical system.

Proposition 2.1. Let S be the core of a trapping subgraph, and let y ∈ �n0−1 be such that∑
i∈Vj

yi = 1/m and that yi = 0 if i /∈ S, i.e. y represents a proportion 1/m of the vertices
being in each part of the m-partite graph, and a proportion 0 outside the graph. The set of
points of this form is an attractor for the dynamical system driven by F .

Proof. It is fairly easy to see that y is a fixed point of F : the definition implies that H(y) =
(m − 1)/m and that Ni(y) = H(y) for all i ∈ S. It remains to prove that the set of fixed points
of this form is an attractor for the dynamical system. To do this, we will evaluate the partial
derivatives dij = ∂Fi/∂xj at the fixed point y, and show that the eigenvalues of the resulting
Jacobian are at most 0, and that the eigenspace corresponding to the eigenvalue 0 is contained
within the set of fixed points.

Using the fact that
∑n0

i=1 x
(n)
i = 1, we write xn0 = 1 − ∑n0−1

i=1 xi and treat f as a function
from �n0−1 to itself. Hence, we can rewrite the components of f :

fi(x) = xi

∑n0−1
j=1 (aij − ai,n0)xj + xiai,n0∑n0−1

k=1

(∑n0−1
j=1 (akj − 2ak,n0)xkxj + 2ak,n0xk

) .

(We assume that G0 has no loops, so aii = 0 for all i.)
Differentiating and substituting the above values for the xi at the fixed point, we find that

dij = ∂Fi

∂xj

∣∣∣∣
x=y

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−mai,n0yi

m − 1
− 2yi + 2myi

m − 1

∑
k∈S

ak,n0yk, i = j ∈ S,

maij yi

m − 1
− mai,n0yi

m − 1
− 2yi + 2myi

m − 1

∑
k∈S

ak,n0yk, i �= j, i, j ∈ S,

maij yi

m − 1
− mai,n0yi

m − 1
− 2myi

m − 1

∑
k∈S

akj yk + 2myi

(m − 1)

∑
k∈S

ak,n0yk, i ∈ S, j /∈ S,

m

m − 1

∑
k∈S

aikyk − 1, i = j /∈ S,

0, i /∈ S, j �= i.
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The off-diagonal zero entries where i /∈ S mean that the eigenvalues of this matrix are the
eigenvalues of the matrix obtained by restricting to the rows and columns corresponding to S,
together with the diagonal entries

ηi = m

m − 1

∑
k∈S

aikyk − 1, i /∈ S.

So we need to find the eigenvalues of the |S| × |S| matrix D with entries

dij = ∂Fi

∂xj

∣∣∣∣
x=y

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−mai,n0yi

m − 1
− 2yi + 2myi

m − 1

∑
k∈S

ak,n0yk, i = j ∈ S,

maij yi

m − 1
− mai,n0yi

m − 1
− 2yi + 2myi

(m − 1)

∑
k∈S

ak,n0yk, i �= j, i, j ∈ S.

Label the parts of the complete m-partite graph S as 1, . . . , m, and let p(i) be the part containing
vertex i. Then, given a set of constants α1, α2, . . . , αm with

∑m
k=1 αk = 0, define a vector

v ∈ R
|S| by vi = yiαp(i). Then, as aij is 1 if p(i) �= p(j) and 0 otherwise,

(Dv)i = myi

m − 1

∑
{j : p(j)�=p(i)}

yjαp(j) = yi

m − 1
(−αp(i)) = − 1

m − 1
vi,

so this gives an eigenspace of dimension m − 1 with eigenvalue −1/(m − 1).
Now let w be a vector with wj = 1 for all j . Then

(w	S)j =
∑
i∈S

(
maij yi

m − 1
− mai,n0yi

m − 1
− 2yi + 2yi

m − 1

∑
k∈S

mak,n0yk

)

= 1 − 1

m − 1

∑
i∈S

mai,n0yi − 2 + 2

m − 1

∑
i∈S

mai,n0yi

= m

m − 1

∑
i∈S

ai,n0yi − 1,

so there is a dimension 1 eigenspace with eigenvalue

ηn0 = m

m − 1

∑
i∈S

ai,n0yi − 1.

