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Abstract

Human schistosomiasis is caused by helminths of the genus Schistosoma. Macrophages play a
crucial role in the immune regulation of this disease. These cells acquire different phenotypes
depending on the type of stimulus they receive. M1 macrophages can be ‘classically activated’
and can display a proinflammatory phenotype. M2 or ‘alternatively activated’macrophages are
considered anti-inflammatory cells. Despite the relevance of macrophages in controlling infec-
tions, the role of the functional types of these cells in schistosomiasis is unclear. This review
highlights different molecules and/or macrophage activation and polarization pathways dur-
ing Schistosoma mansoni and Schistosoma japonicum infection. This review is based on ori-
ginal and review articles obtained through searches in major databases, including Scopus,
Google Scholar, ACS, PubMed, Wiley, Scielo, Web of Science, LILACS and ScienceDirect.
Our findings emphasize the importance of S. mansoni and S. japonicum antigens in macro-
phage polarization, as they exert immunomodulatory effects in different stages of the disease
and are therefore important as therapeutic targets for schistosomiasis and in vaccine develop-
ment. A combination of different antigens can provide greater protection, as it possibly stimu-
lates an adequate immune response for an M1 or M2 profile and leads to host resistance;
however, this warrants in vitro and in vivo studies.

Introduction

Human schistosomiasis is a neglected parasitic disease with great relevance to public health.
Worldwide, it is estimated that approximately 230–250 people are infected and 700–800 million
live in areas that are at risk of infection, mainly in countries located in South America, Asia and
Africa (Steinmann et al., 2006; Colley et al., 2014; McManus et al., 2018; Wei et al., 2018; WHO,
2020). In addition, approximately 200 000–280 000 deaths occur each year due to schistosomiasis
and its complications (LoVerde, 2019). The high prevalence of schistosomiasis is mainly related
to people living in extreme poverty and poor sanitation, which represent a serious risk to human
health (Ismail et al., 2014; Bajiro et al., 2017; Verjee, 2019).

The infection is caused by helminths of the genus Schistosoma (Colley et al., 2014; Stingl
and Stingl, 2017; WHO, 2020), belonging to the class Trematoda and phylum
Platyhelminthes. The main aetiologic agents of this disease, in terms of clinical relevance,
are Schistosoma japonicum, Schistosoma mansoni and Schistosoma haematobium (WHO,
2020). In this review, we focus only on S. mansoni and S. japonicum, as they are the main spe-
cies associated with hepatic and intestinal schistosomiasis (Wilson et al., 2007; Chen et al.,
2013; McManus et al., 2018).

There are 2 distinct phases of clinical progression of intestinal schistosomiasis: the acute
and the chronic phases (Gobbi et al., 2020). During the early stages of acute phase of schisto-
somiasis (before parasite oviposition), there is a predominance of the T helper type 1 (Th1)
immune response (Pearce et al., 1991; Hesse et al., 2001; Pearce and MacDonald, 2002;
Colley and Secor, 2014). After schistosome oviposition, the immune response becomes
strongly polarized to the Th2 profile, which is related to increasing production of interleukin-4
(IL-4), IL-5, IL-9 and IL-13 (Pearce and MacDonald, 2002; Burke et al., 2009). This immune
environment is responsible for the formation of granulomas in tissues (Grzych et al., 1991;
Brunet et al., 1997; Hoffmann et al., 2000). The granuloma has an important role for the
host, because it contains the tissue damage caused by antigens secreted by the schistosome
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eggs (Hams et al., 2013; Schwartz and Fallon, 2018). In the
chronic phase of schistosomiasis, there is an increase in the pro-
duction of regulatory cells in the granuloma, which can modulate
granulomatous inflammation, promoting a minimization of the
disease severity (Hesse et al., 2004; Lundy and Lukacs, 2013).
However, if this inflammatory reaction does not have an adequate
modulation, the granulomas progressively may evolve into large
areas of fibrosis, responsible for the main pathology of schisto-
somiasis (Hams et al., 2013; Schwartz and Fallon, 2018), includ-
ing hepatosplenomegaly (Masi et al., 2020), portal hypertension
(Grieco et al., 2016) and ascites (Fei-Yue et al., 2017).

Macrophages are cells of the innate immune system that play
important roles in controlling infections (Shapouri-Moghaddam
et al., 2018), as well as in tissue remodelling processes, both in
ontogenesis and wound healing (Kloc et al., 2019). In the course
of S. mansoni and S. japonicum infection, either at its initial stage
or during the evolution to the chronic phase, macrophages par-
ticipate in the immune regulation of the disease (Cortes-Selva
et al., 2018; Ho et al., 2022).

Macrophages can acquire different phenotypes depending on
the stimuli to which they are subjected to (Atri et al., 2018).
These cells can be classified into M1 or ‘classically activated’
cells, with pro-inflammatory action, and M2 or ‘alternatively acti-
vated’ macrophages, which are considered anti-inflammatory cells
(Mills, 2015; Ley, 2017; Locati et al., 2020). However, despite the
relevance of macrophages in controlling infections, the participa-
tion of the functional types of these cells in acute and chronic
schistosomiasis is still not well defined. Thus, this review discusses
the different molecules and/or pathways of activation and polar-
ization of macrophages during infection by S. mansoni and
S. japonicum, leading to a better understanding of the role of
these cells in the immunopathology of schistosomiasis. Based
on this knowledge, we may help identify potential targets for
the development of better treatment strategies to reduce the
morbidity of this disease.

Methods and criteria for literature selection

This literature review was performed using recognized databases
including Scopus, Google Scholar, ACS, PubMed, Wiley, Scielo,
Web of Science, LILACS and ScienceDirect and covered original
and review articles published in English from 1966 to 2022.
Articles involving in vitro and/or in vivo experiments were
included and addressed the main immunological aspects of S.
mansoni and S. japonicum infection related to macrophage polar-
ization, activation and effector functions. To search for these arti-
cles, combinations of keywords were used, such as ‘Macrophage’,
‘Schistosoma’, ‘macrophage polarization and Schistosoma’,
‘Macrophage and Schistosoma’, ‘Macrophage and Schistosoma
mansoni’, ‘Macrophage and Schistosoma japonicum’. Research
involving coinfections was not included in this study.

