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Abstract

Let G be a finite group of even order coprime to 3. If G admits a fixed-point-free automorphism
group isomorphic to the symmetric group on three letters, then we prove that G is soluble.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 D 05.

A number of authors (for example, [6], [7], [8]) have shown that finite groups
admitting certain fixed-point-free abelian automorphism groups are soluble.
In this paper we show that a finite group G which admits a fixed-point-free
automorphism group isomorphic to S3 (the symmetric group on 3 letters) is
soluble if \G\ is even and coprime to 3. A similar result for groups of odd
order coprime to 3 has been proved by B. Dolman [1].

The result proved here is a consequence of Glauberman's characterization
of simple groups of order coprime to 3 [3]. However the proof given in
this paper uses fairly elementary methods and (of course) relies on the fixed-
point-free automorphism group.

Throughout the paper we put

Z = (a, n\a = n = 1, nan = a~ ) = Sr

Our notation will in general follow Gorenstein's book [4]. In particular, if
P is a /7-group, J{P) = {A\A C P, A is abelian of maximal order). In
addition, Je{P) = (E\E c P, E is elementary abelian of maximal order).
The theorem proved in this paper is as follows:
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[2] Fixed-point-free automorphism group 385

THEOREM. Let G be a finite group ofeven order coprime to 3. Suppose G
admits a fixed-point-free group of automorphisms £ = 5 3 . Then G is soluble
and either

(i) G has a normal 2-complement, or
(ii) G = (T x O(G)) • CG(a), where T = O2(G) is a Sylow 2-subgroup of

G.

1. Preliminary results

PROPOSITION 1 (Bumside, [5, (10.15)]). If the finite group X admits a
fixed-point free automorphism of order 3 then X is nilpotent of class at most
2.

PROPOSITION 2 (Dolman [1]). Let G be a finite group, (\G\, 3) — 1. Sup-
pose G admits a fixed-point-free group of automorphisms Z = S3. Then
G contains a unique ^-invariant Sylow p-subgroup for all primes p that di-
vide \G\. Further, any "L-invariant p-subgroup is contained in this unique
Z-invariant Sylow p-subgroup.

PROOF. Let S? = {P\P is a cr-invariant Sylow p-subgroup of G} . By [4,
Theorem 6.2.2], S? ^ 0 and if P, Q e S? then P and Q are conjugate by
some element in CG(o). Clearly CG{a) has odd order as n is fixed-point-
free on CG(a). Thus | ^ | = \CG(a) : NG(P) n CG(o)\ is odd (P € S?). As
n permutes the subgroups of S?, n fixes a subgroup of S?.

Suppose P, Q are both ^-invariant Sylow p-subgroups of G such that
P = QX for some x e CG{a). Thus

x) n(Q)x''QX = P = n{P) = n(Qx) = n(Q)x = Qx

whence x2 e NG(Q). Thus x € NG(Q) as x e CG{a) which has odd order.
The last part now follows from the fact that the normalizer of a S-invariant
p-group is also ^-invariant.

If the finite group G has order coprime to 3, SL(2, p) cannot be involved
in G. Hence two consequences of Glauberman's Z/-theorem apply for
primes p > 5.

PROPOSITION 3 [2, Corollaries 2.1, 2.2]. Let p be an odd prime which
divides G, G a finite group of order coprime to 3. Let S be a Sylow p-
subgroup of G and N = NG(Z{J(S))). Then

(i) G/OP(G) = N/OP(N);
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(ii) two subsets of S are conjugate in G if and only if they are conjugate
in N.

The structure of soluble groups of odd order admitting a fixed-point-free
group of automorphisms isomorphic to 53 has been determined by E. Shult.

PROPOSITION 4 [10, Corollary 2.1]. Let H be a soluble group of order co-
prime to 6 which admits a fixed-point-free group of automorphisms isomorphic
to S3. Then H' is nilpotent.

The following result (also due to Shult), which plays a key role in the proof
of Proposition 4, is used (in this paper) to study soluble groups of even order
admitting Z fixed-point-free.

PROPOSITION 5 [9, Theorem 3.1]. Let p be an odd prime and H the semi-
direct product of the normal subgroup K, of order coprime to p, and (p)
of order p. Suppose H acts faithfully on the elementary abelian q-group
V, where (q, \H\) = 1. / / Cv(p) = 1 then [(p), K] = 1 unless K has a
non-abelian Sylow 2-subgroup and p is a Fermat prime.

