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Abstract 

Despite the rapid advancement of generative Large Language Models (LLMs), there is still limited 

understanding of their potential impacts on engineering design (ED). This study fills this gap by collecting the 

tasks LLMs can perform within ED, using a Natural Language Processing analysis of 15,355 ED research 

papers. The results lead to a framework of LLM tasks in design, classifying them for different functions of 

LLMs and ED phases. Our findings illuminate the opportunities and risks of using LLMs for design, offering 

a foundation for future research and application in this domain. 

Keywords: artificial intelligence (AI), design process, generative AI, large language model (LLM), 
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1. Introduction 
Recent advances in the dynamic field of artificial intelligence (AI) render generative large language 

models (LLMs) a critical element in advancing engineering design (ED) processes. Language models 

are probabilistic models that facilitate the processing of natural language via algorithms. The term 'large' 

in LLMs signifies the extensive number of parameters involved in their training, while 'generative' 

denotes their capability to produce text. These models, particularly notable for text generation, have 

found numerous applications, from design idea generation to enhancing communication in design teams. 

These systems impact a wide range of human activities, and their user base has skyrocketed, surpassing 

100 million as of January 2023 (Huang et al., 2023). ChatGPT, developed by OpenAI, exemplifies the 

rise of generative LLMs.  

Extensive research has been conducted on Generative Models in the field of ED, with a focus on 

generative and parametric techniques to enhance the design process since the 1990s. Unfortunately, only 

a few works focus on text generation and even fewer on the use of LLMs. As the field of engineering 

design is knowledge-intensive, with much of its knowledge encapsulated in text, this presents a gap in 

the literature. Research needs to establish a direct link between the potential uses of Generative LLMs 

and the specific needs and stages of the design process, as well as with the potential practical 

applications in ED. Furthermore, studying the behaviour of these models and their user interactions 

presents challenges. Their 'black box' nature, owing to the immense size (e.g., ChatGPT's 175 billion 

parameters), raises questions in the domain of explainable artificial intelligence. Additionally, the 

proprietary nature of model prompts and responses limits a comprehensive understanding of LLM 

behaviour.  

Considering these gaps and the challenging characteristics of LLMs, this paper aims to give a 

quantitative view of how generative LLMs can change the ED process. We conducted a study using a 

textual analysis of all the research papers published in journals identified as relevant for ED by the 
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Design Society, also adding the papers published in the two leading ED conferences (ICED and Design), 

resulting in 15,355 research papers. Then, we introduce a methodology that leverages Named Entity 

Recognition (NER), enabling us to map out the diverse uses of ChatGPT in ED. Starting from a series 

of actions that can be performed by ChatGPT (Barandoni, 2022), we identified these actions (e.g., create, 

assess, translate) in the scientific literature and extracted the object they are related to (e.g., idea, social 

media, environmental impact). We thus listed the potential activities that LLMs can impact in ED. 

Finally, we propose a framework of applications of LLMs in ED, focusing on the classes of actions 

performed by LLMs (generate, measure, and translate knowledge) and the phases of ED (Problem 

Definition, Conceptual Design, Embodiment Design and Detailed Design) (Chiarello et al., 2021). The 

results shed light on how generative LLMs shape the ED process and set the stage for future research 

challenges in the field. 

The paper is structured as follows. Section 2 introduces generative AI and LLMs within the context of 

ED, highlighting the nascent exploration of LLMs despite the established history of generative methods. 

Section 3 details the method, with the development of a rule-based Named Entity Recognition (NER) 

approach to identify LLM-applicable tasks in ED. Section 4 discusses the emerged LLMs' roles in ED. 

Section 5 concludes by discussing the implications of integrating LLMs in ED. 

2. Generative AI and LLMs in Design 
Generative AI tools have widely been studied in the context of Design (Thoring et al., 2023; 

Regenwetter et al., 2022). The development of generative and parametric methods to aid the design 

process began as early as the 1990s (Gunaratnam and Gero, 1994). More recently, Sarica et al. (2019) 

examined the use of text-mining methods for the symbolic representation of design knowledge and the 

automatic generation of ontologies from patent documents. Nobari et al. (2021) examined the use of 

generative adversarial networks for innovative bicycle designs. In digital manufacturing, Buonamici et 

al. (2020) described the use of generative AI in developing alternative, weight-efficient designs for a 

robot arm component. 

As it is evident from this brief picture of the state of the art, textual generation with LLMs is still 

understudied in the context of ED. The fundamental methodology underpinning LLMs, Natural 

Language Processing (NLP), is different. These techniques have been pivotal in evolving design 

processes, fundamentally transforming the way design knowledge is encoded, evaluated, and enhanced 

(Siddharth et al., 2022). NLP's key strengths lie in its ability to tokenise text data, enabling the execution 

of tasks such as similarity measurement, topic extraction, and sentiment analysis. This has opened 

avenues for knowledge reuse or elicitation of users and their needs (Chiarello et al., 2020). The 

versatility of NLP is evident as it supports various design process applications, from brainstorming to 

detailed prototyping (Han et al., 2022). Particularly relevant is the building of ontologies with NLP. 