Immunopathology of the definitive host against infection
by S. mansoni and S. japonicum

Parasites of the genus Schistosoma have complex life cycles
(Fig. 1), with generations of asexual reproducing larvae living in
freshwater snails, the intermediate hosts (some species of the
genus Biomphalaria for S. mansoni and the genus Oncomelania
for S. japonicum) and another stage of sexual reproduction of
adult worms in vertebrate hosts (definitive), including humans
(McManus et al., 2018; Nelwan, 2019). Each stage of the parasite’s
life cycle (cercariae, schistosomulae, adult worms and eggs) within
the definitive host triggers a series of immune responses, and con-
sequently, clinical signs that can be harmful to humans (Molehin,
2020; Hambrook and Hanington, 2021; Masamba and Kappo,

2021). The interactions between the host immune system and
the parasite can be divided into 2 phases (Fig. 2): acute phase
(after and before parasite oviposition) and chronic phase (Gobbi
et al., 2020).

The first clinical manifestations of the acute phase (cercarial
dermatitis, oedema and pruritus) begin 48–72 h after cercariae
penetrate the host’s skin, and occurs mainly in individuals from
endemic areas (frequently exposed to infection) (He et al., 1990,
2005; Khammo et al., 2002; Ingram et al., 2003; Lambertucci,
2010). The first innate immune barrier encountered by cercariae
is the skin (Bartlett et al., 2000; Whitfield et al., 2003; He et al.,
2005). This tissue is composed of keratinocytes, whose function
is to secrete cytokines with antimicrobial functions (Roupé
et al., 2010; Piipponen et al., 2020). Indeed, the keratinocytes
are considered the first active cells in response to cercariae infec-
tion (Bourke et al., 2015). These cells rapidly respond to infections
by secreting inflammatory cytokines [IL-6, IL-12, tumour necrosis
factor-alpha (TNF-α) and IL-1β] to repair damaged tissue (Hogg
et al., 2003a, 2003b). When penetrating the host’s skin, cercariae
also cause an increase in antigen-presenting cells in the innate
immune system, such as Langerhans cells and dendritic cells
(DCs), as shown in Fig. 2 (Angeli et al., 2001; Kumkate et al.,
2007; Hambrook and Hanington, 2021), which contribute to a
type 1 cellular immune response (He et al., 2005; Perona-Wright
et al., 2006).

Initial immune responses are activated as a result of excretory/
secretory (E/S) products released by the cercariae penetrating
glands at the time of penetration into the host’s skin (Salter
et al., 2000; Jenkins et al., 2005a, 2005b; Curwen et al., 2006;
Paveley et al., 2009). E/S products assist in the immunomodula-
tory function exerted by cercariae, as well as condition the remod-
elling of the extracellular matrix, facilitating its penetration into
the skin (Janssen et al., 2016; Leontovyč et al., 2020). Liu et al.
(2015) performed a proteomic analysis of products excreted by
S. japonicum cercariae at the time of skin entry and identified a
variety of E/S proteins, mainly proteases. Among the enzymes
that allow this remodelling, the cercarial elastase of S. mansoni
stands out, which is of great importance in the penetration of cer-
cariae into the skin and can degrade a wide variety of macromo-
lecules present in the human integument (Ingram et al., 2012;
El-Faham et al., 2017).

Parasitic E/S products also promote the activation of prosta-
glandin E2 (PGE2) and prostaglandin D2-producing keratino-
cytes (Kaisar et al., 2018; Oyesola et al., 2021), which are
molecules that induce the production of IL-10 via a cyclooxygen-
ase 2-dependent pathway (Ramaswamy et al., 2000; Harizi et al.,
2002; Xue et al., 2005). This type of response is responsible for
modulating the immune response that favours parasite survival
(Angeli et al., 2001; Hervé et al., 2003; De Oliveira Fraga et al.,
2010). Abdel-Ghany et al. (2015) suggested that blocking PGE2
might provide partial protection in S. mansoni-infected mice. In
addition, during the period when cercariae transform into schis-
tosomules and migrate through the skin, PGE2 acts as a potent
vasodilator, helping the passage of these larval forms into circula-
tion (Ruzicka and Printz, 1984).

After penetrating the host’s skin, cercariae undergo morpho-
logical and biochemical changes, transforming into juvenile
forms, known as schistosomula, that reach blood vessels (Brink
et al., 1977; Wilson, 1987; Curwen and Wilson, 2003). In the
bloodstream, the schistosomula is passively transported to the
lungs and heart until they finally reach the hepatic portal system,
where they develop into adult male or female worms (Miller and
Wilson, 1978; Wheater and Wilson, 1979; Nation et al., 2020)
(Fig. 1). In this phase before the parasite’s oviposition (early stages
of acute phase), the host produces a predominantly type 1
immune response, which reaches greater activation between the
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3rd and 5th weeks after exposure to cercariae (Dunne and Cooke,
2005; Gryseels et al., 2006). This response is characterized by high
production of pro-inflammatory cytokines, such as IL-1, IL-2,

IL-6, IL-12, interferon-gamma (IFN-γ) and TNF-α (Fig. 2)
(Grzych et al., 1991; Pearce et al., 1991; Egesa et al., 2018;
Zheng et al., 2020). Coinciding with the migration and sexual

Fig. 1. Life cycle of Schistosoma mansoni and Schistosoma japonicum. (1) The eggs shed in the feces of the definitive host release the miracidia when they come in
contact with water (2), which penetrate in soft tissue the intermediate host snail (Biomphalaria spp./Oncomelania spp.). Inside the snail, the miracidia transform
into mother sporocysts, which in turn produce daughter sporocysts by asexual reproduction. After around 30 days post-infection, cercariae emerge from the daugh-
ter sporocysts and are shedding by the snails in response to the light and heat (4). The cercariae penetrate the skin of the definitive host (5) and later transform
into schistosomula. These larvae enter venous blood vessels and are passively carried to the lungs and heart (6). Upon reaching the hepatic portal system, schis-
tosomula mature, become adult worms (male or female) and mate (7). The mated worms migrate to the lower mesenteric veins of the intestine, where the female
sheds the eggs. Part of these eggs pass through the intestinal wall and are eliminated in the feces, starting the cycle again. However, some eggs are not eliminated
and get trapped in several organs (mainly the liver and intestines), inducing a potent granulomatous inflammatory response, responsible for schistosomiasis path-
ology. Source: Created with BioRender.com.