PROPOSITION 6. Let 2 act fixed-point-free on the finite group G of order
coprime to 3. Then CG{a) is abelian of odd order and for any subgroup
X C CG(a) we have NG(X) = CG(X). In particular, if Cp(o) = P for any
Sylow p-subgroup P of G, then G has a normal p-complement.

PROOF. Since n acts fixed-point-free on CG{o), CG(a) is inverted by n
and is therefore abelian of odd order. Let N = [NG(X), a], so [N, a\ = N
as (\N\, 3) = 1.

By the Three Subgroups Lemma [4, Lemma 2.2.3], [N, a, X] c [X, N, a]
•[a,X,N]=l, whence JV C CG(X). As X C CG(a), CG(a) C CG{X) and
therefore NG(X) = (C(cr) n NG{X)) • N C CG(X) as required. The final
statement follows from Burnside's Transfer Theorem [4, Theorem 7.4.3].

PROPOSITION 7. Suppose X acts fixed-point free on the group H — V • U
where V is elementary abelian of order pn, p > 5, U is a ~L-in\ariant
four group and V = [V, U]. If (u) = Cu(n) then n inverts Cv(u), V =

Cv(u) x Cv{u") x Cv{u"2) and Cv(a) = {vv"va2\v e Cv(u)} . In particular,

\Cv(<j)\ = \Cv(u)\=pn/\

PROOF. AS [V, U] = V, CV(U) = 1 so the decomposition of V follows
from [4, Theorem 5.3.16]. The three factors have the same order as a per-
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mutes the 3 involutions in U. As [n, u] = 1, n normalizes Cv(u). Since
n inverts Cv{a), n must invert Cv{u) also.

2. Groups of even order

We begin by determining the structure of a soluble group of even order
coprime to 3 which admits X as a fixed-point-free automorphism group.

PROPOSITIONS. Let M be a soluble group ofeven order coprime to 3 which
has a fixed-point-free group of automorphisms X = S 3 . Then either

(i) M has a normal 2-complement, or
(u)ifT isaSylowl-subgroupof M, T<M and M = (TxO(M))-CM(a).

PROOF. Let S be a X-invariant Sylow 2-subgroup of O2, 2 (M) so that
M = NM(S) • O(M). Since a is fixed-point-free on S, CM(a) covers
NM(S)/CM(S)-S by Proposition 5. Proposition 6 and the fact that CM(S) C
O2, 2{M) [4, Theorem 5.3.3] yield that S = T.

Suppose now that (i) does not hold, so that M ^ TO{M). We must show
that T = O2(M). As X is fixed-point-free on M/O2(M) we may assume
O2(M) - 1 .

Let JC e CM{a) n NM{T) - O{M) with x" e O(M) for some odd prime
p. Suppose first that [x,Z(T)]=l. Note that [x, T] < T and [x, T] ± 1
because x <£ O(M) and CM(T) C T • O{M). Hence there exists a X-
invariant four group E c [x, T]nZ(T). As 02{M) — 1, there exists a prime
q with Q = Oq(M) and [E, Q] / 1. Let V = [Q/®(Q), E] # 1 (where
O(Q) is the Frattini subgroup of Q) . As [x, E] = 1 and Cv(x) D Cv(a),
it follows from Proposition 7 that [x, V] = 1. Now E < T so V is T-
invariant and V — [V, E] = [V, T]. The three subgroups lemma yields
[T,x,V]=\, which contradicts E C [T, x].

We may now suppose that [x, Z(T)] ^ 1. Let F C n i (Z(T)) be a
minimal X(x)-invariant subgroup with [F, x] = F. As O2(M) — 1 there
exists a prime q with [Q, F] ^ 1 where Q — Oq{M). Let V be a minimal
X(x)ir-invariant subgroup of [F, Q/<P(Q)] / 1.

If W is a minimal F-invariant subgroup of V then W has |(cr)||(x)| =
3\{x}\ conjugates under the action of (a) x (x) by [4, Theorem 3.4.3]. This
implies however that there exists w e Cv(a) - Cv(x), against the fact that
CG{(T) C CG(X) . This completes the proof of the proposition.