Researchers have demonstrated how ontologies can be leveraged to reduce ambiguity, improve 

coherence in sentence structures, and ultimately aid in the retrieval of design knowledge that forms the 

foundation of artefacts in the design process (Ahmed & Štorga, 2009). It is interesting to notice that 

LLMs go in the opposite direction. If ontologies are top-down approaches to knowledge modelling for 

machines led by engineers and designers, machine learning (ML) models are bottom-up, with models 

emerging from a large amount of data. 

3. Method 

3.1. Data collection and text preprocessing 

We collected all the papers published in design-related journals indexed in Scopus. We took the list of 

the Design Society as a reference1, also adding the "International Conference on Engineering Design 

(ICED)" and "DESIGN conference". In total, 15,355 scientific articles were gathered, from which we 

 
1 List of Journals: Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AI EDAM); 

CoDesign - International Journal of CoCreation in Design and the Arts; Design Science Journal; Journal of Design 

Research; Journal of Engineering Design; Journal of Mechanical Design; Research in Engineering Design; The 

International Journal of Design Creativity and Innovation. 
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extracted the title, the abstract, and the keywords. We merged the abstract, title, and keywords of each 

article in a single piece of text. Then, we applied a standard preprocessing procedure on the texts 

(Puccetti et al., 2023): lowercasing (conversion of the text to lowercase), lemmatisation (reduction of 

each word to their dictionary form, called lemma), and Part-of-Speech (POS) Tagging (assignment of 

grammatical categories to each word). These steps standardise the forms tasks can assume in the text 

(lowercasing and lemmatisation) and add information to the text (POS Tagging), consequently 

increasing the probability of task matching. 

3.2. Named Entity Recognition (NER) 

In this work, we developed a rule-based Named Entity Recognition (NER) methodology. For a 

panoramic view of different approaches for NER in ED, see Puccetti et al. (2023). Rule-based NER 

systems function by establishing specific rules that incorporate regular patterns and linguistic structures 

to detect entities in text. In this paper, the named entities we want to extract are tasks that ChatGPT can 

perform. To develop our NER methodology for task extraction, we focused on the identification of the 

three components of tasks: verb + (object + characteristic).  

To collect the entity verb (i.e., actions that LLMs can perform), we utilised a dataset from Kaggle 

comprising 3.8 million tweets discussing LLMs (Barandoni et al., 2023). This dataset includes specific 

tasks performed by LLMs, as described by the users asking for these tasks. We began by isolating a 

collection of 503,000 tasks and extracted the primary verb from each task. We identified 13,531 unique 

verbs. We eliminated verbs that appeared in fewer than 0.01% of the tasks. Following this, we 

thoroughly reviewed the remaining 977 verbs, selecting those most pertinent to tasks within the ED 

domain. The verbs were screened against practical applications in engineering design. This involved the 

authors independently assessing whether a verb corresponds to an action that designers and engineers 

perform in real-world scenarios. After this personal revision, the authors find a consensus on the verbs 

that were not classified coherently by all the authors (2.3%). Consequently, we finalised a list of 37 

verbs: analyse, answer, assess, brainstorm, browse, chat, clarify, code, convert, create, define, describe, 

detect, draft, estimate, evaluate, explain, extract, generate, guess, interpret, know, list, measure, predict, 

process, read, recommend, respond, review, rewrite, solve, suggest, summarise, translate, understand, 

write. The verbs were considered both in English and American spelling (e.g., analyse and analyse). As 

can be seen, these verbs are information-processing verbs, which are essential for Design Theory 

(Johannesson & Perjons, 2014). 

To extract the entity object (related to the verb), we used the dependency trees (Honnibal et al., 2017). 

The dependency tree of a text represents its grammatical structure by illustrating the relationships 

between words of the sentences, showing connections such as subject, object, modifier, and other 

syntactic relationships through directed links or edges. To accurately identify tasks, we formulated a 

specific rule which follows the pattern: verb + object + characteristics, where the verb is one of the 37 

verbs previously identified; the object is the word that has the syntactic relation "object" to the verb 

similarly to the Subject-Action-Object (SAO) methodology (Shankar Bhattacharjee et al., 2016); and 

the characteristics, ranging from one to four words (articles, conjunctions, and prepositions excluded) 

are dependent on the object. The characteristics allow matching tasks where the object is a compound 

term. Examples of the extracted objects are "ideas", "patents", and "procedures". Examples of objects + 

characteristics are "user need", "design concept", and "online review".  

3.3. Tasks classification 

To guide towards a framework to explore where and how generative LLMs can impact the ED steps, 

we classified the tasks that LLMs can perform. A two-level classification was used. For both levels, the 

employed approach was qualitative and based on the expertise of the authors, who performed the tasks 

separately and then merged the results together. This involved the three authors independently assessing 

whether a verb belong to the class or not. In the first level, the tasks were grouped considering the verb. 