Fig. 2. Different immune response profiles during S. mansoni and S. japonicum infection. Source: Created with BioRender.com.
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maturation of adult worms, a systemic hypersensitivity reaction
occurs in the host, called Katayama syndrome (for S. japonicum)
or the toxaemic form (for S. mansoni), which is associated with
an intense Th1 response (Neves, 1992; Ross et al., 2007; Caldas
et al., 2008; Langenberg et al., 2019). During primary infections
in non-immune individuals, the main symptoms related to this
systemic inflammation include a high fever accompanied by chills,
profuse sweating, asthenia, myalgia, headache and a non-
productive cough (Schwartz et al., 2000; Bottieau et al., 2006).

After parasite oviposition (between 5th and 6th weeks post-
infection), there is a change in the profile of immune mediators
produced by the host, and the immune response becomes pre-
dominantly Th2, which is associated with increasing production
of IL-4, IL-5, IL-9 and IL-13 (MacDonald et al., 2002; Pearce
et al., 2004; Bartley et al., 2006; Burke et al., 2009). Such changes
are responses to soluble egg antigens (SEAs) (Hams et al., 2013),
that is composed of a complex mixture of immunostimulatory
antigens that are known for their ability to condition DCs to
initiate the induction of a Th2 profile (Mouser et al., 2019).

DCs detect, capture and process antigens derived from eggs of
S. mansoni (Cervi et al., 2004; van Liempt et al., 2007), resulting
in their ability to lead to Th2 polarization both in vitro and in vivo
(de Jong et al., 2002; MacDonald et al., 2002; Perona-Wright
et al., 2006). The main antigens responsible for this potent induc-
tion of a Th2 response are glycoproteins omega 1 (ω-1) and IPSE
(IL-4-inducing principle of S. mansoni eggs)/alpha 1 (α-1)
(Schramm et al., 2006; Meevissen et al., 2010). Glycoprotein
ω-1 is present in both SEAs (Dunne et al., 1991) and E/S products
from live eggs (Cass et al., 2007), and activates DCs (via C-type
and Toll-type lectin receptors), which in turn promotes Th2 dif-
ferentiation, the main source of type 2 cytokines such as IL-4, IL-5
and IL-13 (Everts et al., 2009). On the other hand, a previous
study (Schramm et al., 2006) showed that the glycoprotein
IPSE/α-1 is exclusively released from mature eggs, but likely pos-
sesses the same potential to initiate a Th2 response during S.
mansoni infection. IPSE/α-1 binds to immunoglobulin and acti-
vates basophils, leading to the release of histamine and facilitating

the production of Th2-type cytokines, mainly IL-4 and IL-13
(Schramm et al., 2007; Meyer et al., 2015; Knuhr et al., 2018).
Thus, the Th2 response (Fig. 2) is related to low production of
IFN-γ and high concentrations of anti-inflammatory cytokines
(IL-4, IL-5, IL-10 and IL-13) (Grzych et al., 1991; Pearce et al.,
2004; Zheng et al., 2020).

Mechanisms associated with macrophage polarization

Macrophages are cells of the innate immune system that have
phagocytic capacity and are involved in the elimination of foreign
particles from the body (Gordon and Martinez-Pomares, 2017;
Uribe-Querol and Rosales, 2020) and in the presentation of anti-
gens, constituting an important link between innate and adaptive
immunity. These cells are part of the mononuclear phagocytic
system and are implicated in tissue homoeostasis and various
infectious and inflammatory processes (Rahman et al., 2017;
Shapouri-Moghaddam et al., 2018).

Macrophages are activated during phagocytosis or by contact
with molecular patterns associated with pathogenic microorgan-
isms. This activation results in inflammatory responses and
increased production of cytokines and/or physicochemical factors
and, consequently, can differentiate into various phenotypes
depending on the state and changes in the microenvironment
(Schmall et al., 2015; Murray, 2017). There are 2 main subtypes
of macrophages classified according to the expression of their
cell surface markers, production of specific factors and biological
activities: classically activated or inflammatory M1 macrophages
and alternatively activated or anti-inflammatory M2 macrophages
(Parisi et al., 2018) (Fig. 3). Macrophage subtypes play a role in
the initiation and/or progression of many diseases. The M1/M2
paradigm emerged as homologous with the one previously
described for Th response profiles, which also presents 2 subtypes:
Th cell type 1 (Th1) and type 2 (Th2) (Mills, 2015).

M1 macrophage subtypes polarize in the presence of Th1 cyto-
kines such as IFN-γ and TNF-α or when exposed to inflammatory
molecules such as lipopolysaccharides (LPS) (Yunna et al., 2020),

Fig. 3. Different macrophage phenotypes, specific stimuli and markers. Source: Created with BioRender.com.
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through the following mechanisms: (1) JAK/STAT (Janus kinase/
signal transducer and transcriptional activator) signalling path-
way. IFN-γ activates JAK-inducing phosphorylation of STAT1,
which in turn leads to macrophage polarization to M1 (Wang
et al., 2020); (2) Toll-like receptor (TLR) 4/nuclear factor κB
(NF-κB) signalling pathway. LPS binds to TLR4 to activate
NF-κB and activator protein 1 (AP-1), promoting the expression
of inflammatory factors (Chen et al., 2017b; Ciesielska et al.,
2021) and (3) cytokine signalling through specific receptors that
activate AP-1 (Liu et al., 2014).

M1 macrophages are recruited soon after lesion formation and
are mainly involved in the initial response to infectious processes
(Vannella and Wynn, 2017). These increase local inflammation,
producing large amounts of pro-inflammatory cytokines, includ-
ing IL-1β, IL-6, IL-12, IL-18, IL-23, TNF-α and IFN type 1
(Shapouri-Moghaddam et al., 2018), as shown in Fig. 3. The
M1 macrophage phenotype expresses high levels of inducible
nitric oxide synthase (iNOS), major histocompatibility complex
class II (MHC II), CD16/32, CD80 and CD86, as well as chemo-
kines that attract Th1 cells, including CXCL9 and CXCL12
(Orecchioni et al., 2019). Functionally, M1 macrophages are char-
acterized by antimicrobial and antitumour activities and partici-
pate in the elimination of infectious agents through the
activation of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase and, consequently, the generation of reactive
oxygen species (ROS) (Murray et al., 2014).