If p(i) = p(j), aij = 0, so rows i and j of D are identical. Hence, each part k gives an
eigenspace with eigenvalue 0 and dimension |Vk| − 1. The eigenspace of the zero eigenvalues
is in the direction where F is constant.

We now need to consider the eigenvalues ηi for i /∈ S. If our subgraph is a trapping subgraph
then this ensures that, as i is outside S,

∑
k∈S

aikyk <
m − 1

m
,

and so these eigenvalues are negative for all choices of yk, k ∈ S. Hence, in this case all the
eigenvalues are negative or 0, and the eigenspace of the zero eigenvalues is in the direction
where F is constant, so the set of fixed points is an attractor.

https://doi.org/10.1239/jap/1276784910 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1276784910


Preferential duplication graphs 579

A slightly weaker condition than that of a trapping subgraph in [11] arises if it is possible to
find an equilibrium y with support S such that

∑
k∈S

aikyk <
m − 1

m
,

or, equivalently,

Ni(y) < H(y), (2.1)

simultaneously for all i /∈ S. In this case there is a region of the family of fixed points where all
the eigenvalues are negative or 0, and the eigenspace of the zero eigenvalues is in the direction
where F is constant, but this does not apply throughout the family of fixed points, so the family
is not an attractor according to the standard definition. In what follows, we will extend the
definition of a trapping subgraph from that in [11] by including those where it is possible to
find such an equilibrium y.

For example, the simplest case where this arises is the graph with five vertices:

• •
•

• • 1

2

3

4

5

This graph contains a trapping subgraph according to the definition in [11], where S is the
triangle formed by vertices {2, 4, 5}. However, if S is the bipartite graph {1, 2} ∪ {3, 4} and
y2 + y4 < 1

2 , then the eigenvalues other than those within the family of fixed points are all
negative.

In the context of VRRWs, it was shown in [3] that any stable equilibrium y of the dynamical
system has support consisting of a complete m-partite graph S, and that the condition mentioned
above that (2.1) is satisfied simultaneously for all i /∈ S implies that there is positive probability
of VRRWs being trapped in a neighbourhood of y.

The results for VRRWs in [3] also show that stable equilibria of the dynamical system driven
by F̂ , which appears in the ‘true twins’ case, are localised on cliques of the original graph G0:
if S is a clique of G0 then any y with

∑
i∈S yi = 1 is a stable equilibrium. The condition that

N̂i(y) < Ĥ (y) simultaneously for all i /∈ S implies that S is not contained within a larger
clique.

2.3. Convergence to stable equilibria

In this section we show that in the ‘false twins’ case any trapping subgraph (in the weaker
sense described above) has a positive probability of trapping the process x(n). Throughout the
proofs, similar arguments can be applied in the ‘true twins’ case to show that any clique of G0
which is not contained within a larger clique can trap the process. The method, and the proofs
of Lemmas 2.2 and 2.3, are based on those used for VRRWs in [3].

The following definitions and notation follow [3]. Let S be a complete k-partite subgraph
of G0 with outer boundary B. Let S consist of elements of �n0−1 whose support is S, and let
S′ consist of elements of �n0−1 which are nonzero at all elements of S. Let L(U) be the event
that x(n) converges to a stable equilibrium x(∞) ∈ S ∩ U .
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Given q ∈ S, define the entropy function

Vq(y) =

⎧⎪⎨
⎪⎩

−
∑
i∈S

qi log

(
yi

qi

)
+ 2

∑
i /∈S

yi, y ∈ S′,

∞, otherwise.

We define two types of balls around q, one based on the entropy function,

BVq (r) = {y ∈ �n0−1 : Vq(y) < r},

and one based on the ∞-norm,

B∞(q, r) = {y ∈ �n0−1 : ‖y − q‖∞ < r}.