These verbs, as described before, are typical actions that LLMs can perform. After revising these verbs, 

we classified them into three classes, referring to the function that they can operate (revised from 

Johannesson & Perjons, 2014). Generate are tasks related to creating new knowledge; Evaluate 

comprises tasks of assessing, evaluating, and analysing knowledge; and Describe are tasks associated 
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with converting knowledge from one form to another to make it more accessible or applicable to a 

different audience, context or purpose. The second classification level is linked to the phases of ED, as 

defined by Chiarello et al. (2021): Problem Definition, Conceptual Design, Embodiment Design, and 

Detailed Design. The authors evaluated each entity against the definitions of the classes to determine 

the most appropriate classification. We measured an inter-rater reliability between our independent 

decisions by calculating Fleiss' Kappa. The achieved scores were 81% for verb classification and 88% 

for ED phase classification. 

4. Results 
Out of 15,355 scientific papers related to ED, 7,034 (45.08%) contained at least one task. Thus, roughly 

40% of our scientific works could be impacted by generative LLMs. In this section, we leverage the 

results of our analysis to speculate how. Our extraction process yielded a total of 12,130 tasks (9,588 

unique) and 6,140 unique objects, demonstrating the varied potential applications of LLMs in ED. 

Table 1 categorises ED papers according to the primary functions of generative LLMs: 'Generate', 

'Evaluate', and 'Describe'. This classification provides the number and percentage of papers aligned with 

each category, further detailed by the top five most frequent verbs associated with these functions. 

The 'Generate' category encompasses 17.88% of the papers, featuring verbs such as 'create', 'suggest', 

and 'answer' among the top five. Predominantly driven by the nature of the technology, the initial and 

most apparent application of generative LLMs is in supporting creativity. However, this may introduce 

a research bias, as ED encompasses a broader spectrum of tasks beyond generation, as seen from the 

following lines of the table.  

'Evaluate', the most represented class with 42.77% of papers, includes verbs like 'solve' and 'understand'. 

This indicates that design research predominantly focuses on evaluation tasks, which LLMs can 

significantly augment. This presents both opportunities and challenges for researchers and practitioners, 

especially considering the importance of critically reviewing and validating LLM outputs in these 

contexts, where inaccuracies (i.e., "hallucinations") could lead to more significant repercussions, 

particularly for less experienced designers. This risk is exacerbated by the typically well-formatted and 

persuasive nature of LLM outputs. 

Lastly, the 'Describe' tasks, accounting for 18.35% of papers, are almost on par with 'Generate'. This 

group includes verbs like 'define' and 'explain', highlighting LLMs' potential to transform how designers 

transfer knowledge within and across teams. Often undervalued in design practice (Moses et al., 2023), 

the ability to communicate effectively is vital, mainly as it influences the efficiency and success of 

transitioning between different design phases or in collaborations between marketing, design, and 

engineering teams. The observation that generative LLMs can impact this category of activity opens 

new avenues for guiding design practices in this direction, even if an over-reliance on automation might 

stifle creativity and reduce the opportunity for human designers to engage deeply with the problem-

solving process. 

Table 1. Distribution of ED papers by classes and specific verbs (top 5) that LLMs can perform, 
alongside the percentage of scientific papers discussing them 

LLM Verb Class N. of Papers (%) LLM Verbs (% of Papers)  

Generate 2,745 (17.88) generate (7.67); create (7.30); suggest (1.71); answer 

(0.94); list (0.08) 

Evaluate 6,567 (42.77) evaluate (6.72); solve (6.18); understand (5.77); assess 

(4.46); analyse (4.17) 

Describe 2,818 (18.35) describe (9.71); define (3.94); explain (1.77); clarify 

(0.74); translate (0.59) 

 

Table 2 shifts the focus to the four phases of ED: for each one, it shows the three LLMs Verbs Classes 

and the top 2 to 5 corresponding objects of these verbs, alongside the percentage of scientific papers 

discussing the objects. The table offers insights into the potential roles of LLMs in each ED phase, which 

are discussed in the following sections, where the authors critically reviewed the results and discussed 

them in relation to previous relevant literature in the context of ED. 
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Table 2. Distribution of Language Model Verbs Class in Engineering Design Phases and the top 2 
to 5 corresponding objects of these verbs, alongside the percentage of scientific papers  

ED Phase LLM Verb Class Object (% of Papers) 

1- Problem 

Definition 

Generate research question (0.22); need (0.08); user insight (0.07); 

questionnaire (0.03); persona (0.02) 

Evaluate customer profile (0.05); ill structure problem (0.03); customer 

preference (0.05); market (0.02); analysis technique (0.01); 

social media (0.01) 

Describe case study (0.05); experience (0.05); narrative text (0.03) 

2-Conceptual 

design 

Generate creative idea (0.15); new design (0.09); printable variant (0.08); 

design concept (0.06) 

