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Abstract. We study minimal flows and their extensions by means of the associated
maximally highly proximal flows. These, in turn, can be represented by highly
proximal generators, which are certain subsets of the universal minimal flow. From
this point of view we obtain information on relative disjointness, coalescence, the
Bronstein property, and RIC extensions.

Introduction
In this paper we study a class of minimal flows which can be defined in terms of
certain subsets of the universal minimal flow. In [3], the highly proximal extensions
were introduced. These can be described as the extensions for which a fibre is
shrunk uniformly to a point. To every minimal flow there is associated a unique
'maximally highly proximal' (MHP) minimal flow which, in turn, is defined by a
'maximally highly proximal generator', a subset of the universal minimal flow M,
whose orbit closure in the 'hyperspace' 2M is the given flow.

The present paper is devoted to an intensive study of these flows and some
related questions. In § 1, we show that 2M admits an associative multiplication. In
addition to its application here, this semigroup structure may also be useful in other
problems in topological dynamics. In § 2, the main objects of interest are defined
and studied. We review relevant concepts and results from [3], and give several
alternative characterizations of maximally highly proximal flows and generators. It
is shown (when the acting group has the discrete topology) that there are no
non-trivial distal maximally highly proximal flows, and coalescence of MHP flows
is discussed. Since disjointness is a 'highly proximal invariant', it is natural to
consider disjointness and relative disjointness from the point of view of MHP
generators, and this is done in § 3. We also consider some questions concerning
RIC extensions and the Bronstein property, and use the results obtained to discuss
disjointness of minimal flows more general than the MHP flows (§ 4).

We now establish some terminology and notations. A flow is a continuous action
of a topological group T on a compact Hausdorff space X. We write (X, T), or
just X, for a flow and denote the action of t e T on x e X by

(x,
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390 / . Auslander and J. van der Woude

The flow X is minimal if the orbit closure xT=X for all x&X. The trivial
(one-point) flow will be denoted by 1. If AT and Y are flows (with the same acting
group T), a homomorphism from X to Y is a continuous equivariant map <j>: X -» Y:

</>(*') = <£(*)', forxeAT, feT.

The term 'extension' is a synonym for homomorphism.
If (X, T) is a (not necessarily minimal) flow, its enveloping semigroup, E or E(X),

is the closure of the T in ATX (the collection of all maps from X to itself, provided
with the topology of pointwise convergence). E is a semigroup of (not, in general,
continuous) maps of X onto X.

For a fixed group T, there is an isomorphically unique universal minimal flow
M. Its defining property is that every minimal flow (AT, T) is a homomorphic map
('factor') of M. The flow M is isomorphic with a minimal right ideal in E(M). Thus
Af is itself endowed with a semigroup structure, and acts on any minimal flow. We
write / for the set of idempotents in M and choose ueJ. (This idempotent u will
be fixed in this paper.) If G = Mu then G is a group (which can be identified with
the group of automorphisms of (M, T)), and every peM can be uniquely decom-
posed as p = av, when aeG and v e / . See [5] for further details and as a general
reference.

1. 2M as a semigroup
If (AT, T) is a flow, then T naturally acts on the 'hyperspace' 2X, the space of
non-empty closed subsets of X, provided with the Hausdorff topology. A quasi-
factor of AT is a minimal subset of the flow (2X, T). If X is minimal, the universal
minimal flow M acts on 2X by means of the 'circle operation': if A e 2X and peM,
then A °p e 2X is defined by

A °p = lim Ad,

where (tt) is a net in T with tt-*p (see [7] and [3]).
In particular, M acts on 2M via the circle operation. We now show that the circle

operation can be extended so that 2M (and, in fact, all subsets of M) becomes a
semigroup.

If C e 2 M and 0 #£><= M, we define

C°D = U[C°d\deD].

(Note that if d e M, C°{d} = C°d => Cd.)

(1.1)LEMMA. (1) If C, De2M, then C°DE2M ('the product of two closed sets is
closed').

(2) IfCe2M,DcM, then C°D = C°D.

Proof. The straightforward proof of (1) is omitted. If C and D are as in (2), then

C°Dc C°D,

which is closed by (1), so

C°DcC°D.
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Let qe C°D, so q £ C°8, for 5 eD. Let (dn)czD be a net with dn^S. Then there
are qneC°dn with qn-*q. Thus

qneC°dn<=C°D and qeC°D. D

(1.2) LEMMA. If C, D € 2M and E cz M, then

C°{D°E) = (C°D)°E.

Proof. Let f eD°E. Then feD°e, for some j e £ We show

C°/<=(C°D)°£.

Let ( i )c£>, (fJ<= T be nets with

?„->£, dntn^f.

Then
Corfx + Co/

and

Hence

C»/c(C»D)of

and therefore

C°(D°E)<^{C°D)°E.

To prove the opposite inclusion, let e eE, and let (?„) be a net in T with ?„ -» e. Then

(C

and also

so

(C°D)°ecC°(D°E)

and hence

(C»D)-£cC.(D.£). D

(1.3) THEOREM. With respect to the circle operation, 2M is a semigroup in which
multiplication is continuous in the second argument.