As stated in [3], there are increasing continuous functions u1,q and u2,q : R
+ → R

+ such that
u1,q(0) = 0 and u2,q(0) = 0, and, for all r > 0, B∞(q, u1,q(r)) ⊂ BVq (r) ⊂ B∞(q, u2,q(r)).

Let

ζ
(n+1)
i =

⎧⎪⎨
⎪⎩

ε
(n+1)
i

x
(n)
i

, i ∈ S, x
(n)
j �= 0 for all j ∈ S,

0, otherwise.

Still following [3], for q, z ∈ �n0−1, let

Iq(z) = −
∑
i∈S

qi(Ni(z) − H(z)) + 2
∑
i /∈S

zi(Ni(z) − H(z))

= −H(z)

(
−

∑
i∈S

qi

Fi(z)

zi

+ 2
∑
i /∈S

Fi(z)

)
.

In the following lemma, this quantity will be related to the increment in entropy relative to q

between x(n) and x(n+1).
The following lemma corresponds to Lemma 5 of [3], with a virtually identical proof.

Lemma 2.2. ([3, Lemma 5].) Let q ∈ S be a stable equilibrium of the dynamical system with
Ni(q) < H(q) for all i ∈ B. There exists ε such that if n is large enough and x(n) ∈ BVq (ε),
then

Vq(x(n+1))−Vq(x(n)) = Iq(x(n))

(n + n0 + 1)H(x(n))
−〈q, ζ (n+1)〉+2

∑
i /∈S

ε
(n+1)
i +O

(
1

(n + n0)2

)
,

and, furthermore,

Iq(x(n)) ≤ −
(

H(q) − H(x(n)) + C1

∑
i /∈S

x
(n)
i

)

for a positive constant C1.
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Proof. We have

Vq(x(n+1)) − Vq(x(n))

= −
∑
i∈S

qi

(
log

(
x

(n+1)
i

qi

)
− log

(
x

(n)
i

qi

))
+ 2

∑
i /∈S

(x
(n+1)
i − x

(n)
i )

= −
∑
i∈S

qi

x
(n+1)
i − x

(n)
i

x
(n)
i

+ 2
∑
i /∈S

(x
(n+1)
i − x

(n)
i ) + O

(
1

(n + n0)2

)

(by Taylor’s expansion)

= −
∑
i∈S

qi

Fi(x
(n))

(n + n0 + 1)x
(n)
i

−
∑
i∈S

qiζ
(n+1)
i + 2

∑
i /∈S

(
Fi(x

(n))

n + n0 + 1
+ ε

(n+1)
i

)

+ O

(
1

(n + n0)2

)

= Iq(x(n))

(n + n0 + 1)H(x(n))
− 〈q, ζ (n+1)〉 + 2

∑
i /∈S

ε
(n+1)
i + O

(
1

(n + n0)2

)
.

For the inequality for Iq(x(n)), observe that

∑
i∈S

qiNi(z) =
∑
i∈G

qiNi(z) =
∑
i∈G

ziNi(q) = H(q) +
∑
i∈B

zi(Ni(q) − H(q)),

by the definition of Ni and the fact that q is an equilibrium. So

Iq(z) = H(z) − H(q) +
∑
i∈B

zi(2(Ni(z) − H(z)) − (Ni(q) − H(q))),

so the inequality is satisfied if we choose ε small enough that if z ∈ BVq (ε), 2(Ni(z)−H(z))−
(Ni(q) − H(q)) < −C1 for all i /∈ S.

Lemma 2.3. ([3, Lemma 7].) Let q ∈ S be a stable equilibrium of the dynamical system with
Ni(q) < H(q) for all i ∈ B. For sufficiently small ε and sufficiently large n, if x(n) ∈ BVx (ε/2),

P(L(BVq (ε)) | Fn) ≥ 1 − exp(−ε2C2(n + n0)).