Evaluate need (0.14); social/environmental impact (0.14); idea (0.07); 

function (0.07); novelty (0.05); fixation effect (0.05) 

Describe concept (0.14); problem (0.08); need (0.05); design 

specification (0.04); design concept (0.03) 

3-Embodiment 

design 

Generate solution  (0.18); geometry model (0.08); alternative solution  

(0.05); functional model (0.05); functional part (0.02) 

Evaluate performance (0.59); effectiveness (0.47); optimization problem 

(0.24); reliability (0.12); engineering problem (0.11) 

Describe function (0.1); requirement (0.07); model knowledge (0.01); 

simulation model (0.01) 

4-Detailed 

design 

Generate design solution (0.04); design image (0.03); feasible solution  

(0.02); patent (0.02); optimal solution (0.02) 

Evaluate cost (0.14); isomorphism (0.11); configuration problem (0.05); 

assembly variation (0.03); requirement change (0.03); prototype 

(0.02) 

Describe procedure (0.07); prototype system (0.03) 

4.1. Problem definition 

Generate: LLMs may facilitate a systematic approach to defining research questions by leveraging 

extensive datasets and historical examples (including papers, reports, and policy documents), also 

mitigating human biases, which are crucial for objective question formulation (Agyemang et al., 2023). 

However, it's advisable to complement this with qualitative, expert-driven searches to counteract biases 

in the uploaded documents. Also, LLMs may enable rapid exploration of user needs and insights, 

analysing users’ language more deeply than legacy NLP systems in the ED context (Chiarello et al., 

2023). It will be interesting to see if LLMs can identify latent needs from large textual datasets (Yuan 

et al., 2023). LLMs may resolve language issues and handle datasets in multiple languages, considering 

users with different backgrounds simultaneously. However, there is a risk that ideas generated may only 

sometimes be practically feasible and might inadvertently steer designers towards standard solutions, 

reducing true innovation. 

Furthermore, LMMs may support the creation of well-designed questionnaires, a crucial task in 

accurately capturing the voice of the customer (Mugge et al., 2023). LLMs can analyse existing data to 

suggest pertinent areas of inquiry and identify patterns in user responses that humans might overlook. 

Moreover, LLMs can tailor questionnaires to different user segments, ensuring comprehensive and 

representative data collection. Finally, LLMs can analyse large volumes of user data to identify common 

characteristics, behaviours, and preferences, aiding in segmenting the user base into distinct personas. 

They may assist in updating personas over time, keeping them relevant as user needs and market 

dynamics evolve. By providing insights potentially missed in manual analysis, LLMs enable the creation 

of more accurate and representative personas (Stevenson & Mattson,2019). The challenge lies in 

ensuring that the generated content remains relevant and closely aligned with the real-world context of 

the users' needs. 

Evaluate: Evaluating customer profiles is crucial during the problem definition phase. LLMs can 

enhance the quality of these analyses by scanning benchmarks of older profiles, assisting designers in 
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creating new ones more efficiently and effectively. This process can be further enriched by evaluating 

social media content (Chiarello et al., 2020). LLMs facilitate code-free analysis of this data source, 

empowering designers without coding experience. However, a potential drawback is the overemphasis 

on quantitative data, which overshadows important qualitative aspects in the problem definition. The 

data show that LLMs may support assessing the structure of ill-structured problems. It is intriguing to 

consider whether generative LLMs can aid in this phase by helping designers assess the quality of 

problem definitions and guiding them on the time allocation for this phase. Finally, LLMs' support in 

evaluating customer preferences and the market can lead to a deeper, data-driven understanding of the 

problem space, aiding in assessing the value of delving into specific design problems. Here, too, the 

collaboration between designers, engineers, and machines is critical in assessing this space. It is essential 

to determine what measures to use and how to integrate the human perspective in evaluating customer 

preferences, considering the qualitative aspects of the problem. 

Describe: Effective communication of case studies and design experiences is crucial for knowledge 

transfer, allowing non-technical stakeholders to learn from real-world applications, successes, and 

failures, aiding in understanding the complexities of design problems and applying theoretical concepts 

in practice. However, the clear and comprehensive communication of these experiences is often 

challenging due to their intricacies and contextual specifics. LLMs can assist in synthesising vast data 

from case studies into structured and understandable formats. Despite these benefits, there is a risk that 

LLMs might need to be more concise or more context-specific subtleties, potentially leading to a loss 

of critical insights. LLMS can also be helpful in translating technical texts into narrative texts. 

Cummings & Teal (2023) highlight the effectiveness of design fiction and dialogic methodologies, 

especially in the initial phases of design. However, there is a risk that the subtleties and nuances of the 

design problem may be overlooked if descriptive tasks rely solely on LLMS, underscoring the 

importance of adequate human interpretation and judgment. 