Proof. The continuity assertion (if £)„-»£> then C°Dn -*C°D) is straightforward.
The other properties follow from (1.1) and (1.2). D

Now, we extend the circle operation to all non-empty subsets of M by defining

C°D = C°D (C,D<=M).

If QD,EaM, then

{C°D)°E = {C°D)°E = {C°D)°E = C°{D°E) = C°(D°E) = C°{D°E),

so multiplication is still associative.
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2. Maximally highly proximal flows and generators
We begin this section by reviewing the notion of highly proximal extensions. If
<f>: X -> Y is a homomorphism, then 2* is the closed invariant subset of 2X defined
by

2* = [A e 2X\A c<f>-\y), for some y 6 Y].

Write (f> for the homomorphism of 2* to Y denned by 4>{A) = y, where A <= <f>~1(y).
Recall that x, x' e X are proximal if there is a z e X and a net (tt)cT with

xf,--»z and x7,-»z.

The homomorphism <f>: X -* Y is called proximal if x and x' are proximal whenever
4>(x) = 4>(x').

Let 0 : X -* Y be a homomorphism of minimal flows. Then <fr is called highly
proximal (HP) if it satisfies one of the following equivalent conditions:

(a) 4> is irreducible (if A c X such that <£(A) = Y, then A - X).
(b) The homomorphism <£: 2* -» V is proximal.
(c) 2* has a unique minimal subset.
(d) There is a y e y and a net (?,) in T such that (^(y)*,) converges (in 2X) to

a singleton.
(e) If y e Y, peM and X ec/""1^), then <j>~1(y)°p = {xp}.

(The equivalence of (a), (d) and (e) is shown in [3]. It is trivial that (e)^>(b)=$(c),
and (c)^>(d) follows from the fact that X is a minimal subflow of 2*.)

It is an immediate consequence of (b) that highly proximal extensions are
proximal. The converse fails (see [3]). A minimal flow X is said to be maximally
highly proximal (MHP) if it admits no non-trivial highly proximal extensions. (That
is, if 4> :Z->X is highly proximal, then <f> is an isomorphism.) In [3], it is shown
that to very minimal flow X there is associated a unique MHP flow X* which is
an HP extension of X. It follows that the class of minimal flows (with acting group
T) is partitioned with 'HP equivalence classes' - two flows are HP equivalent if
their associated MHP flows are isomorphic.

The MHP flow X* is obtained as follows: if y :M ->X is a homomorphism and
x £ X, then

X* = [y-1(x)°p\peMl
It follows from this representation that to every homomorphism of minimal flows
there is induced a homomorphism of their maximally highly proximal exten-
sions. In fact, if <f>:X-»Y, y:M-*X, 8 = <t>y:M^Y, xeX, and y = <f>(x), then
</>*:AT*^y* is defined by

<t>*(y-1(x)°p) = 8-\y)°p (peM).

Moreover, the map y~1(x)°p-*xp of X* to X is HP. It is also shown in [3] that
a minimal flow X is MHP if and only if some (equivalently every) homomorphism
from M to X is open. (It follows that every homomorphism from a minimal flow
to X is open. In particular, </>*:X*-* Y* is open.)

In case T is endowed with the discrete topology we shall characterize the MHP
minimal flows in terms of the topology of the phase space. Recall that a topological
space is extremely disconnected if the closure of every open set is open.
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(2.1) THEOREM. Let T be a discrete group. A minimal flow (X, T) is MHP if and
only if X is extremely disconnected.

Proof. If Z is any compact Hausdorff space there is an associated 'Gleason space'
Z s which is compact Hausdorff and extremely disconnected, and there is a surjective
continuous map from Z s to Z [1]. Moreover, if T is a discrete group which acts
minimally on Z, there is a minimal action of T on Z£, and the map Z^.-*Z is a
homomorphism. Therefore the universal minimal flow M for the discrete group T
is extremely disconnected. Now if (X, T) is MHP, then the homomorphism y.M -*X
is open, and it follows easily that X is extremely disconnected. Conversely, if (X, T)
is a minimal flow with X extremely disconnected, then it is an elementary exercise
[ l i , UP] that there is no irreducible continuous map with codomain X. Thus
(X, T) is MHP, and the proof is completed. •

Note that, if X is a minimal flow and, as above, Xj. is the minimal flow on the
Gleason space, then (still assuming the acting group T is discrete)Xs is isomorphic
with X*. For the homomorphism from Xj. to X is irreducible, hence HP, and X?.
is MHP by (2.1), so AT£sAT*.

(2.2) THEOREM. Let T be a discrete group. If (X, T) is distal and MHP, then X is
a finite space {and so (X, T) is equicontinuous).

Proof. Let (Xeq, T) denote the maximal equicontinuous factor of (X, T). Now any
homomorphism whose domain is a distal minimal flow is open, and it follows that
Xeq is extremely disconnected. An equicontinuous flow has a homogeneous phase
space [5] and any extremely disconnected homogeneous compact space must be
finite [4]. So Xeq is finite.

If X is infinite, the canonical homomorphism ir: X -*• Xeq is non-trivial and, by
the Furstenberg structure theorem [6], there is a factor Y' of X which is a non-trivial
almost periodic extension of Xeq. But, as is easily checked, an almost periodic
extension of a flow on a finite space is equicontinuous. (See [8] for a more general
result.) That is, X' is an equicontinuous flow. This contradicts the definition of Xeq

as the maximal equicontinuous factor of X. •

A minimal flow is coalescent if every endomorphism is an automorphism. We now
find conditions for the MHP extension of a distal minimal flow to be coalescent.
First, we require a lemma.