PROPOSITION 9. Suppose the dihedral group D = (n, x\xp = n2 - 1, nxn

= x~x, p an odd prime) acts on the 2-group T of order 2" with CT(x) = 1.
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For any chief factor V = S/R of TD contained in T we have Cv(n) =
Cs{n)R/R. Further, CT{n) = 2"/2 .

PROOF. By a result of Suzuki [4, page 328], any involution in nR inverts
an element of odd order in DR. As CT(x) = 1, it follows from Sylow's the-
orem that all involutions in nR are conjugate in DR and hence in (n, R).

Now let s g S - R with [n, s] e R. Then s~lns = nr for some r e R.
We know that 7r~7rr so there exists t € R with st € Cs(n). Thus CT(n)
covers Cv{n) as asserted.

The final conclusion follows by induction on the length of a chief series for
DT and the fact that \Cv{n)\ = 2k/2 if \V\ = 2k (note that V is elementary
a n d Cv(x) = l).

We conclude this section with a result on finite groups with Sylow 2-
subgroups of class at most 2.

PROPOSITION 10. Suppose the finite group G has Sylow 2-subgroup T of
class at most 2. If NG{Z{T)) = NG(T) = T • CG(T) then either

(i) G has a normal 2-complement, or
(ii) T contains a normal subgroup S with T/S cyclic and NG(S)/CG(S)S

has a non-trivial normal 2-complement. Further if (\G\, 3) = 1 then Je(T) C
S.

PROOF. Let Z = Z{T). We have that NG(Z) = NG(T) = Tx O(CG(T)).
If Z is weakly closed in T then Grun's theorem [4, Theorem 7.5.2] states
that NG{Z)' f]T = G'f)T. Thus T = T n (?{G) • G' and as T' C Z , the
Frattini argument yields NG(T') = CG(T'). It follows that (^{G) • G' has a
normal 2-complement by Burnside's transfer theorem, and (i) holds.

We now assume that Z is not weakly closed in T and choose S of
maximal order such that

Z ^Z-Z8 CS = TnTg for gzG-NG(T).

As (Z ,Zg)CS and T1 C Z we have S<(T, T8). Put N = NG(S) and
C = CG(S) • S and note that CG(S) - Z{S) x O{CG{T)) .If heN-NG(T)
then Z jtZ -Zh CSCTnTh . The maximality of \S\ forces TnTh = S.
We use the bar convention for N/C and we have that T is an abelian T.I.
Sylow 2-subgroup of iV. Now iV has one class of involutions [4, Theorem
9.1.4] and by Burnside's Lemma [4, Theorem 7.1.1] all involutions of T are
conjugate in Njj(T). As N-^(T) = T it follows that T is cyclic and N has
a non-trivial normal 2-complement. Finally, if (i) = Q,(T), 1 inverts an
element r of or odd order at least 5 (if 3 does not divide \N\). As Z c Z(S),
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= SxO(CG(T)) = C. Thus |ft1(Z(Sr)): C^nQ^ZiS))] > 4 and
UT)QS.

3. Proof of the theorem

For the rest of the paper, G will denote a finite group of even order co-
prime to 3, and Z a group of fixed-point-free automorphisms of G. Further
we let G be a minimal counterexample to the theorem. If G is soluble, the
theorem follows from Proposition 8. Thus G is a non-soluble group and
therefore all proper Z-invariant subgroups of G are soluble.

LEMMA 1. The group G is simple.

PROOF. If TV < G and N is Z-invariant, Z is fixed-point-free on G/N.
Thus as G is a minimal counterexample, so N — 1 and G — Gx x G2 x
• •• x Gk , the Gi non-abelian simple groups which are transitively permuted
by Z. If a normalizes Gt for some / , then C(a) n Gl ^ 1 by Proposition
1. As n inverts CG(a), n normalizes Gt so G = Gt as required. If a
permutes Gx, G2, G3 then C(a) n Gx x G2 x G3 = Gx is non-abelian. This
contradicts Proposition 6, and the lemma is proved.

NOTATION. T will denote the (unique) X-invariant Sylow 2-subgroup of
G and M = NG(T). Also Z = Q, (Z( r ) ) .

By Proposition 8, 71/ is a maximal Z-invariant subgroup of G and NG(Z)
— M also.