4.2. Conceptual Design 

Generate: Augmenting the creative idea process with a vast array of possibilities, LLMS can lead to a 

proliferation of new design alternatives. However, the generation of these elements must be carefully 

curated to ensure their relevance and feasibility. Excessive generation in the conceptual design phase 

can result in too many choices, potentially causing analysis paralysis in the design process. Also, Data 

indicates that LLMS can aid in generating printable variants of products. Investigating how LLMS can 

optimise design parameters for 3D printing and additive manufacturing processes is intriguing. These 

models have the potential to enhance both the efficiency and quality of final products by analysing 

extensive datasets to identify optimal design configurations, material choices, and printing strategies. 

This approach can significantly reduce trial-and-error during the prototyping phase. 

Evaluate: Needs evaluation is a critical step in ED, particularly in understanding customer profiles more 

deeply. If the problem definition phase is successful, designers may find themselves evaluating various 

needs. LLMS can provide a holistic view of needs evaluation. By inputting needs and evaluation criteria 

into LLMS, designers can get an initial assessment of these needs, which they can then refine. However, 

a potential drawback of using LLMS for evaluation is their current limitations in understanding complex 

interdependencies and long-term consequences, areas where human experts typically excel. Also, LLMs 

can assist in evaluating the novelty of an idea (Lee et al., 2023). LLMS, with their access to large textual 

datasets, can streamline this process. Future research could compare legacy machine learning systems 

against LLMS to aid in this phase. LLMS are likely to be more accurate and require less training data, 

enabling one-shot learning. This could lower the cost of using these systems in ED, democratising the 

tools. LLMS might also help overcome fixation effects by providing objective critiques to challenge 

existing ideas. Also, LLMs may assist in analysing the potential social and environmental impacts of 

design concepts, thereby aligning them with sustainability goals. This capability could enhance the 

sustainability performance of designers, shifting their focus from merely the technical aspects of a 

solution to encompassing the entire design process (Stevenson et al., 2023). LLMs can be fine-tuned 

using sustainability frameworks, guidelines, or even sustainability reports from other companies, aiding 

in the evaluation of the sustainability impact of proposed solutions. Finally, LLMS can assist by ensuring 

the proper form and content of functions and functional analysis. Here, experts are crucial in providing 
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guidelines to LLMS for appropriate function assessment, and here, a fine-tuning of the LLMs can be 

fundamental. Past literature on functional design will be important in guiding the correct use of LLMS 

(She et al., 2022), which can execute measurements well but could be more adept at designing metrics, 

especially when dealing with complex concepts like engineering functions. 

Describe: In the conceptual design phase, accurately describing the design concept and identifying the 

design problem or need is crucial. As this phase often involves collaboration with other functions, such 

as marketing and engineering, effective communication of outputs is essential, a step that is frequently 

overlooked by technical personnel. Generative LLMs can assist in tailoring the description of design 

concepts, problems, and needs to suit different audiences. Also, LLMs may ensure a comprehensive and 

clear presentation of design specifications, adhering to regulatory standards. They can analyse vast 

repositories of design documents, learning from existing examples to generate appropriate 

specifications. Leveraging their extensive training on diverse datasets, LLMs can suggest specifications 

that align with industry standards and best practices, ensuring both innovation and compliance. 

Furthermore, LLMs' ability to process and interpret natural language enables them to refine complex 

technical jargon into more accessible language. Anyway, the nuances of context-specific requirements, 

unique innovation elements, and the designer's intent might need to be fully captured by a model, risking 

the loss of nuanced understanding crucial for high-quality design specifications. 

4.3. Embodiment Design 

Generate: LLMs can enable rapid exploration of multiple embodiment design solutions. They could 

play a crucial role in optimising design parameters through the analysis of patterns and correlations 

within extensive datasets, aligning designs with both technical specifications and practical constraints. 

Again, it is essential to manage the generation of solutions to avoid an excess of non-viable options. 

Also, integrating language models with 3D models could enable the generation of geometry models. A 

critical challenge in this integration is aligning generated models with the practical constraints of 

materials and manufacturing processes, which an LLM may need to correctly model (Nie et al., 2021). 

Finally, the impact of LLMs in supporting functional model creation is noteworthy, as functional 

modelling is a language-intensive task. Fine-tuning LLMs specifically for this task, with examples of 

previous functional models, could enhance their performance.  

Evaluate: The results show that the evaluation tasks show a more significant opportunity for application 

in the Embodiment design phase with respect to generating and describing related tasks. Proper 

judgment of design performance in this phase is crucial (Andersson, 2020). LLMs can scour existing 

scientific literature or patents to suggest existing similar tests, potentially increasing the quality of the 

evaluation. LLMs may also contribute significantly to risk assessment by identifying potential failure 

points through the analysis of historical data and similar projects. This enables the development of pre-

emptive mitigation strategies, enhancing the reliability and safety of the design. Their proficiency in 

analysing extensive datasets allows them to identify underlying patterns and trends indicative of 

potential reliability issues or areas for improvement. The predictive modelling capabilities of LLMs 

provide foresight into potential design failures, helping designers simulate a range of operational 

conditions and stress scenarios to evaluate the resilience of designs under various what-if scenarios.  