(2.3) LEMMA. Let X and X' be minimal flows with X distal, and let TT : X' -* X be
a proximal extension.

(1) If 4>':X' -»X' is an endomorphism, then there is an endomorphism <f> of X
such that TT<I>' = <t>v.

(2) Let <f> and </>' be endomorphisms of X and X' respectively with ir<j>' = <t>ir.
Suppose 4> is not an automorphism. Then 4>' is not an automorphism.

Proof. (1) If xe X, define

where x'ev^(x). To see that <j> is well defined let y ' e ir~\x). Then x' and y' are
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proximal, so ir<f>'(x') and n4>'(y') are proximal. Since X is distal,

(2) Let xu x2eX, with xi *x2 and <£(*i) = <j>(x2). Let x[, x'2 eX' such that

ir(x'i) = xi, TT{X'2) = X2,

and (x{, x'2) is an almost periodic point of XxX. Now, if <f>'(x[)7i<f>'(x2), then
(4>'(x'2), <f>'(x'2)) is an almost periodic point of X x X with

This contradicts the assumption that IT is proximal. •

(2.4) THEOREM. Let X be a distal minimal flow. Then X* is coalescent if and only
if X is coalescent.

Proof. Suppose X is not coalescent. Let <j> be an endomorphism of X which is not
an automorphism, and let <f>* be the induced endomorphism of X*. By (2) of (2.3),
<f>* is not an automorphism.

Suppose X is coalescent, and let <f>* be an endomorphism of X*. By lemma 2.3
(1), </>* projects to an endomorphism (j> oi X which, by assumption, must be an
automorphism.

Let t//* be the lift to X* of 4>~x. Then, if w:X* -*X is the natural homomorphism,

and, if **eAT*, t{/*<f>*(x*) is proximal with x* (since IT is HP, hence proximal).
But this is impossible unless ifr*<(>* is the identity. •

Since there are non-coalescent distal minimal flows [9], theorem 2.4 shows that
there are MHP minimal flows which are not coalescent.

As we have noted, an MHP minimal flow can be 'represented' as a quasi-factor
of the universal minimal flow M. This motivates the following definition. Fix an
idempotent u in M. A non-empty subset C of M will be called a maximal highly
proximal generator ('MHP generator') if u e C and C°p = C for all p e C (so that,
if p e M, C°p = C if and only if p e C).

If C is a subset of M, with M € C and C°u = C, then the following conditions
are equivalent [3, theorem 1.3]:

(i) C is an MHP generator;
(ii) the sets [C°p\p e M] form a partition of M;

(iii) C°p<=Cforal lpeC.
Thus, if X is a minimal flow x&X, and y: Af -» AT is defined by

y(p) = xp,

then

C = r-
1(^)o«

satisfies (ii) and so is an MHP generator. Also, if C is an MHP generator, the
homomorphism p>-> C°p is open (by condition (ii) above). Hence the minimal flow
CT is in fact an MHP flow.
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Note that if 0 *D e2M is an idempotent (D°D=D) and C = D°u, then

C°C = D°u°D°u=D°D°u=D°u = C.

Since £> is closed and DD <= D, £) contains an idempotent D, so « = t)« e C, and
therefore C is an MHP generator.

The next theorem correlates algebraic properties of MHP generators with the
dynamical properties of the minimal flows they define.

(2.5) THEOREM. Let C and D be MHP generators and let % = CT, 9s = DT. Then
(1) If gsG, gC°g~1 is an MHP generator.
(2) There is a homomorphism <£:<<£-> 2> with <f>(C) = Dif and only ifC^D.
(3) The flows <€ and 3) are isomorphic if and only if (i^ = 0), for some /? e G.
(4) The flow % is regular if and only if gCe <#, for all geG if and only if

g-1C°g = C,forallgeG.
(Recall that a minimal flow X is regular [2] if, whenever x, x'eX with (x, x') an

almost periodic point of X xX, then there is an automorphism of X taking x to x'.)

Proof. (1) Let E = gC°g~\ Then u e E, and

E°u = gC°g~i°u = gC°g~1 = E.

Also

E°E = (gCog-^oigCog'1) = gCouCog'1 = gC'Cog-1 = gCog"1 = E.

(2) If C c D and p e M such that C°p = C, then peC<zD,so

D°p=D.

If p,qeM with C°p = C°q, then

D°pnD°q^ 0 ,

so
£)op=£)og.