The theorem will be proved by determining the structure of M and using
this to deduce that CG(n) has a normal 2-complement.

LEMMA 2. (i) We have M = (T x O(M)) • CM{a) and T x O(M) ? M.
(ii) If H is a maximal 1-invariant subgroup of G, H ^ M, then H has

a normal 2-complement.
(in) If U is any 1,-invariant four group in T then CG(U) c M.

PROOF, (i) By Proposition 8, M = (T x O(M)) • CM(a). As T has class
at most 2 (Proposition 1), G is simple (Lemma 1) and M — NG(Je(T))
(M is maximal Z-invariant), Proposition 10 yields that M ^ T • CG(T) =
T x O(M). (Note that CG(T) = Z(T) x O(CG(T)) by Burnside's transfer
theorem. As T< M, O(M) = O(CG(T)) and so T • CG{T) = Tx O(M).)

(ii) This follows from Proposition 8.
(iii) Suppose that CG(U) c H ^ M where H is a maximal Z-invariant

subgroup of G. Let R = H n T D CT(U) so that H = R 0{H) (by
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(ii)). If U <£ Z , take A to be maximal abelian in R with UZ(T) C A.
Then 4̂ < T and in any case there exists A e SCN(T) with A < R. By a
result of Thompson [4, Theorem 8.5.2], 0(77) nAf C 0(Af) and so 77 r W =
Rx(O(M)nH). Since NG{Z) = M and CO{H){U) $ M we have U / Z and
also [Z, CO(//)(t/)] ^ 1. Hence there exists 1 ^ y € CG(cr) n [Z , CO{W)(C/)]
(by Proposition 1).

As CM(a) £ T x O(M) and CG(a) C CG(y) we have that CG(y) £ 77.
By definition, y <£ M so CG(y) <£ M either.

Let L be a maximal Z-invariant subgroup of G containing CG(y). As
[[/ , CM{a)] ± 1 and (7 c L we have 1 # [ I n T, ^ ( ( T ) ] c l n l . This
contradicts (ii); namely that L has a normal 2-complement. The lemma is
proved.

NOTATION. Let 3° = {p\p prime, p divides \M:Tx O(M)\}. For p e
&, P{ denotes the Z-invariant Sylow p-subgroup of M; Po = />

1nO(A/); P
denotes the Z-invariant Sylow p-subgroup of G. Note that & ^ 0 (Lemma
2(i)) and P, C P (Proposition 2).

LEMMA 3. Let p e ^ . Then
(i) P, = Po • Cp (a) is abelian;
(ii) Py is not a Sylow p-subgroup of G; that is, Pt / P;
(iii) ifP0?l then Z(P) is cyclic and Z{P)* C CP (CT) - Po.

PROOF, (i) If P[ / 1 then NG(P[) C M (as T c NG(P[) and [P{, T] ±
1). Thus P, = P, a Sylow p-subgroup of G. Now NM(Z(J(P)))' nP C
Po 7̂  P , so by Proposition 3(i) and Lemma 1, NG(Z(J(P))) = N <£ M. Since
[ m AT, P] = 1 (Lemma 2(ii)) and O{N)' C F(iV) (Proposition 4), we must
have P = Op(N) by Proposition 3(i). However I ^ P<(M, N) = G against
Lemma 1. Thus P, is abelian and Pt = POCP (a) by Proposition 8(ii).

(ii) If Po = 1, the assertion follows from Proposition 6. Suppose P{ = P,
and Po ^ 1. Using the same argument as in (i), we see that Proposition
3(i) forces P — O (H), where H is the maximal Z-invariant subgroup of
G containing NG(Z(J(P))). As CG(P0) c M we have that F(O(H)) C
M and therefore O{H)f\M<O{H) (Proposition 4). Since [T n H, P] =
1, a transfer theorem [4, Theorem 7.4.4] implies that [O(H), P] - P; in
particular O(H) g M . Now [0(#) n M, P] < (O(H), T) = G so that

Let PK = ^ ( T T ) and note that PK c Po C O(A/). By the Frattini argument
^c(/>«) = CG(/']l)-(iVc(r)niVc(P)r)) = Ca(P)l)-iV^(Plt). As P C C / J we
have, in the same way, that iVG(PJ - CG{Pn) • CM(Pn) • NM(P) = CG{Pn) •

= CG(Pn) • CM(P) = CG(Pn).
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F r o m above, [O(H) ,P] = P, whereas [CO(H)(a), P] C PQ , because CG(a)
isabelianand P — P0CM(a). We apply the bar convention to O{H)/CO,H)(P).
Therefore we have a Z-invariant subgroup X = Z? x Zq for some prime
q ^ p with [X, a] - X. There exists x e CO{H)(n) with jc e X and clearly
xE.NH(Pn). We complete the proof by showing that [x, Pn] ^ 1.