Describe: Functional analysis is a unique language spoken by a subset of designers and has been 

extensively studied in the context of AI-aided design (Fantoni et al., 2013). LLMs can assist in 

translating functional models into natural language and provide different levels of abstraction for 

functional modelling, depending on how the model should be used. For example, experiments can be 

made to test if a low-level functional model, which incorporates many technical details of how the design 

systems work, can be synthesised in a more abstract functional model, which can be more beneficial for 

communication with non-technical figures in the company. However, there is a risk of losing some 

information during translation, which is why designers should view this as a support tool for 

communication rather than a replacement for human expertise. Similarly, the translation of users' needs 

into technical requirements, a critical step of the ED phase, can be helped by LLMs. Design methods 

like Quality Function Deployment (QFD) can be improved and utilised more effectively by simplifying 

the comparison of large datasets of technical/engineering design requirements (Franceschini & Rossetto, 
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1995). LLMs can also help designers write more readable requirements, contributing to requirement 

elicitation (Cheligeer et al., 2022). 

4.4. Detailed Design 

Generate: Using LLMs to generate feasible and optimal final design solutions, building on the analysis 

and work done in previous phases, is an intriguing concept, as old as the use of AI in design (Schön, 

1992). While we are still far from achieving this, LLMs can assist designers in considering all the 

documentation created in previous phases to help generate preliminary design solution alternatives 

within certain constraints. However, this approach might limit the designers' creativity in developing 

out-of-the-box solutions. Similarly, the use of multimodal systems that manage both text and design 

images can streamline the creation of figures from existing document repositories. This can also aid 

designers in rapidly searching databases of existing solutions by visualising the design, a known method 

for quickly searching large information sets. As stated in the introduction, the literature in this area is 

more extensive than that focused on language generation and LLMs. It will be intriguing to see how 

multimodal systems will be studied, leveraging existing literature on the topic (Han et al., 2018). Finally, 

with the advancement of LLMs, the topic of AI-aided patent generation may attract interest from both 

theory and practice. If an invention is worth patenting, the vast amount of knowledge generated in the 

previous design phases can be utilised to feed LLMs and support the generation of a patent. However, 

there are many risks, ranging from designers' decreased ability to read and write patents to intellectual 

property damages. 

Evaluate: The results indicate that in the Detailed Design phase, the focus on evaluation is higher than 

generation, as supported by previous research (Shafqat et al., 2019). This opens more possibilities for 

ED research and practice in using LLMs for Evaluating and not just for generating knowledge. 

Automating these tasks with LLMs could optimise design decisions against design costs and manage 

the large quantity of knowledge previously developed. However, if not carefully balanced, there is a 

risk of overemphasising cost at the expense of other critical factors like user experience or long-term 

sustainability. Also, in the context of configuration problems (Brown & Hwang, 1993), LLMs cannot 

still manage spatial problems, requiring integration with other tools. Multimodal generative systems, 

mixing text and 3D models, can be game changers in this context. This integration may allow for the 

consideration of previous design information in solving configuration problems. A similar discourse 

applies to assembly variation. In this final phase, LLMs may also quickly analyse and categorise 

incoming requirements, assess their impact on the current project scope, and suggest necessary 

adjustments. They can identify inconsistencies and potential conflicts between new and existing 

requirements. Additionally, LLMs can automate the documentation process, maintaining a clear and up-

to-date record of changes. However, LLMs may need a more nuanced understanding of context-specific 

details, leading to potential oversights in complex or specialised projects. By analysing design 

specifications, customer feedback, and market trends, LLMs can also generate insightful suggestions 

for evaluating prototype development. However, LLMs may need to capture the complexities and 

physical constraints inherent in material and design choices, leading to impractical suggestions. 

Moreover, the lack of tactile and real-world testing experience means that LLMs can only partially 

replicate the nuanced understanding that comes from physical prototyping. 

Describe: LLMs can synthesise and articulate complex design concepts into clear, accessible language. 

This skill is crucial in bridging the gap between technical experts and diverse stakeholders in sharing 

design procedures, ensuring a coherent and consistent understanding across multidisciplinary teams, 

particularly in projects with extensive and intricate design processes. However, a primary concern with 

using LLMs is the potential for data privacy and security issues when handling sensitive design 

information as procedures. This challenge highlights the need for robust security measures and privacy 

protocols when integrating LLMs into the design process to protect confidential and proprietary 

information. 

5. Conclusions 
The integration of LLMs in engineering design tasks holds the potential to significantly enhance human 

capabilities by automating various aspects such as generation, evaluation, and description of design-
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related knowledge. This brings practical benefits like increased efficiency, a more comprehensive 

exploration of options, and improved decision-making. Theoretically, this integration could lead to a 

paradigm shift in the understanding and execution of design tasks. However, it is essential to ensure that 

this automation supports rather than replaces human expertise, maintaining a balance between 

computational efficiency and human-centric design values. 