Then

<t>(C°p) = D°p (peAf)

defines a homomorphism from S? to S> with 4>(C) = D. Conversely, if <f> is such a
homomorphism and p e C, then

C°p = C,
so

£>°p = <f>(C)°p = <f>(C°p) = <f>(C) = D

and peD.
(3) Sufficiency is clear. Suppose </>:<#-» 3) is an isomorphism. Then

for some j3eG. Let
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By (1) D' is an MHP generator and, if 3)' = D'T, P 1<f>:c€^ 3)' is an isomorphism
with

By (2) C = ZT so

and

If follows that (S<€ = 3>.
(4) For g e G, gC e <£ if and only if g O g " 1 e ̂  if and only if gC°g~x = C (since

u e CngC^g"1). Suppose <# is regular. Then, if ge G, there is an automorphism
<f> of <# such that

Then C°p-*g<j>{C°p) (peM) defines an isomorphism of 9f onto the flowg'if. Since
gC ° g"1 is an MHP generator whose orbit closure g^ is isomorphic with <# we have
(by (2))

Conversely, if gCog"1 = C for g e G, then gC = C°g € % so left multiplication by
g defines an automorphism of % taking C to C ° g. Hence ^ is regular. •

If C is an MHP generator with % = CT, and <j> :<€ -> <£ is an automorphism, then
0(C) = gC for some g e G (by (3) of (2.5)). If ft e G, then clearly </>(C) = hC if and
only if h = ga for some a e A = C n G . Thus the group of automorphisms of %
may be identified with the set

We now consider the structure of MHP generators as well as the (apparently
more difficult) question of when an almost periodic point of 2M is an MHP generator.

The 'r-topology' on the group G = Mu is defined by the closure operator

CITA = A°unG = {A°U)U,

for A<=-G.G provided with the T-topology is a compact 7\ space. Group multiplica-
tion is (separately) continuous, as is inversion.

(2.6) LEMMA. (1) Let C be in M with C°u = C. Then Cu = CnGis T-closed in G.
(2) LetH,L^M. Then

{H°L°u)u = (H°u)u(L°u)u.

Proof. (1) CMc(C«»«)Mc(C»««H)McC»«nG = CnG=Cu,so

Cu°unG = (Cu °u)u = Cu

is T-closed.
(2) We may suppose that H°u = H and L°u=L and show that

(H°L)u=HuLu.
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Now

HuLu <^H°u°L°u=H°L°u=H°L

and, since HuLu c G, we have

Let a e(H°L)u, so a =pu, withpeH°L. Then peH°l, for /eL, and

a =p« e (H°l)°u =H°lu,

with /« e LM. Hence

so
ae(Hu)lu<=(Hu)(Lu). •

(2.7) THEOREM. Let C be an MHP generator. Then
(1) A = Cr\G = Cu is a r-closedsubgroup of G.
(2) IfK = CnJ, thenC = AK=A°K.

Proof. (1) A A C ( C ° « ° C » W ) « = C « = J 4 , so A is a r-closed subsemigroup of G,
and so [5, 2.11] A is a group.

(2) Let p € C and r e / with pv = p. Then

so v = uv 6 C. Thus D e C n / = /C, and p = puv e AK. Therefore

For the remainder of this section, we are concerned with the converse direction.

(2.8) LEMMA. Let A be a subgroup of G and let K be a non-empty subset of J.
Suppose that C = AK satisfies C°u = C. Then ueK, CnG = A, CnJ = K, and
A is r-closed.

Proof. Let v e K Then

v = uv 6 AK = C,

and

u = vueC°u = C.

Since every p eM has a unique decomposition

p = aw (a € G, weJ),

it follows that u&K and also that

CnG=A, CnJ = K.

Finally

so A is T-closed. •

If C = AK is as in (2.8) it follows from (2.6) (2) that the 'group part' of any power
of C (in the semigroup (2M,°)) is A.
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(2.9) THEOREM. Let A be a r-closed subgroup of G, let 0^K<=J and let C =
A°K°u. Suppose that either

(1) K°A°K°ucGKand (K°u)u <= A, or
(2) K°A°uuK°K°u^C.

Then C is an MHP generator.

Proof. (1) From (2.6),

Cu = (A °Kou)u = (A ou)u(K°u)u c AA = A.

Similarly,

(K°A°K°u)u<=A,

so (since K°A°K°u <=• GK),

K°A°K°uc:AK.
Then

C°C = C°C°u = (AoK°A°K°u)°u^(A°AK)°uc(A°A°K)°u

= {A°u°K)°u =A°K°u = C.

Note that, if v e K,

u = vuvu eK°A°K°u~ GK,

so M eK. Clearly, C°u = C and C is an MHP generator.
(2) If veK,

u = uvueA°K°u = C and C°u = C.

Also

C°C =A°K°A°K°u =A°K°A°u°K°u c:A°A°K°u°K°u

= A°A°K°K°uczA°A°A°K°u=A°u°K°u=A°K°u = C. •

Note that if C satisfies the hypotheses of (i), then C = AL, where L = C nJ<=K.
If K"u nJ = K, then C o / = K and C = AK.

(2.10) COROLLARY. / /A /s a r-closed subgroup of G such that (J°u)u<=A, then
C = A°J°u is an MHP generator.

(2.11) COROLLARY. Let Abe a r-closed subgroup of G, let Kd and let C = AK.
Suppose C°u = C, and thatK°A°K°u<= GK. Then

C = AK=AK°u=A°K°u=A°K

is an MHP generator.

Proof. {K°u)u <= (C'°u)u = Cu = A, so A°K°u is an MHP generator. But, as in
the proof of (2) in (2.9),

K°A°K°u<=AK = C,

so

and

A°K°u = C. U
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(2.12) THEOREM. Let C = AK, where A is a r-closed subgroup of G and 0 # K <= / .
Suppose C°u = C. Then the following are equivalent:

(1) Cisa MHP generator;
(2) C°CnJcK;
(3) A°.KuA>AuA"°A:c=C.