Let P be a minimal ZX-invariant subgroup of [P, X] ^ 1 . Suppose that

C/jpc) # 1. Then P = Cp(x)xCp{xa)xCp(x
a ) . Since n inverts an element

X[ in X and JCj is fixed-point-free on Cp(x), there exists y e C^(jc)nC(7r)

(clearly n normalizes Cp(x)). However 1 ^ yy"y" € C^(cr) and as n
inverts CG{a), yn = y'i , a contradiction. Thus Cp(x) = Cp(x) — 1. Since
[P, X] = P, [P, a] £ 1 so Cp{n) / 1. We have that [JC , /», n P] / 1 as
required.

(iii) Let P* =£ 1 be any Z-invariant subgroup of Po. As [T, P{] C NG(P*)
and 1 / [ r , PJ c r , Lemma 2(ii) forces ^ ( i 3 * ) C M . From P, ^
P it follows that Z(P)# Q Px - Po and as Z(P) is Z-invariant, Z{P) C
Cp{a). Suppose that Q,(Z(P)) D (a0, Z»o). Without loss we may assume
that [CT(a0),b0] ^ 1. Now CG(a0) D P so CG(a0) C H ^ M, H a
maximal Z-invariant subgroup of G. However 1 ^ [CT(a0), 60] C CT{a0)
means that H does not have a normal 2-complement. This contradiction
(of Lemma 2(ii)) completes the proof of (iii).

NOTATION. For p e & let Q,(Z(P)) = (a0) if Po ^ 1 and if Po = 1
take a0 to be an element of order p in Px.

LEMMA 4. For p GS° we have P{ — (a) x Po, for some element a e Cp {a)
with Q,((a» = (a0).

PROOF. Since Z(P)nPQ = 1 and P{ = POCP (a), it is enough to show that
PJP0 is cyclic. Suppose to the contrary; so we may choose b G Cp {a) - Po,

bp € Po and CT(b) ^ 1. The argument given in the proof of Lemma 3(iii)
may be repeated to prove that CT(a0) — 1 and CG{a) c CG(b) c M.
In particular, [a, P{] = [a, Po] ^ 1 by Proposition 6. Thus fyCP,) 2
(ao,bo, Y) with (^0) — Q{({b)) and Y a Z-invariant subgroup of type
(p,p) wi th [Y,a]=Y.

The following remark will be used in the proof:
(*) If P* is any Z-invariant subgroup of Po then NG(P*) C M; and if

d e CPi {a) - Z(P) then Cp(d) = Px.

(Recall 1 ? [ r , / 5 , ] c r . As (T, PJ c CG(/>*), Lemma 2(ii) yields
ATc(/>*) CM. If (d0) = n ,«rf» then for some JC G (rf0, a0), CT(x) ^ 1.
As 1 / [CT(x), a0] C Cr(jc), the same argument yields that CG(x) C M.
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Thus Cp{dQ) = Cp{x) = Pl=PnM as required.)
Let R = NpiPy) ^ P, and note that ft, (Z (/?)) = (a0). Therefore if y e

ft,(Z2(i?)), y has at most p conjugates in R. Since ft,(i*,) 2 (a0, b0, Y)
it follows from (*) that ft,(Z2(.R)) C P , . Now a is fixed-point-free on
R/Pl so |/? : P,| > /?2. We conclude that C(CT) n ft,(Z2(.R)) = (aQ) and
\R:Px\=p2. For x e / ? - / * , , | C ( x ) n ( r , a0, 60)| < p2 so P, isthe unique
abelian subgroup of R of its order. Hence P, char R so R = P and P,
char P .