This paper serves as a roadmap for future research to investigate the impact of LLMs on ED. It 

emphasises that ED scholars should not only focus on the generative capacity of LLMs but also explore 

their evaluative and descriptive abilities. Moreover, the paper calls for measuring the performance of 

these systems in the specified application domains and studying collaboration between designers and 

LLMs in all the design phases. By doing so, we will guide designers in effectively utilising and studying 

this powerful technology to create better products and to guide future design practices. 

Acknowledgement 

This work was partly funded by the DETAILLs Project (DEsign Tools of Artificial Intelligence in Sustainability 

Living LabS) - European Union. Erasmus + KA2 - Cooperation partnership in higher education (Project Number: 

2023-1-IT02-KA220-HED-000158755). 

References 

Agyemang, M., Andreae, D. A., & McComb, C. (2023), “Uncovering potential bias in engineering design 

research”, Design Science, 9. https://doi.org/10.1017/dsj.2023.17 

Ahmed, S., & Štorga, M. (2009). Merged ontology for engineering design: Contrasting empirical and theoretical 

approaches to develop engineering ontologies. AI EDAM, 23(4), 391-407. 

https://doi.org/10.1017/S0890060409000146 

Andersson, T. (2020), “Design judgement processes in mature Swedish manufacturing companies”, Journal of 

Design Research, Vol. 18 No. 5-6, pp. 410-433. https://doi.org/10.1504/JDR.2020.118668 

Barandoni, S., Giordano, V., Fantoni, G., & Chiarello, F. (2023), “The ChatGPT Tweets Dataset [Data set]”, 

Kaggle, https://doi.org/10.34740/KAGGLE/DSV/6241027 

Buonamici, F., Carfagni, M., Furferi, R., Volpe, Y., Governi, L., 2020, “Generative Design: An Explorative 

Study”, Computer-Aided Design and Applications, Vol. 18, pp. 144–155. 

https://doi.org/10.14733/cadaps.2021.144-155 

Brown, D. R., & Hwang, K. Y. (1993), “Solving fixed configuration problems with genetic search”, Research in 

Engineering Design, Vol. 5, pp. 80-87. https://doi.org/10.1007/BF02032577 

Cheligeer, C., Huang, J., Wu, G., Bhuiyan, N., Xu, Y., & Zeng, Y. (2022), “Machine learning in requirements 

elicitation: A literature review”, AI EDAM, Vol. 36. https://doi.org/10.1017/S0890060422000166 

Chiarello, F., Belingheri, P., & Fantoni, G. (2021), “Data science for engineering design: State of the art and future 

directions”, Computers in Industry, Vol. 129, 103447. https://doi.org/10.1016/j.compind.2021.103447 

Chiarello, F., Bonaccorsi, A., & Fantoni, G. (2020), “Technical sentiment analysis, Measuring advantages and 

drawbacks of new products using social media”, Computers in Industry, Vol. 123, 103299. 

https://doi.org/10.1016/j.compind.2020.103299 

Cummings, M., & Teal, G. (2023), “Healing fabulations: a dialogic methodology for digital codesign in health 

research”, CoDesign, Vol. 19 No. 1, pp. 74-90, https://doi.org/10.1080/15710882.2022.2157837 

Fantoni, G., Apreda, R., Dell’Orletta, Felice., & Monge, Maurizio (2013), “Automatic extraction of function–

behaviour–state information from patents”, Advanced Engineering Informatics, Vol. 27 No. 3, pp. 317-334. 

https://doi.org/10.1016/j.aei.2013.04.004 

Franceschini, F., & Rossetto, S. (1995), “QFD: the problem of comparing technical/engineering design 

requirements”, Research in Engineering design, Vol. 7, pp. 270-278. https://doi.org/10.1007/BF01580463 

Gunaratnam, D. J., & Gero, J. S. (1994), “Effect of representation on the performance of neural networks in 

structural engineering applications”. Computer‐Aided Civil and Infrastructure Engineering, Vol. 9 No. 2, pp. 

97-108. 

Han, J., Sarica, S., Shi, F., & Luo, J. (2022). Semantic networks for engineering design: state of the art and future 

directions. Journal of Mechanical Design, 144(2), 020802. https://doi.org/10.1115/1.4052148. 