Proof. It is clear that (1) implies (2) and (3). Suppose (2) holds. Let p e C ° C, p = fiv,
PeG,veJ. Since (C ° C)w c A (2.6 (2)), 0 e A and

u e / S ^ O C n / = C°Cn/<=.K-.

Thus

and (1) is proved. If (3) holds, then

C ° C = AK ° AK <= A ° (A" ° A) ° K c A ° (AK) ° .K" c A ° A °(if °if)

C A ° A ° A ° * T C : A ° M ° . K ' = A ° . K : C C .

Note that « = i )«eCo« = C (where v e C n / ) , so C is an MHP generator. •

It is not clear that all of the hypotheses of (2.9)-(2.12) are necessary for the
conclusion that C (=A ° K ° u or AK) is an MHP generator. In particular, it is
possible that the hypotheses of (2.8) are sufficient, but we have been unable to
prove this.

In this connection, we recall that, if A is a r-closed subgroup of G, then C = A ° u
is an MHP generator, and the minimal flow it generates is maximally proximal (has
no non-trivial proximal extensions). Hence C = AK for some K c / and an interest-
ing problem is to determine the subset K of J such that C = A°u = AK. More
generally, if L <= / is such that C = A ° L is an MHP generator, for which subsets K
of / is it the case that C = AK (=A °K)l

3. MHP flows and disjointness
Recall that the minimal flows X and Y are disjoint (X1 Y) if the product flow
X x Y is minimal. If X, Y and Z are minimal flows, and <j>:X->Z, i/r: y - » Z are
homomorphisms, we say that X and Y are (relatively) disjoint over Z (and write
X±ZY, where the homomorphisms are understood) if the set

is a minimal subset of XxY. In this case, we also say that the homomorphisms 4>
and i/> are disjoint (and write <f> 1 &).

Also, if x0 e X and y0 e Y, we say that .Y is relatively disjoint from Y with respect
to x0 and y0 (and write X ±(xo<yo) Y) if there is a minimal flow Z and homomorphisms
</>:A"->Z, ili:Y-^Z with <£(xo) = eMyo) such that <t>Lij/. We now show that, if
X± (XChyo)Y, the flow Z in the preceding definition is unique. Precisely, we have:

(3.1) THEOREM. Suppose </>:X-*Z, ijf.Y^Z, c/>':X^Z', >I/':Y->Z' are
homomorphisms of minimal flows with <f>(xo) = <A(yo), </>'(*o) = *l>\yo), and <f>±il/,
<t>' 1 tl/'. Then Z is isomorphic with Z'.
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Proof. Write R for R^ and R' for R^. Since <f> Lip, </>' -Li^', then /? and /?' are
minimal, and (x0, yo)^R nR', so R = R'. Let

2 = <

If p,qeM with zp = zg, then

<M*op) = zp = zq = <f>(yoq),

so

(xop, yo<?)e/?=/?',

and

z'p = <A'(xop) = (/''(yog) = z'q.

Thus the map a:Z->Z', a(zp) = z'p, is well denned. By symmetry, the map
a':Z'-*Z, a'(z'p) = zp, is well denned and a is an isomorphism. •

We adopt the following notational conventions. If C and D are almost periodic
points in 2M, we write C-*D if there is a homomorphism </> from CT to DT
with <t>{C)=D. We also write </>:C-*D to denote this (unique) homomorphism.

If C, D, and E are almost periodic points of 2M, we write CLED if C->E,
£>-> £ and the flows CT and DT are disjoint over ET. (If CT is disjoint from
D7; we write C±D.)

(3.2) LEMMA. Lef C, D and E be MHP generators with CcE and D^E. Then
the following are equivalent:

(a) C±ED;
(b) C°p r\D°q^ 0 , for every p, q eMwith E°p= E°q;
(c) C°D=E.

Proof. Let <f>:C^>E, <(/:D->E. Suppose C ± E D. Let

& = [(C°p,D°q)\C°pnD°q*0 and E°p=E°q].

Then if is a closed invariant and non-empty (since (C, D) = (C ° u, D ° u) € if) subset
of /?< .̂ By the assumed relative disjointness,

i f = R<t>ii,'

That is,

C°p n,D°q^ 0 , whenever .E°p =E°q.

Next suppose (6) holds, and let / s U. Then

E°l =E = E°u,

so

and there is a deD with deC°l. Then

/eC°/ =

Thus
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Suppose (c) holds. If (C°p,D°q)eR^, then

E°p =E°q,

so

peE°q = C°D°q.

Then p e C°r for some reD°q, so

C°r = C°p, D°r = D°q

and

(C°p,D°q) = (C°r,D°r).

Therefore R.4,4 is minimal, and (a) is proved. •

(3.3) COROLLARY. Let C and D be MHP generators, % = CT, and 3) = DT. Then
the following are equivalent:

(1) the flows <€ and 3) are disjoint;
(2) C°pnD°q^0,forallp,qeM;
(3) C°D=M.

Condition (2) may be paraphrased as 'disjointness of flows is equivalent to non-
disjointness of sets'. Note that it implies the known (necessary) condition, in terms
of groups, AB = G [5] (which is sufficient in case T is strongly amenable).