On the other hand, M2 macrophages are induced by Th2 cyto-
kines IL-4 and IL-13 (Fig. 3), mainly via STAT6 activation (Sica
and Mantovani, 2012; Enderlin et al., 2014). This pathway is
extremely important, as IL-4 inhibits M1 and induces M2 polar-
ization (He et al., 2020). Gao et al. (2015) demonstrated that the
expression of STAT6 was positively regulated by curcumin and by
the secretion of IL-4 and IL-13, capable of inducing M0 and M1
macrophages to polarize into M2. IL-4 type I and type II receptors
also activate STAT6 (Gong et al., 2017), which in turn induces the
transcription of typical M2 polarization genes, such as mannose
receptor 1, type α resistin (Retnla) and chitinase 3-like 3
(Chi3l3, Ym1) (Martinez and Gordon, 2014). M2 polarization
can also be induced by IL-10 through STAT3 activation (Yin
et al., 2018). However, the STAT6 pathway is considered to acti-
vate M2 macrophages (Murray, 2017).

The M2 macrophage phenotype has a profile of anti-
inflammatory cytokines, characterized by low production of
IL-1, IL-6 and TNF-α, and high production of IL-10 and trans-
forming growth factor-beta (TGF-β) (Fig. 3), as well as chemo-
kines CCL1, CCL17, CCL18, CCL22 and CCL24 (Yunna et al.,
2020). Additionally, this phenotype can be characterized by the
expression of arginase 1 (Arg-1), CD163, CD209 and CD206.
CD206 interacts with glycoproteins and glycolipids found on
the surfaces of pathogens (Suzuki et al., 2018; Xu et al., 2019).
Thus, CD206 plays a role in immunological recognition of patho-
gens after antigen internalization and presentation (Hussell and
Bell, 2014). Functionally, M2 macrophages can inhibit inflamma-
tion, promote tissue repair and wound healing, prevent parasitic
infection and have proangiogenic and profibrotic properties
(Jetten et al., 2014; Braga et al., 2015). Furthermore, because
M2 macrophages produce complex cytokines and are character-
ized by the functional expression of alternative activation markers,
they can be divided into 4 subtypes: M2a, M2b, M2c and M2d
(Yao et al., 2019). These subtypes differ from each other based
on their cell surface markers, secreted cytokines and biological
functions, as is demonstrated in Fig. 3.

M2a macrophages are induced by the cytokine IL-4 or IL-13
and express high levels of CD86, CD200R and MHC II and low
levels of CD14 and TLR4 (Yao et al., 2019). In addition to
being major producers of CCL24, CCL17 and CCL22, they use

CCR3 and CCR4 receptors, resulting in the recruitment of eosino-
phils, basophils and Th2 cells, promoting the upregulation of a
type 2 immune response (Fraternale et al., 2015). M2b-type
macrophages are induced by immune complexes, LPS or IL-1
receptor antagonist and are characterized by increased expression
of CD206 and CD86 (Viola et al., 2019). Upon activation, this
subtype secretes pro- and anti-inflammatory cytokines TNF-α,
IL-1β, IL-6 and IL-10 and functions in regulating the immune
response and inflammation (Wang et al., 2019). M2c macro-
phages are induced by IL-10, TGF-β or glucocorticoids, and
express CD206 and CD163, in addition to secreting IL-10,
TGF-β, CCL16 and CCL18, which play crucial roles in the phago-
cytosis of apoptotic cells (Ross et al., 2021). Finally, induced by
TLR antagonists, M2d macrophages express high levels of
CD206, IL-10 and iNOS, secrete CCL5, CXCL10 and CXCL6
and express low levels of IL-12 and TNF-α (Viola et al., 2019).
This subtype also secretes the vascular endothelial growth factor
and promotes angiogenesis and tumour progression (Ferrante
et al., 2013). Notably, all subtypes of M2 macrophages express
IL-10.

M1 and M2 macrophages can also be differentiated by the way
they metabolize arginine, as shown in Fig. 3. M1 macrophages
metabolize arginine by the enzyme iNOS to produce nitric
oxide (NO) and citrulline; on the contrary, M2 macrophages
metabolize arginine by Arg-1 to produce L-ornithine and urea,
a precursor molecule of polyamines involved in tissue repair
and cell proliferation (Rath et al., 2014; Yang and Ming, 2014).

The 2 macrophage populations must be balanced to maintain
homoeostasis and to protect the organism. Once an imbalance
occurs, the exacerbated activity of M1 or M2 macrophages can
lead to the development of inflammatory diseases or host
immunosuppression (Sica et al., 2015). However, the remarkable
plasticity of macrophages confers significant benefits to the host,
especially in the course of chronic helminth infections (Lechner
et al., 2021) since it limits excessive tissue damage when it is
unable to overcome the initial injury. This feature has been well-
documented in schistosomiasis.

Participation of M1 and M2 macrophages in the response to
Schistosoma infection

Initially, blood monocytes differentiate into macrophages at
inflammatory sites (Rückerl and Cook, 2019) and exhibit high
plasticity as a result of exposure to various stimuli, signalling
molecules, nutrients and metabolites in the context of schisto-
somiasis (Cortes-Selva and Fairfax, 2021). These phagocytes can
exert pro-inflammatory or anti-inflammatory functions (Zhu
et al., 2014) in different clinical forms of schistosomiasis (acute
and chronic phases) (Fig. 2). In the acute phase, macrophages
secrete pro-inflammatory cytokines and consequently increase
inflammation, recruit more immune cells and promote the forma-
tion of the initial granuloma. In the chronic phase, macrophages
have an immunoregulatory activity to decrease the damage caused
by granulomas (Wolde et al., 2020).

During the life cycle of S. mansoni and S. japonicum, several
antigens are excreted by their different evolutive forms (Curwen
et al., 2006; Jang-Lee et al., 2007; Acharya et al., 2021). For
example, Sm16 – a low molecular weight protein that is secreted
by S. mansoni cercariae, helps the parasite to enter the host’s skin
(Brännström et al., 2009; Sanin and Mountford, 2015). Sm29,
present in the tegument of schistosomula and adult S. mansoni
worms, can induce the maturation and activation of human
monocyte-derived DCs (Cardoso et al., 2008; Lopes et al.,
2019). Sj-C is an example of a protein secreted from the tegument
of S. japonicum, which may suppress the presentation of exogen-
ous antigens by DCs (He et al., 2011; Chen et al., 2017a). IPSE/
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α-1 and ω-1 are examples of proteins secreted by S. mansoni eggs,
which help direct a Th2 response (Everts et al., 2009; Knuhr et al.,
2018). These molecules can induce the activation and modulation
of innate and adaptive immune responses and facilitate the eva-
sion of the parasite from the host-defense mechanisms (Jenkins
et al., 2005a, 2005b; Hai et al., 2014; Hambrook and
Hanington, 2021). Schistosoma antigens can be proteins (such
enzymes), polysaccharides and the most commonly used are
crude extracts prepared by breaking up worms, larvae or eggs
(Doenhoff et al., 1993; Doenhoff, 1998). Thus, it is clear that anti-
gen changes in the microenvironment during schistosomiasis are
important for the polarization of macrophages to the M1 or M2
profile (Xu et al., 2014; Sanin and Mountford, 2015; Assunção
et al., 2017).