Let / / be a maximal ^-invariant subgroup (of G) containing NG{Z{J{P))).
Since (a0) = ft,(Z(P)), ^ ( a , , ) covers H/O(H) by the Frattini argument.
Thus \H\ is odd as CT(a0) — 1. It now follows from Propositions 3(i) and
4 that P = 0 p ( # ) . Clearly Op,(H) Q M as CG{P0) c M (by (*)).

Suppose that / / = P(HC\M) = PNM(P}); that is, A^(P,) covers H/F(H)
^ 1. Let # divide | # : C//(/

>
1)j and let Q be the X-invariant Sylow q-

subgroup of H. We have () C N^P^ whence Q Q Qx, the Z-invariant
Sylow ^-subgroup of M. If Qx C O(M), 1 / [ ^ ( Q , ) , T] C T, so
NG(Qx) c M by Lemma 2(ii). It follows that C, < Af (by Propositions
3(i) and 4). However this forces [Q, P J = 1 which contradicts the choice
of q. We have shown that q e & and so (?, is abelian. If Q is the £-
invariant Sylow ^-subgroup of G, there exists c e C f i (a) with C0(c) ^ (?,
by Lemma 3 (if Qo = O(M) n Q, ^ 1) or Proposition' 7 (if Qo = 1).

As (a0) = ft,(Z(P)), ( a o ) < / / , so (a0) c Z(i/) since H/CH(a0) must
be cyclic and a0 € CG(cr) which is abelian. Now c € CC(CT) C CG(a0) = H
so c e g . Let P = Cp(c) and let L be a maximal Z-invariant subgroup
of G containing CG(c) (note that M±L±H). Since H = NG(Z{J(P))),
Proposition 3(ii) yields that (aQ) is weakly closed in P and hence in P . It
follows from CT(a0) = 1 and the Frattini argument that |L| is odd. Let
P2 = P n L, a Sylow p-subgroup of L. If P2 ^ P j , P2 is non-abelian (as
b e P2). However aQ € P2 C F(L) whence (a0) C Z(L), a contradiction.
Hence P2 c P, and P2 is abelian. Now (a0) weakly closed in P2 forces
NG(P2) CH = P(HnM). Thus P3 = NL(P2)'nP2 C PQ, as WL(P2) C / f n M .
By Proposition 4, P3 C F(L) so P3 < Op,(L)NL(P2) = L whence P3 = 1 by
(*). Burnsides'Transfer Theorem yields that L has a normal ^-complement.
Thus [P2, Q] = 1 so that P C P2 c P, (by the choice of ? ) . If Q2 is the
Z-invariant Sylow ^-subgroup of L, Q2 / Qx (by the choice of c) and so
there exists d e (Z?o, a0) with Cg (rf) ^ Q{.

Let F be a maximal Z-invariant subgroup of G containing CG(d) (note
that H ^ F ^ M). As Cp{d) = P, and P is non-abelian, arguing as above
we conclude that Px is a Sylow p-subgroup of F , P* — NF (P,)' n P( < F
and P ' c i ; . Since P c P , , 1 / [c, P J C P* which contradicts (*).
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We have proved that H ^ P(H n M). Use the bar convention for

H/CH(P{). Since CG{a) c H n M, there exists X = Zqx Zq, I-invariant

with [X, a] = ~X. Pu t_n = fi,(Z20P)) c P{. Recall that Ca{a) = (a0) and

1 ^ [Q, a] C Po. If [X, fi] ^ 1, o-_has a fixed point on [X, Q ] , which

contradicts Ca{a) = (a0). Thus [Q, X] = 1 so that Cp (X) ^ 1. Thus the

centralizer of the Z-invariant subgroup Cp (X) does not lie in M, which

contradicts (*). This completes the proof of the lemma.

LEMMA 5. / / p € &> then Cz(a) = 1. Further, if z e Z , then CM{z) =
T x O(M) = CG(z).

PROOF. Suppose Cz(a) / 1 and let U = (u, u") be a Z-invariant four
group in Cz(a) with u e Cz(n). Suppose that Po = O(M) n P, ^ 1.
Let L be a maximal S-invariant subgroup of G containing NG{PX), P2 a
Sylow p-subgroup of L and R = Np(P{). Using the same argument as

in the previous lemma we get that \R : Pl | = p2. As L has a normal 2-
complement we may assume that I,U normalizes R/Pl. By Proposition 7,
[U, R] C Pl, which contradicts Lemma 2(iii). Hence Po = 1 and Pl — (a).