In [3], it is shown that disjointness is a 'highly proximal invariant'. That is,
disjointness of two flows depends only on their highly proximal equivalence classes.
This implies:

(3.4) COROLLARY. Let X and Ybe minimal flows, xeX,yeY,y:M-*X,8:M-*Y,
defined by y{p) = xp, S(p) = yp (p e M). Then X and Y are disjoint if and only if

y~\x)°8~\y)°u=M.

Now we consider disjointness (and relative disjointness) of flows defined by MHP
generators.

If C e 2M with C ° u = C, we write C* for the MHP generator

[reM\C°r=C°u]°u.

Note that if y: M -• £? = CT, y(p) = C °p, then

so that

If C contains an idempotent, then C* <= C.

(3.5) THEOREM. Let CandDbe MHP generators. Then the following are equivalent:
(a) C°Disan MHP generator;
(b) D°CaC°D;
(c) D°C = C°D;
{d) C + C°D;
(e) D°C^>C°D;
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(/) there is an MHP generator E such that C ±ED;
(g) C^(C°D)*;
(h) C<=(C°D)*;
(/) (D»C)*c(C»D)*.

Proof. (a)^(b).D°Cc(C°D)°(C°D) = C°D.
(a)4>(c). This follows from (3.2), since the condition C±ED is symmetric in C

and£>.
) . C<= C°D and since both C and C°D are MHP generators, we have

The implication (c)^>(b) is obvious, and (&)=>(a) since

(a). By(d) C^C°D and always D-*C°D. Then

C = C*-*(C°£>)* and D =£>*^(C°£>)*,
so

C<=(C°£>)*, Dc(C°D)*

and

C»D c (C°£>)*°(C°D)* = (C«D)*.

Since always (C°D)* <= C«A we have

C°D = (C°£>)*

which is an MHP generator. Now (/)<^(a) follows from (3.2) and (e)^(d) since

(g)=>(a). C^(C°£>)* is equivalent to Cc=(C°Z))*. Always D^C°D, so

£>-»(CoD)*, C°£>c(C°£>)*

and

D)*cC»D and C°£> = {C°D)*.

). C-»D»C, so C-+(/>C)*, and

Cc(Z)»C)*c(C«D)*.

Since (c)^(e) and (c)^>(/) are obvious, as is the equivalence of (h) with (g), the
proof is completed. •

Note that if the MHP generators C and D satisfy the conditions of the preceding
theorem, then C l c . D D (that is, the MHP generator E in (/) is C°D).

(3.6) LEMMA. Let 1 be a non-empty collection of MHP generators and let

C #

Then D = C*'°u is an MHP generator.

Proof. Since D c C for all CeS,

so
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hence

403

•
(3.7) LEMMA. Let C,E be MHP generators with C^E. Then there is a minimal
(with respect to inclusion) MHP generator D such that C°D =E.

Proof. Let A be the collection of MHP generators D' with C°D' = E. Note that
E 6 A, so A j^ 0 . Let A' be a totally ordered subfamily of A,

Do = r\[D'\D' <=A'].

By (3.6), D0°u is an MHP generator. Since A' is totally ordered, it follows easily that

C°D0 = E,

and therefore

C°(Do°u) = (C°Do)°u =E°u =E.

Thus Zorn's lemma applies to A. •

We may interpret (3.7) as follows. If <f>: X -» Z is a homomorphism of MHP minimal
flows, then there is an MHP minimal flow Y and a homomorphism i//;Y->Z such
that \\i is 'maximally' disjoint from 4>. (The precise statement is in theorem 4.13.)

4. Lifting properties
In this section we shall consider the commutative diagram of minimal flows and
homomorphisms shown as (#) . We shall be concerned with the relation between
dynamical properties on the upper and lower levels of the diagram. The main
interest is the case that the vertical arrows are proximal or highly proximal, but
this is not assumed unless it is explicitly stated.

We recall the following definitions.
Let A be an index set of cardinality > 1 and let <f>x • XK -* Y (A e A) be homomorph-

isms of minimal flows (with the same codomain Y). The collection (4>X)\£A is said
to be Bronstein if the subset /?<*x)xeA of xXA defined by

W l ) j l
some yeV, = y, for all A € A]

has a dense set of almost periodic points. (This is usually called the generalized
Bronstein condition [10].) A homomorphism of minimal flows <f>: X -* Y will be
called Bronstein ('$ satisfies the Bronstein condition') if (</>, </>) is Bronstein; that
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is, the relation

has a dense set of almost periodic points. Finally, the minimal flow X is Bronstein
if the homomorphism X -»1 is Bronstein. (This is always the case if the acting
group T is strongly amenable [7].)

The homomorphism <f>: X^> Y is called RIC (relatively incontractible) if

xoF°p = <t>~1(yop) (peM),

where xozX with xou = x0, yo~<f> (*o), and F = [a e G/yoa = y0]. The homomor-
phism <t>: X -* Y is RIC if and only if cj> 1 ip for every proximal extension t//: Z -» Y
([7], (X, 1.3)), so the notion of RIC extension is independent of the choice of a
basepoint.

If x e X, we write J(x) for the set of ueJ such that xu = x.