According to Tables 1 and 2, we highlight some in vitro and in
vivo studies that demonstrate the relationship between the stimu-
lation of S. japonicum and S. mansoni antigens and macrophage
polarization. In addition, we also highlight other molecules
involved in macrophage polarization in schistosomiasis, providing
molecular evidence of great relevance in the process of differenti-
ation of these cells, which will be discussed in this article.

Cercariae and schistosomula antigens can induce an M1
profile

During the penetrating of the human skin, cercariae of S. mansoni
and S. japonicum release E/S products, which have remodelling
and immunoregulatory functions (Liu et al., 2015; Sanin and
Mountford, 2015), that facilitate their penetration and subsequent
establishment in the host’s body, in the form of schistosomula
(Janssen et al., 2016). This phase represents the first contact
with innate immune responses in the skin, especially
Langerhans cells, which are considered tissue-resident macro-
phages (West and Bennett, 2018). These cells phagocytize E/S
and secrete pro-inflammatory (IL-6 and IL-12p40) and anti-
inflammatory (IL-10) cytokines in a TLR-dependent manner
(Jenkins et al., 2005a, 2005b).

One of the ways in which macrophages are activated is through
the action of TLRs. These receptors are a family of pattern recog-
nition receptors that are important for innate immune response
(El-Zayat et al., 2019). These receptors recognize invading patho-
gens, trigger innate immune responses and subsequently initiate
adaptive immunity against infections, including Gram-positive
and Gram-negative bacteria, fungi, viruses and parasites (Lu
et al., 2018). These receptors mediate macrophage recognition
by microbial ligands, inducing the expression of microbicidal
molecules and cytokines via the adapter protein MyD88 (Jin
et al., 2019). Xu et al. (2014) showed that normal cercariae
antigen (NCA) and attenuated cercariae antigen (ACA) from
S. japonicum induced polarization to the M1 profile, with
increased levels of IL-12, CD136/32 and iNOS (Table 2).
However, these values decreased when the TLR4 pathway blockers
were used. Thus, the authors suggested that the polarization of the
M1 profile is dependent on the TLR4 pathway and this may play a
protective role in S. japonicum infection (Tang et al., 2021).

In fact, the TLR4 pathway is extremely important for the
polarization of macrophages to the M1 phenotype, as demon-
strated in some studies (Freitas et al., 2016; Shi et al., 2020).
Sanin and Mountford (2015) demonstrated that Sm16 (a mol-
ecule produced by S. mansoni cercariae) is able to block TLR4
and TLR3 pathways in human monocyte, which negatively affect
the classic activation of macrophages (M1) in response to IFN-γ
(Table 1). This is considered an important mechanism of immune
evasion promoted by S. mansoni because it limits the production
of NO, which is toxic to the parasite (Shiels et al., 2020).

After complete transformation from a cercariae into a schistoso-
mula, the larva migrates into the bloodstream, travelling through the
lungs until reaching maturation in the mesenteric veins. This stage
of the cycle is also characterized as a key target for the elimination
of infection through innate host immune responses (Houlder et al.,
2021). Some histological studies conducted in the lungs of mice
infected with S. mansoni and S. japonicum showed inflammatory
foci consisting of neutrophils, eosinophils and macrophages
(Crabtree and Wilson, 1986; Burke et al., 2011).

Table 1. Molecules and/or antigens involved in macrophage polarization in Schistosoma mansoni infection

Macrophage profile Molecule/antigen Experimental model Type of study References

M1 Schistosomules C57BL/6 mice In vivo Menson and
Wilson (1990)

M2 SEA BMDCs and DCs from C57BL/6 or TLR4 mice In vitro Goh et al. (2009)

Macrophages derived from human monocytes

M2 p16INK4a Macrophages derived from mouse bone marrow In vitro Cudejko et al.
(2011)

Chimaeric mice In vivo

M2 Cercariae Peritoneal macrophages In vitro Vanella et al.
(2014)

Mice In vivo

IL4Rαflox/Δ LysMWT/Cre

SEA Mutant mice

LysMCre/+ Shp2flox/flox (control) and LysMCre/+: Shp2flox/flox (Shp2Δ/Δ)

M2 CD14 TLR
co-receptor

Mice Cd14−/− In vivo Tundup et al.
(2014)

Wild-type mice (wt)

M1 profile lock Sm16 antigen Macrophages derived from mouse bone marrow In vitro Sanin and
Mountford (2015)

M2 LPC Peritoneal macrophages and bone marrow derivatives of mice In vitro Assunção et al.
(2017)

M2 IPSE/α-1 Human peripheral blood cells (monocytes and basophils) In vitro Knuhr et al.
(2018)
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Macrophages function as cytotoxic cells, mainly in schistoso-
mula (James and Glaven, 1989). Oswald et al. (1994) demon-
strated that macrophages could produce NO, leading to
schistosomula death in animal models independent of the pro-
duction of pro-inflammatory cytokines. In contrast, Cardoso
et al. (2008) determined that the antigen Sm29, present in the
integument of S. mansoni schistosomula, induced a Th1-type
immune response, with an increase in pro-inflammatory cyto-
kines (IFN-γ, TNF and IL-12) in mice, leading to a reduction
in worm burden and liver pathology. James et al. (1998) demon-
strated that IFN-γ was a cytokine of great importance in the acti-
vation of macrophages in the lungs for the immunological killing
of S. mansoni larvae and played a critical role in protective
immunity.