Proof. The proof follows that of Lemma 7 of [3].
Fix ε small enough that, for all x ∈ BVq (ε), xi ≥ α for all i ∈ S and some positive α. Define

martingales (Ak)k≥n, (Bk)k≥n, and (κk)k≥n by An = Bn = κn = 0, and, for k > n,

Ak =
k∑

j=n+1

ζ (j) 1{Vq(x(j−1))<ε},

Bk =
k∑

j=n+1

∑
i∈B

ε
(j)
i 1{Vq(x(j−1))<ε},

κk = −〈q, Ak〉 + 2Bk.
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By martingale convergence, all three converge almost surely and in L2, and as increments of κ

have moduli at most C3/(k + n0) for some constant C3,

E(exp(θ(κk − κk−1) | Fk−1)) ≤ exp

(
C2

3

2

θ2

(k + n0)2

)
.

As (κk)k≥n is a martingale, (exp(κk))k≥n is a submartingale, so Doob’s submartingale
inequality implies that

P
(

sup
k≥n

κk ≥ c

∣∣∣ Fn

)
≤ e−θc E(eθκ∞ | Fn) ≤ exp

(
−θc + θ2C2

3

2(n + n0)

)
,

so if θ = c(n + n0)/C2
3 then

P
(

sup
k≥n

κk ≥ c

∣∣∣ Fn

)
≤ exp

(
− c2

2C2
3

(n + n0)

)
.

Let ϒ be the event that supk≥n κk < ε/4; then

P(ϒ | Fn) ≥ 1 − exp(−ε2C2(n + n0))

for a new constant C2.
Lemma 2.2 implies that

Vq(x(k)) − Vq(x(n)) ≤ κk + ε

4

if n is large enough (as in [3], we use the fact that Lemma 4 of [3] implies that H(q) − H(x(n)) ≥
0 if x(n) ∈ BVq (ε) for small enough ε). Hence, on ϒ , Vq(x(k)) < ε for all k ≥ n.

Lemma 2.2 now implies that, as κk converges as k → ∞, lim infk→∞(−Iq(x(k)) = 0
(otherwise Vq(x(k)) → −∞, but Vq(x) > 0 for all x) and so

lim inf
k→∞

(
H(q) − H(x(k)) + C1

∑
i /∈S

x
(k)
i

)
= 0.

Hence, there exists a subsequence (jk){k≥0} with

lim
k→∞ H(x(jk)) = H(q)

and
lim

k→∞
∑
i /∈S

x
(jk)
i = 0.

As in [3], we identify an accumulation point r of (x(jk)){k≥0}, which will have H(r) = H(q)

and, hence (by the lemmas in [3]), be a stable equilibrium if ε is small enough.
Redefine the martingale (κk)k≥n in terms of r instead of q, and let jk be far enough along

this subsequence that Vr(x
(jk)) < ε/2 and supk≥jk

|κk − κj | < ε/4. Then Lemma 2.2 implies
that, for j ′ > j > jk ,

Vr(x
(j ′)) ≤ Vr(x

(j)) + sup
k>j

|κk − κj | + C4

j
.
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As lim infj→∞ Vr(x
(j)) = 0 and limj→∞(supk>j |κk − κj | + C4/j) = 0, we have

Vr(x
(n)) → lim

k→∞ Vr(x
(jk)) = 0

and so x(n) → r .

Lemma 2.4. Assume that, for a given vertex i, Ni(x
(n))/H(x(n)) converges to λi ∈ (0, ∞).

Then, for i ∈ B, c
(n)
i /nλi converges to a limit in (0, ∞) almost surely.

Proof. Let

Y
(n)
i =

n∑
k=1

1{Xk=i}
c
(k−1)
i

,

and let

M
(n)
i = Y

(n)
i −

n∑
k=1

Ni(x
(k−1))

H(x(k−1))(k + n0)
.