(4.1) THEOREM. (1) The homomorphism 4>: X-* Y of minimal flows is Bronstein
if and only if, for every x e X and u e J(x),

R4, = ({x}x<f,-\<t,(x)u)T.

(2) Let <f>: X e Y and <frk:ZK^>Y (A e A), be homomorphisms of minimal flows,
and suppose that each ip>, is RIC. Then (<f>, (IAA)AEA) is Bronstein. (In particular, a
RIC extension is Bronstein.)

Proof. (1) Let fi0 denote the almost periodic points of R,/,. Let xeX, ueJ(x), and
let

Then L<=-0.^ and, if L = R#, then <f> is Bronstein. Suppose that </> is Bronstein. We
first show that il^u c £. Let

(x',y') = (x',y')uen<b,

so

x' = xa, y' = x(i,

where a, fi e G. Then

so

<t>(xPa-x) = <t>(x),
and

(x,x^a-1)e{x}x<f>-1((f>(x

Then

(x',y') = (x,x!3a-1)eL

Finally, if (*', y')e^<*, then

(x',y') = (x'u,y'u)w,

for some minimal idempotent w, and
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This completes the proof of (1). The proof of (2) is straightforward and is therefore
omitted.
Before discussing (#) we consider conditions under which a homomorphism <f>:C-*
D of MHP generators is Bronstein or RIC. These criteria will be applied at the
end of the paper.

(4.2) THEOREM. Let C and D be MHP generators with C <= D. Let </>: C -> D. Then
(1) 4>isRICifandonlyifDu°C = D;
(2) <l> is Bronstein if and only if C°Du °C = D.

Proof. (1) Du°u is an MHP gejierator and the minimal flow (Du°u)T is the
maximal proximal extension of DT. It follows from (4.1) (2) that <f>:C-*D is
RIC if and only if

Du ° C = Du ° u ° C = D.

(2) Suppose C°Du°C = D. Let (C°p, C°q)eR+, so D°p =D°q. Then

qeC°Du°C°q =D°q=D°p = C°(Du°C°p).

Then there is an r e Du °C°p, with q e C ° r, so

C°q = C°r.
Let reDu°s, with s eC°p. Let (/,) and (/i) be nets with

(ti)cT, t^s, (fi)<=Du and /,*,-* r.
Then

C o q = lim C °fjti and C °p = C ° s = lim Cth

so

By (4.1) (1), <t> is Bronstein.
Conversely, suppose that 4> is Bronstein and let deD. Then (C, C°d)eR<t,, so

there are nets (/,)<= T, (/,)<= Du with

(C,C°</) = lim(C,C°/;)f,
(4.1 (1) again). Let

c = lim utt e lim Q, = C,
and let

q =limfiti€Du°c.
Then

so

deC°d = C°qcC°Du°C.
Hence

and
C°Du°C = D. •
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Now we turn to a detailed discussion of (#) .

(4.3) LEMMA. In ( # ) , suppose (<f>, ifr) is Bronstein and £ is proximal. Then

Proof. Let (x, y) be an almost periodic point in R^ and let (x', y') be almost periodic
in X' x Y' with

<T(X') = X, r(y') = y.

Then, by the commutativity of (#) ,

so

and since also (4>'(x'), tf/'(y')) is almost periodic,

<£'(*') = <AV) and (x',y')eJ

Since almost periodic points are dense in R^ we have

The opposite inclusion always holds, so the proof is completed. •

(4.4) LEMMA. Let <f>:X-> Y, tf/:Y-*Z be homomorphisms of minimal flows with
<l> open and i(t HP. Let z e Z, y e il/~l{z), and psM. Then

Proof. Since <f> is open, the map A^4>~^{A) of 2Y to 2X is continuous. Then

4>-\*-\z))°P = <t>-\*l>~\z)°p) = <t>~\yp).

(4.5) LEMMA. In (#) , suppose that <$>, (ft' and ij/' are open and that £ is HP. Then

Proof. Let zoeZ and zxe^"'Uo). Note that

*••*• = U t ^ ^ ' U i P ) x </''"1UiP)|p £ A/].

By (4.4),

R+-r = [{<t>'~\Cl(zo)«p)) x (^'-'^"'(zo) «• P))|p e M].

Now

o - ^ ' - ^ r ' U o ) ^ ) ) = ^"'(zoJop = ^"'(zoP)
(since <̂  is open), and

T(*'-1(

Also
tl/~\zop)

so

(o- x T)( /?#V) = UW^^oP) X (/'~1(zo) ° p|p 6 Af ]
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(4.6) LEMMA. Let (f>:X-*Z and tp:Y ->Z be homomorphisms of minimal flows.
Suppose that {<f>, </0 is Bronstein or that one of<f> and t// is open. Let Wbe a non-empty
open set in R^. Then there are open subsets Uof X and Vof Ysuch that:

(i) (U x V) nR^ is a non-empty subset of W;
(ii) ifxeU, there is a ye V with (x, y) e R^.

Proof. Define d:R^-^Z by

0 = (0 x (/OIR^,

and choose Uo and Vo open in X and Y respectively with 0 ^ Uo x Vo n 7?,^, <= W.
It is sufficient to prove that

is non-empty. (For, in this case,

U=Uon<t>-1(W) and V=

satisfy (i) and (ii).)