In the early stages of schistosomiasis, lung macrophages may
have an M1 phenotypic trait. Menson and Wilson (1990) charac-
terized the expression of surface markers in alveolar macrophages
associated with the immune response to S. mansoni. The authors
demonstrated an increase in IFN-γ expression in the lungs of
C57BL/6 mice and suggested that activated macrophages might
be responsible for initiating and maintaining focal inflammation
that blocks parasite migration (Table 1).

Worm antigens can induce an M1 or M2 profile

During the acute phase of Schistosoma infection, before parasite
oviposition (approximately 5–7 weeks post-infection), immune
responses are largely of the CD4+ Th1 type, associated with
increased numbers of M1 macrophages that produce IL-12,
IL-6, TNF-α and NO (Pearce et al., 1991; Coulson et al., 1998;

Gordon, 2003). These early pro-inflammatory responses are
mainly related to the antigens from immature worms (schistoso-
mula) during their migration (Wilson, 1998; Egesa et al., 2018).
Activation of these responses may be through binding to TLR
and C-type lectin receptors on macrophages; however, further
studies are needed to clarify this mechanism of macrophage acti-
vation via schistosomula antigens.

In contrast to the schistosomula antigens, the adult worm anti-
gen preparations [soluble worm antigen (SWAP or SWA)] were
better explored in experimental studies. Although the antigenic
composition is not the same as the live worm, the use of SWAP
or SWA constitutes a valuable experimental tool to evaluate
many aspects of immune responses promoted by different host
cells (Xu et al., 2014; Zhu et al., 2014). This antigen is the easiest
to obtain and is essentially an extract based on Tris-HCl or
phosphate-buffered saline from mixed male and female worms
and prepared in various ways, either by homogenization, sonic-
ation or freeze/thaw (or a combination of these) (Grenfell et al.,
2012; Neves et al., 2015). Some studies have demonstrated that
SWAP could induce an M1-like profile (Xu et al., 2014; Zhu
et al., 2014). Thus, Zhu et al. (2014), when performing a
co-culture of peritoneal macrophages obtained from mice with
S. japonicum SWA (Table 2), observed that there was an increase
in the expression of specific markers related to M1 (TNF-α, IL-12,
CXCL9, CXCL10, CXCL11 and iNOS).

Aiming to understand which mechanisms lead SWAP to
induce polarization of the M1 profile, Shen et al. (2021) demon-
strated that this antigen promoted the expression of a protein
called lipocalin 2 (LCN2) and, consequently, induced the M1 pro-
file of macrophages (Table 2) through the upregulation of the

Table 2. Molecules and/or antigens involved in macrophage polarization in Schistosoma japonicum infection

Macrophage profile Molecule/antigen Experimental model Type of study References

M1/M2 NCA Macrophages RAW264.7 In vitro Xu et al. (2014)

ACA

SWAP Mice In vivo

SEA C57BL/6J

M1/M2 SWA Peritoneal macrophages of mice In vitro Zhu et al. (2014)

SEA

M1 EVs Macrophages RAW264.7 In vitro Wang et al. (2015)

M2 Corilagin Ana-1 cell line In vitro Li et al. (2017)

C57BL/6 mice In vivo

M2b Egg-derived ES
antigens

Macrophages derived from bone marrow of wild-type mice
and TLR2−/−

In vitro Gong et al. (2018)

C57BL/6 mice In vivo

M2 Sj16 Mouse peritoneal macrophages In vitro Shen et al. (2019)

BALB/c mice In vivo

M1 EV miRNAs EVs Macrophages RAW264.7 In vitro Liu et al. (2019)

BALB/c mice and rabbits In vivo

M2 Eggs Mouse peritoneal macrophages In vitro Ye et al. (2020)

Mice In vivo

Kunming

M1 SWA Macrophages RAW264.7 In vitro Shen et al. (2021)

C57BL/6 mice In vivo

M2 SEA Macrophages J774A.1 In vitro Yu et al. (2021)
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NF-κB signalling pathway. It has already been reported that this
protein is increased in macrophages and can potentiate the M1
phenotype of microglia in the central nervous system (Jang
et al., 2013). The NF-κB signalling pathway can activate macro-
phages to produce M1 polarization upon LPS induction
(Liu et al., 2017). In addition, some studies have shown that
this pathway could regulate the expression of LCN2, thereby
stimulating the inflammatory response in infectious processes
(Zhao and Stephens, 2014; Ghosh et al., 2017).

In addition to the antigens of adult worms that induce an M1
profile, studies have shown that adult worms of S. mansoni and
S. japonicum also release extracellular vesicles (EVs), known as
exosomes, which modulate the host immune response (Nowacki
et al., 2015; Wang et al., 2015; Sotillo et al., 2016; Zhu et al.,
2016). Exosomes are membrane-bound vesicles secreted by vari-
ous types of mammalian cells in normal and diseased states
(Avni and Avni, 2021). Exosomes play an important role in
cell–cell communication and have been implicated in the regula-
tion of cell development, immune regulation, angiogenesis and
cell migration (Raposo and Stoorvogel, 2013; Zhu et al., 2016).
Wang et al. (2015) observed that RAW264.7 macrophages,
when cultured with exosome-like vesicles isolated from S. japoni-
cum, exhibited an M1 profile (Table 2), due to the increase in the
surface markers CD16/32, iNOS and TNF-α. Liu et al. (2019)
investigated miRNAs from S. japonicum EVs and found that
they increased macrophage proliferation in vitro (RAW264.7)
and in vivo (mice and rabbits) as well as TNF-α expression.
miRNAs are involved in the regulation of the development, differ-
entiation and activation of immune cells, including macrophages
(Montagner et al., 2014; Mehta and Baltimore, 2016). Thus, the
polarization of M1 induced by schistosome EVs may represent
an important mechanism for parasite survival in vertebrate
hosts, via modulation of the immune response. However, there
are still controversies about the possible role of the schistosome
tegument as a source of EVs, because, to date, no study has
been performed to prove the exact origin of these vesicles
(Wilson and Jones, 2021).

On the other hand, adult worm products can also bias the M2
profile (Smith et al., 2018). Indeed, Xu et al. (2014) showed that
adult S. japonicum worms could induce an M2 macrophage pro-
file. The authors, when stimulating RAW264.7 macrophages with
SWAP from S. japonicum, observed an increase in the expression
of surface markers (CD16/32 and CD206) and in the production
of cytokines (IL-12 and IL-10), suggesting that this antigen could
induce both M1 and M2 macrophage profiles. The potential
explanation for this could be related to how the antigens of
adult worms were obtained since some adult female worms pos-
sess eggs in the process of maturation into their uterus/ootype,
and consequently, this antigen could have been contaminated
with SEAs. However, further studies are needed to understand
macrophage polarization by SWAP and its relationship with
SEA contamination.