Han, J., Shi, F., Chen, L., & Childs, P. R. (2018), “The Combinator–a computer-based tool for creative idea 

generation based on a simulation approach”, Design Science, Vol. 4, No. 11. 

https://doi.org/10.1017/dsj.2018.7 

Honnibal, M., and Montani, I. (2017), “spaCy 2: Natural language understanding with Bloom embeddings, 

convolutional neural networks and incremental parsing”. 

https://doi.org/10.1017/pds.2024.198 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.198


 
1968 ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 

Huang, F., Kwak, H., An, J., (2023), “Is ChatGPT Better than Human Annotators? Potential and Limitations of 

ChatGPT in Explaining Implicit Hate Speech”, arXiv Preprint ArXiv:2302.07736. 

https://doi.org/10.48550/arXiv.2302.07736 

Hwang, A. H. C. (2022, April), “Too late to be creative? AI-empowered tools in creative processes”, CHI 

Conference on Human Factors in Computing Systems Extended Abstracts, pp. 1-9. 

https://doi.org/10.1145/3491101.3503549 

Johannesson, P., & Perjons, E. (2014), “An introduction to design science”, Vol. 10, pp. 978-3, Cham: Springer. 

https://doi.org/10.1007/978-3-319-10632-8 

Kicinger, R., Arciszewski, T., & DeJong, K. (2005), “Evolutionary design of steel structures in tall 

buildings”, Journal of Computing in Civil Engineering, Vol. 19 No. 3, pp. 223-238. 

Lee, J. W., Daly, S. R., Vadakumcherry, V., & Rodrigues, D. (2023), “Idea generation, development and selection: 

a study of mechanical engineering students’ natural approaches and the impact of hybrid learning blocks”, 

Design Science, Vol. 9. https://doi.org/10.1017/dsj.2023.26 

Moses, N. D., Wojciechowski, L. R., Daly, S. R., & Sienko, K. H. (2023), “Front-end design prototyping strategies 

during remote stakeholder engagement”, Design Science, Vol. 9, e24. https://doi.org/10.1017/dsj.2023.23 

Mugge, R., Schoormans, J. P., & Schifferstein, H. N. (2009), “Emotional bonding with personalised products”, 

Journal of Engineering Design, Vol. 20 No. 5, pp. 467-476. https://doi.org/10.1080/09544820802698550 

Nie, Z., Lin, T., Jiang, H., & Kara, L. B. (2021), “Topologygan: Topology optimisation using generative 

adversarial networks based on physical fields over the initial domain”, Journal of Mechanical Design, Vol. 

143 No. 3, 031715. https://doi.org/10.1115/1.4049533 

Nobari, A. H., Rashad, M. F., & Ahmed, F. (2021), “Creativegan: Editing generative adversarial networks for 

creative design synthesis”. arXiv preprint arXiv:2103.06242. 

Puccetti, G., Giordano, V., Spada, I., Chiarello, F., & Fantoni, G. (2023), “Technology identification from patent 

texts: A novel named entity recognition method”, Technological Forecasting and Social Change, Vol. 186, 

122160. https://doi.org/10.1016/j.techfore.2022.122160 

Regenwetter, L., Nobari, A. H., & Ahmed, F. (2022), “Deep generative models in engineering design: A review”, 

Journal of Mechanical Design, Vol. 144 No. 7, 071704. https://doi.org/10.1115/1.4053859 

Sarica, S., Song, B., Low, E., Luo, J., (2019), “Engineering knowledge graph for keyword discovery in patent 

search”, Proceedings of the International Conference on Engineering Design, Cambridge University Press, 

pp. 2249–2258. https://doi.org/10.1017/dsi.2019.231 

Shafqat, A., Oehmen, J., Welo, T., & Willumsen, P. (2019), “The cost of learning from failures and mistakes in 

new product development projects: An exploratory framework”, Proceedings of the International Conference 

on Engineering Design, ICED, Vol. 1, pp. 1791-1800. https://doi.org/10.1017/dsi.2019.171 

Shankar Bhattacharjee, K., Kumar Singh, H., & Ray, T. (2016), “Multi-objective optimisation with multiple 

spatially distributed surrogates”, Journal of Mechanical Design, Vol. 138 No. 9, 091401. 

https://doi.org/10.1115/1.4034035 

She, J., Belanger, E., Bartels, C., & Reeling, H. (2022), “Improve Syntax Correctness and Breadth of Design Space 

Exploration in Functional Analysis”, Journal of Mechanical Design, Vol. 144 No. 11, 

https://doi.org/10.1115/1.4054875 

Siddharth, L., Blessing, L., & Luo, J. (2022), “Natural language processing in-and-for design research”, Design 

Science, Vol. 8, e21. https://doi.org/10.1017/dsj.2022.16 

Stevenson, P. D., & Mattson, C. A. (2019), “The personification of big data”, Proceedings of the International 

Conference on Engineering Design (ICED), pp. 4019-4028. https://doi.org/10.1017/dsi.2019.409 

Stevenson, P. D., Mattson, C. A., Dahlin, E. C., & Salmon, J. L. (2023), “Creating predictive social impact models 

of engineered products using synthetic populations”, Research in Engineering Design, Vol. 34 No. 4, pp. 461-

476. https://doi.org/10.1007/s00163-023-00424-4 

Thoring, K., Huettemann, S., & Mueller, R. M. (2023), “The Augmented Designer: a Research Agenda for 

Generative AI-Enable Design”, Proceedings of the Design Society, Vol. 3, pp. 3345-3354. 

https://doi.org/10.1017/pds.2023.335 

 

https://doi.org/10.1017/pds.2024.198 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.198