Then

E(Y
(n+1)
i − Y

(n)
i | Fn) = Ni(x

(n))

H(x(n))(n + n0)
,

so (M
(n)
i )n≥1 is a martingale.

Now,

E

( ∞∑
n=1

(M
(n)
i − M

(n−1)
i )2

)
= E

( ∞∑
n=1

(
1{Xn=i}
c
(n−1)
i

− Ni(x
(n−1))

H(x(n−1))(n + n0)

)2)

≤ E

( ∞∑
n=1

(
1{Xn=i}
c
(n−1)
i

)2

+
(

Ni(x
(n−1))

H(x(n−1))(n + n0)

)2)

≤ ∞,

so martingale convergence implies that

log c
(n)
i ≡ Y

(n)
i ≡ λi log n,

giving the result.

Let Rn,k be the range of the process (Xj )j∈N between times n and k, and let Rn,∞ be the
range of the process (Xj )j∈N for times j ≥ n.

We now combine our results.

Theorem 2.2. In the ‘false twins’case, let G0 contain a complete m-partite graph S with outer
boundary B such that there exists a stable equilibrium q of the dynamical system driven by F

with support S and with Ni(q) < H(q) for all i ∈ B. Then, with positive probability, for some
stable equilibrium r ∈ BVq (ε) with support S,

1. x(n) → r;

2. for i ∈ B, c
(n)
i /nNi(r)/H(r) converges to a limit in (0, ∞) almost surely;

3. for some (random) time n, Rn,∞ = S ∪ B.
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Furthermore, if there is a stable equilibrium r in the limit set L(x) of (x(n))n∈N with support S

and with Ni(r) < H(r) for all i ∈ B, then, almost surely, x(n) → r as n → ∞.

Proof. That convergence occurs with positive probability follows from Lemma 2.3, and the
behaviour of c

(n)
i for i ∈ B follows from Lemma 2.4.

For i /∈ S ∪B, for which Ni(r)/H(r) → 0 as n → ∞ on x(n) → r , the same argument as in
Lemma 2.4 shows that c(n)

i /nα → 0 for any α > 0, from which it follows that fi(x
(n))/nα → 0

as n → ∞ if α > maxj∈B(Nj (r)/H(r)) − 2, which implies that, almost surely, i is visited
only finitely many times.

The last part is also a consequence of Lemma 2.3.

Theorem 2.3. In the ‘true twins’ case, let G0 contain a clique S with outer boundary B such
that S is not contained in a larger clique, and let q be a stable equilibrium with support S.
Then, with positive probability, for some stable equilibrium r ∈ BVq (ε) with support S,

1. x(n) → r;

2. for i ∈ B, c
(n)
i /nN̂i (r)/Ĥ (r) converges to a limit in (0, ∞) almost surely;

3. for some (random) time n, Rn,∞ = S ∪ B.

Furthermore, if there is a stable equilibrium r in the limit set L(x) of (x(n))n∈N with support S,
then, almost surely, x(n) → r as n → ∞.

Proof. The proofs of Lemmas 2.2 and 2.3 apply in this case as well, with Ni and H replaced
by N̂i and Ĥ . For Lemma 2.4, if we define

Y
(n)
i =

n∑
k=1

1{Xk=i}
c
(k−1)
i

,

as before, then

E(Y
(n+1)
i − Y

(n)
i | Fn) = N̂i(x

(n))

Ĥ (x(n))(n + n0)
+ N̂i(x

(n)) − Ĥ (x(n))

[Ĥ (x(n))(n + n0) − 1]Ĥ (x(n))(n + n0)
,

so we redefine the martingale M
(n)
i by

M
(n)
i = Y

(n)
i −

n∑
k=1

(
Ni(x

(k−1))

H(x(k−1))(k + n0)
+ N̂i(x

(n)) − Ĥ (x(n))

[Ĥ (x(n))(n + n0) − 1]Ĥ (x(n))(n + n0)

)
.

The rest of the argument is the same as in the proof of Lemma 2.4.
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