Besides the classical macrophage polarization (M1 and M2),
products excreted by schistosomes, such as haemozoin, are also
able to induce immunomodulation. Adult worms of S. mansoni
acquire nutrients by haematophagy of the host’s blood, and this
process can form toxic haem for the parasite (Zussman et al.,
1970). However, the schistosomes are able to neutralize the free
haem in their intestine through crystallization in haemozoin
(Oliveira et al., 2000). This haemozoin is regurgitated by the
worms into the host bloodstream and can be accumulated in
the liver (Kloetzel and Lewert, 1966), which may activate the
immune response of the host. From this perspective, a previous
study (Truscott et al., 2013) highlighted that haemozoin formed
from S. mansoni is able to maintain the M2 macrophage profile
previously activated by IL-4 stimulation, but also exerts specific

modulatory effects on these cells (Table 1). These authors showed
that haemozoin mediated the suppression of Retnla (resistin-like
molecule-α or Fizz1) expression and Retnla protein secretion in
the M2 macrophages. The role of Retnla during experimental
schistosomiasis is associated with the limitation of Th2 inflamma-
tory response (Pesce et al., 2009). However, further studies are
necessary to better explain the possible impact of haemozoin in
the immunopathology of schistosomiasis.

SEAs can induce an M2 profile

After maturation of the adult worms and subsequent oviposition,
the activation of a type 2 profile begins in response to the soluble
antigens secreted by the eggs of S. mansoni and S. japonicum
(Tables 1 and 2) (Cheever et al., 2000; Pearce and MacDonald,
2002; Pearce et al., 2004; Burke et al., 2009; Costain et al.,
2018). The type 2 profile of schistosomiasis is characterized by
the expansion of Th2 cells, eosinophils and basophils, and
increased production of IL-4, IL-5 and IL-13 (Hams et al.,
2013; Schwartz et al., 2014), as previously described. IL-4 and
IL-13 protect hosts against various helminth parasites by signal-
ling through the IL-4Rα chain (Barron and Wynn, 2011;
Jenkins et al., 2011). The production of these cytokines reduces
the inflammation levels produced by the type 1 profile of the ini-
tial stage of acute phase, preventing acute pathology, such as intes-
tinal haemorrhage and liver damage; however, the Th2 immune
response is responsible for the formation of hepatic and intestinal
granulomas (Brunet et al., 1997; Hams et al., 2013; Zheng et al.,
2020).

Granulomas are essential for sequestering toxic antigens pro-
duced by eggs and preventing further tissue damage. However,
if unregulated by the immune response of the host, granulomas
grow excessively and progress to fibrotic stages, which are respon-
sible for severe forms of the disease, such as cirrhosis, portal
hypertension, liver failure and even host death (Lenzi et al.,
1998; Cheever et al., 2000; Takaki et al., 2021). Macrophages
are one of the main cellular components of hepatic granulomas
(Beljaars et al., 2014; Schwartz and Fallon, 2018). Recent studies
have demonstrated that M2 macrophages play a direct and critical
role in fibrosis, granuloma maintenance, tissue repair and host
survival (Cortes-Selva et al., 2018; Song et al., 2020). Ye et al.
(2020) showed that M2 macrophage markers (CD200R, Arg-1
and Ym1) were increased in the liver, spleen, large intestine and
peritoneal macrophages of S. japonicum-infected mice. Jenkins
et al. (2011) observed that IL-4/IL-13 signalling via IL-4Rα
induces an alternative phenotype in resident macrophages. In
this sense, a study performed with macrophages derived from
the bone marrow of mice infected with S. mansoni demonstrated
that the tumour suppressor gene p16 INK4a was an excellent
modulator of the activation and polarization of macrophages
induced by IL-4 through the JAK2–STAT1 pathway (Cudejko
et al., 2011).

Egg antigens induce granulomas, consisting mainly of M2
macrophages (Yu et al., 2021). Zhu et al. (2014) showed that peri-
toneal macrophages obtained from healthy mice, when stimulated
with S. japonicum SEAs, expressed high levels of chemokines
(CCL2, CCL17 and CCL22), IL-10 and Arg-1. Similarly, Xu
et al. (2014), after stimulating RAW264.7 macrophages with S.
japonicum SEAs, also observed higher levels of IL-10. In chronic
schistosomiasis infection, the main function of IL-10 is to control
liver damage and regulate antifibrotic processes (Dewals et al.,
2010; Kamdem et al., 2018). Previous studies have shown that
low levels of IL-10 expression are related to liver fibrosis in
S. mansoni-infected patients (Mutengo et al., 2018). On the
other hand, little is known about the mechanisms by which an
SEA preferentially induces M2 macrophage differentiation.
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Previous studies have demonstrated that an SEA from S. mansoni
could induce the expression of the notch Jagged1 ligand in mice
and human macrophages, suggesting that Jagged1 might have a
specific role in the M2 polarization process of macrophages
(Goh et al., 2009) (Table 1). Macrophages found in liver tissues
exhibit functional M2 polarization, which is dependent on the
activation of notch1/Jagged1 signalling (Zheng et al., 2016).

During S. mansoni infection, basophils detect egg IPSE/α-1
glycoprotein and stimulate the production of IL-4 and IL-13,
which trigger the alternative activation of human monocytes
(Table 1), as observed by the increased expression of CD206
and CD209 (Knuhr et al., 2018). IL-13 is a key cytokine that
induces M2 macrophage polarization via the IL-13α1 signalling
pathway (Chiaramonte et al., 1999; Liu et al., 2012). Li et al.
(2017) performed a study with corilagin, an active component
of many medicinal plants, and found that this component
could suppress Schistosoma egg-induced liver fibrosis by inhibit-
ing M2 macrophage polarization (Table 1) in the IL-13Rα1 sig-
nalling pathway. Corilagin has great potential to reduce liver
fibrosis caused by egg antigens in S. japonicum infection by
decreasing the expression of molecules associated with the
IL-13/STAT6 signalling pathway in liver M2 macrophages (Du
et al., 2016).