Let A = Cp{a). As U acts on Np(A)/A and CP(C/) = (a), cr has a
nontrivial fixed point on Np(A)/A if Np(A) ^ / I . However a e CG{a) is
abelian, so we conclude that A = P; that is, (a) c Z(P).

Let JV = NG(Z(J(P))). We will show that W C Cc(fl). As N <£ M,
a maximal Z-invariant subgroup of G which contains N has a normal 2-
complement (Lemma 2(ii)). Thus Â  has a normal 2-complement, and so
N = O(N) • (T 0 N). Now [TnN, (a)] C TnZ(J(P)) = 1 and TniVC
C r (a) . A maximal Z-invariant subgroup of G containing CG{a) also has
a normal 2-complement. Hence CG{a) = O(CG(a)) • CT(a). The Frattini
argument yields that CT{a) C N. In particular U C T n N = CT(a).
By Proposition 4, O(N)' C F(O(N)) C ^ ( a ) , whence CO{N)(a) < O(N).
Also, Lemma 2(iii) yields CO(N){U) C MnO(N) C ^ ( a ) . Therefore, if
O(N)/CO(N)(a) ^ \, a has a non-trivial fixed point on O(N)/Co^(a).
This contradicts CG(<r) c Cc(a) and we have shown that N c CG(a). It
follows now from Proposition 3(ii) that (a) is weakly closed in P with
respect to G.

Since P ± (a) and u ~ MCT ~ M"' in iVc(/») - I , Cp{U) ^ (a). Now
CP(U) — P n Af = (a) so 7r inverts Cp,,Au) by Proposition 7. Hence
7t inverts ^ ( M ) (as a e C^er)) and in particular, Cp{u) is abelian. The
fact that (a) is weakly closed in Cp{u) means that Cp(u) is a Sylow p-
subgroup of CG(u). Further, NG({a}) = CG{a) as a must centralize the
cyclic group NG((a))/CG(a). The transfer theorem [4, Theorem 7.4.4] gives
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a ^ Cf{CG(u)) . Since T C CG(u), the Frattini argument yields CG{u) =

For any q e & - {p} , let (?, be the Z-invariant Sylow ^-subgroup of M,
Q{ = (d)xQ0, dG C¥{a), Qo = O(M)n(2, . Suppose that [d, CT(a)] ? 1.
As d e CG(a), this implies that the maximal Z-invariant subgroup of G
containing CG(a) does not have a normal 2-complement. Thus CT(d) =
CT(a) and d € CG(u). The same argument as above yields that CG(u) =
(F(CG(u))(d). As Po = 1, M contains an abelian Hall ^"-subgroup B c
CM(a), and M = (T x O(M)) • B. Also CG(u) has a normal subgroup Y
with Y n M = T x O{M) and CG(u) = Y B.

Since ATy(Z(r)) = NY(Je(T)) = NY(T) = I x O(Af), Proposition 10
yields that Y has a normal 2-complement. As (a) is a Sylow p-subgroup
of M, the Frattini argument yields that (a)T C NY(P) for some Sylow p-
subgroup P of O{Y). The weak closure of (a) in P forces [(a), P] — 1.
However 1 ^ [(a), T] must centralize P ^ I, a contradiction of Lemma
2(iii). We have proved that Cz(a) = 1.

It remains to show that CG{z) = CM(z) for z e Z. As CM(z) = T x
0{M) and NG(Je(T)) = M, Proposition 10 yields that CG(z) has a normal
2-complement K. We claim that \Z\ > 64. Indeed {a) x (a0) acts fixed-
point-free on Z . If |Z| = 16 then a0 has order 5. However n inverts
(a, a0) whereas GL(4, 2) = A% has no dihedral group of order 30. Thus
\Z\ > 64, and |Cz(7t)| > 8. If K ^ O(M) there exists a four group (t,u) c
Cz(n) with CK((t, u)) <£ O{M). As {f, u") acts on this group we may
assume that CK((t, f)) <£ O(M). However (t, f) is Z-invariant (recall
that t e Cz(n)). This contradicts Lemma 2(iii). Thus CG(z) = T x O(M)
and the lemma is proved.

LEMMA 6. The subgroup CG(n) has a normal 2-complement.