Signaling via TLR2 may be another way egg antigens polarize
M2 macrophages during schistosomiasis. Gong et al. (2018)
showed that antigens derived from S. japonicum eggs could acti-
vate macrophages, which exhibit M2b polarization dependent on
NF-κB signalling, mediated by the MyD88/mitogen-activated
protein kinase (MAPK) pathway in a TLR2-dependent manner
(Table 1). In contrast, Tundup et al. (2014) showed that the
CD14 TLR co-receptor was upregulated in hepatic macrophages
after S. mansoni infection and acted as a crucial negative regulator
of M2 polarization, possibly as part of a parasitic defense mech-
anism against granuloma formation (Table 1). Gao et al. (2013)
observed that an SEA of S. japonicum, known as SjEA, upregu-
lated programmed death ligand 2 (PD-L2) expression in mouse
bone marrow-derived macrophages (BMDCs) via TLR2, which
binds PD-1 primarily on CD4+ T cells. This mechanism can
help inhibit the T cell response during S. japonicum infection.

Lysophosphatidylcholine (LPC) from S. mansoni eggs can also
induce macrophage differentiation into the M2 phenotype
(Assunção et al., 2017), as shown in Table 1. The authors
observed that LPC from S. mansoni activates peroxisome
proliferator-activated receptor gamma (PPAR-γ), a transcription
factor necessary for M2 polarization, leading to higher expression
of Arg-1 and CD206, while increasing the production of IL-10,
TGF-β and PGE2 in peritoneal macrophages in vitro. Schistosoma
mansoni eggs induced a 7-fold increase in PPAR-γ expression in
human liver cell cultures (Anthony et al., 2010). PPAR-γ, in add-
ition to being of great importance in M2 polarization, can regulate
lipid uptake and metabolism (Ahmadian et al., 2013; Abdalla et al.,
2020).

Fang et al. (2015) showed that BMDCs from C57BL/6 mice,
when stimulated with a specific S. japonicum egg protein
known as SjE16.7, promoted the production of pro- (IL-12,
IL-6 and TNF-α) and anti-inflammatory (IL-10) cytokines
through the phosphorylation of MAPKs and increased the expres-
sion of MHC II on the surface of macrophages. Previous studies
have shown that S. mansoni and S. japonicum egg antigens could
stimulate the MAPK pathway in macrophages (Wang et al., 2006;
de Andrade et al., 2014). MAPKs are essential transmitters of
extracellular signals that can mediate key cellular processes,
including cell differentiation, division and death (Yang et al.,
2003). Thus, SjE16.7 is a potent macrophage activator.
However, in another study, Shen et al. (2019), when using the
Sj16 antigen, noticed that it decreased hepatic granulomas in

mice infected with S. japonicum and associated this improvement
with the suppression of cytokine production, such as IFN-γ,
TNF-α, IL-4 and IL- 6. The authors reported that the mechanisms
of Sj16 attenuation of hepatic granulomatous inflammation and
fibrosis in these infected mice might be related to the induction
of macrophages for M2 polarization (Table 2). These authors
also demonstrated, by flow cytometry, the increase in the expres-
sion of CD206 after stimulation of Sj16 in peritoneal macrophages
and leucocytes from the livers of mice. Corroborating these
results, Hu et al. (2009) showed that Sj16 decreased the levels of
pro-inflammatory cytokines, such as IL-6 and TNF-α, and
increased the levels of IL-10 in RAW264.7 macrophages.
Vannella et al. (2014) observed that mice infected with S. mansoni
showed an increase in M2 macrophages that expressed Arg-1,
which attenuated the progression of inflammation and fibrosis
(Table 1). Stimulation of RAW264.7 macrophages with another
S. japonicum egg protein (SjCP1412) also increased the expression
of CD206, Arg-1 and IL-10, which are related to M2-type macro-
phage differentiation (Ke et al., 2017). Overall, these findings
emphasize that M2 macrophages are important in reducing the
lesions caused by schistosomiasis through downregulation of the
Th1 response and inflammation promoted by egg antigens.
Additionally, the role of these cells was previously investigated
in a mouse model of liver injury induced by acetaminophen
(paracetamol) (Starkey Lewis et al., 2020). The authors demon-
strated that the injection of M2 macrophages in this experimental
model was able to rapidly reduce liver damage and inflammation.
These data indicate that M2 macrophages may constitute a new
potential cell-based therapy for this disease. Based on this, it
seems promissory also to apply these cells in the immunotherapy
of schistosomiasis.

Interestingly, despite being produced by M1 macrophages, a
recent study demonstrated that the production of ROS by egg
antigens may be a potential mechanism for M2 macrophage dif-
ferentiation (Table 2). ROS have several biological activities, such
as participation in innate and adaptive immune responses, and
can be cytotoxic against pathogens (Canton et al., 2021). Yu
et al. (2021) observed that a significant increase in ROS in the
liver of mice infected with S. japonicum was related to fibrosis
and the differentiation of M2 macrophages. The authors hypothe-
sized that their findings were due to NADPH oxidase (NOX2)
inhibiting SEA-stimulated ROS production in macrophages, sug-
gesting that NOX might act as the main source of ROS production
in SEA-stimulated macrophages. NADPH oxidase is the first
source of ROS identified in macrophages (Nathan et al., 2013).
Macrophages produce large amounts of ROS, primarily through
NOX2 activation (Paik et al., 2014). Thus, the production of
ROS induced by schistosome eggs may be a target for the
treatment of schistosomiasis.

Future perspectives and final considerations

Findings about the mechanisms behind macrophage activation
during different metabolic profiles in human diseases present
an exciting prospect, as there are pathologies that have been asso-
ciated with a particular macrophage phenotype. In this context,
the polarization of macrophages in schistosomiasis and their con-
sequent ability to promote an effective immune response seem to
be an attractive therapeutic approach associated with conventional
chemotherapy treatments.

Overall, the findings highlighted in this review demonstrate the
relevance and complexity of understanding the mechanisms
involved in macrophage polarization (M1/M2) in schistosomiasis.
The S. japonicum and S. mansoni antigens in macrophage polar-
ization are particularly important in this process. These products
have been shown to have immunomodulatory effects in different
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phases of schistosomiasis and are seen as potential therapeutic
targets for this disease, especially in the chronic phase. Among
the potential therapeutics, the combination of different
schistosome antigens can result in higher levels of
host protection, stimulating an adequate immune response for
either an M1 or M2 profile; however, this can only be achieved
after many in vitro and in vivo experiments.
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