PROOF. We begin with two remarks. First, if 1 / I C Z ( F ) then
NG{X) C NG{T)CG(X) C M (by the Frattini argument and Lemma 5). Sec-
ond, if Tn — CT{n), we have that Tn is a Sylow 2-subgroup of C = CG(n).
(If not, Tn c T8 for some (^)-invariant Sylow 2-subgroup Tg of G with
Tg n C a Sylow 2-subgroup of C . As there exists u e TnnZ, O(M) =
O(M8) = 1. Further, all involutions in nT are conjugate in T and so,
n, n8 are conjugate in NG{Tg) = M8 . That is, there exists h e Mg with

n = ngh . Therefore r* h = C n rffA = C n T g and so Tn is (conjugate to) a
Sylow 2-subgroup of C.)

Now suppose that C does not have a normal 2-complement. We note that
NG(z(Tn)) = Af G (r j • c G (Z (7 ; ) ) c Ar G ( r j • r as C C ( Z ( T ; ) ) C r x o(M)
by Lemma 5. Therefore we have Nc(Tn) = Nc(Z(Tn)). It follows from
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Proposition 10 that either Nc{Tn) ^ Cc(Tn) • Tn or there exists Sn<Tn,
TJSn cyclic and Nc(Sn)/SnCc(Sn) has a non-trivial normal 2-complement.
Let S denote either Tn or Sn and let x be an element of odd order in
NC(S) - M. (We can choose x £ M as CM(n) = Tn x CO(M){n).)

As x normalizes S' c Z(T), the first remark (at the beginning of the
proof) yields that S is abelian. Since Z n S # 1, CG(5) = CT(S) x 0 ( M ) .
Let A = CT(S). As x normalizes O(CG(S)) = O(M), O{M) = 1 and
CG(S) = ADS.

We have x e NG(A) and therefore, arguing as for 5", we get that

(O2{NG{A)))' = \.

Thus A = O2(NG(A)) = CG(A). Set TV = NG(A) and apply the bar conven-
tion to N = A7-<4 • If N(!T) / C(T) there exists rf of order q, for some
q e 9° with af € CM{a) and [rf, 7 ] ^ 1. Since [d,T]n CT{d) = 1
(recall that Cz(d) = 1), (d, n) acting on [d, T] satisfies the assump-
tions of Proposition 9. Therefore C[d T](n) covers C[d T],[d T]nA(n) • As
this latter group is isomorphic to CQ -fJjt) and d has order at least 5,
C[d Tpi) C Tn is non-cyclic. This contradicts the fact that Tn/S is cyclic
(recall that S c A). We conclude that iV(T) = C(T) and so TV has a normal
2-complement K ^ \.

If r is not cyclic, let (7,, t2) be a four group in T. We may assume that
ft, Cr(72)] = ^ 0 ^ 1. Now [72, ^] = AQ C Z(_r) so [7,, AQ] = 1. Hence
[AT0, ^40] = 1, which contradicts Lemma 5. If T is cyclic, let (t) — Q{(T).
Clearly |[7, £2,(J4)]| > 4 as 7 inverts an element of odd order in K. This
forces Je{T) c A and N C M, a contradiction. The lemma is proved.

We are now in a position to complete the proof of the theorem. By Lemma
2(i), &> ^ 0 , so let p e 9°. By Proposition 6, Pn = Cp(n) ^ 1. As a is
fixed-point-free on Z (recall that P, = (a) x Po, Px a Sylow /^-subgroup
of M), there exists a four group (ul, u2) c Cz(n). Lemma 6 shows that
(w,, u2) normalizes a Sylow p-subgroup P of C — CG{n). Since CG{z) =
r x O(Af) for z e Z*, it follows that P C O(M). The same argument
as in the (second) remark at the beginning of the proof of Lemma 6 yields
that C n P, = C n Po is a Sylow />-subgroup of CM(?r). As K 0(Af),
C n Po is a Sylow p-subgroup of C . Thus [cr, P] = [a, Po] (if [a, />] ^ P,
then Pn <£ Px). If H is a maximal Z-invariant subgroup of G containing
NG([a,P]), then H D (T, P) so H ^ M (Lemma 3(ii)). As p e &> we
have 1 ^ [P,, T] c T. Thus / / does not have a normal 2-complement,
against Lemma 2(ii). This contradiction completes the proof of the theorem.
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