If {<f>, t{/) is Bronstein, let (x0, yo) be an almost periodic point of Uox Vo

and define

n(x0 , y0)T.

Since (x0, yo)7'is minimal,

int 6>((f/0 x Vo) n R+>) => int 0( W) ^ 0 .

If </> is open, then

is open and non-empty, so

i n t ( t f

(If i/f is open, the argument is completely analogous.) •

(4.7) COROLLARY. Let <fi:X-*Z and tf/:Y-+Z be homomorphisms of minimal
flows, and suppose that one of <f> and if/ is open. If <f> is point distal, then (<f>, i/r) is
Bronstein.

Proof. Let W be a open subset of R^ and let U<=X and Va Y be as in (4.6).
Let x € U be such that, if <j>(x) = <j>(x'), then x and x' are distal. Let y e V be such
that (f)(x) = i//(y), and let w be a minimal idempotent such that yw = y. Then

<f>(xw) = (/Kyw) = ip{y) = 4>(x),

and * is proximal to xw, so xw = *. Then (x, y) e [/ x V c W is an almost periodic
point. •

(4.8) COROLLARY. An open point distal homomorphism of minimal flows is RIC.

Proof. Let <f>: X -* Y be open point distal, and let \\i: Z -* Y be proximal. Now, by
the previous corollary, R^ has a dense set of almost periodic points. But, since i/f
is proximal, the projection R^, -> X is proximal, and so R+* is minimal. Thus <f> _L (A,
and by (4.1) (2), 0 is RIC. D
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(4.9) THEOREM. In (#) , suppose that a and r are HP. / / ((/>', i/O is Bronstein or
4>' is open or tjj' is open, then

O-XT: R#V -*• (a- x T)(RW)

is irreducible.

Proof. Let W be an open subset of R##. Let U' <= X' and V <= Y' be open sets
as in (4.6). Then

U2 = (r~\X-a{X'-U'))
is open and non-empty (since o- is irreducible) and int <t>'{U2) is a non-empty subset
of ilt'(V). Hence

V2 = iA'"1(int«/.'(C/2))n V

is non-empty and open. Define

V3 = T~\Y-(Y'-V2)).

Then V3 <= V2. Since T is irreducible, V3 is non-empty and

Clearly,

and

2 x V3))

Hence W contains a<rXr fibre, so a-xT is irreducible. •

Recall that a flow is (topologically) ergodic if every invariant non-empty open set
is dense. In the following lemma, the flows X and Y need not be minimal. We
omit the straightforward proof.

(4.10) LEMMA. Let <j>: X -> Y be an irreducible homomorphism. Then Y is minimal
(ergodic) (has a dense set of almost periodic points) if and only if X has the
corresponding property.

Given homomorphisms of minimal flows </> :X -*Z, 4i: Y -*Z we apply the results
obtained in this section to the diagram *(</>, </0 (or just (*)). Here (as in § 2), X*,
Y* and Z* are the MHP extensions of X, Y and Z, respectively, a, I and T are
the natural HP homomorphisms, and <f>* and ip* are the induced (open) maps.
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(4.11) THEOREM. Consider (*).
(1) / / (<f>, tp) is Bronstein, then (<(>*, iff*) is Bronstein.
(2) If4>±tthen<f>*±tlt*.
(J) Suppose (<f>, tp) is Bronstein or <f> (or tp) is open. Then

(a) 4> lip if and only if </>* lift*;
(b) R^ is ergodic if and only if R^,*^* is ergodic.

(4) Suppose <fi or ip is open. Then (</>, tp) is Bronstein if and only if (</>*, tp*) is
Bronstein.
Proof. Use (4.3) (or 4.5), (4.9) and (4.10). •

(4.12) THEOREM. Let <j> :X-> Y be a homomorphism of minimal flows.
(1) If 4> is Bronstein or RIC, then <f>* has the corresponding property.
(2) If $ is open, then <f> is Bronstein or RIC if and only if<f>* has the corresponding

property.
(3) / / 4> is open or Bronstein, then <j> is weakly mixing (R^j, is ergodic), if and

only if 4>* is weakly mixing.

Proof. Most of the assertions follow directly from (4.11). For the RIC versions of
(1) and (2), use the characterization of RIC extensions given in the discussion
preceding (4.1). •

Now, as promised we generalize (3.7).

(4.13) THEOREM. Let <f> :X -*Z be an open homomorphism of minimal flows. Then
there is a minimal flow Y and a homomorphism ip:Y' -*Z which is 'maximally
disjoint' from <{>. That is, <f> lip and if 6: Y' -» Yisa homomorphism {with Y' minimal)
such that ip ° 61 (j>, then 6 is an isomorphism. Moreover, the flow Y is MHP.
Proof. We first assume that both X and Z are MH?. In this case we may suppose

Z=ET,
where C and E are MHP generators with C <= E. Let D be an MHP generator as
in (3.7) (that is, C°D=E, and D is inclusion minimal), let Y = DT, andip:Y^Z
be denned by

ip(D °p) = E°p.

Now, suppose 6 : Y' -» Y is a homomorphism of minimal flows with tp ° 61 <j>. Let
y 'ey 'with

y'u = y', 0(y') = D,

and S':M^Y',

D* = 8'-\y)°u,

so

Y'* = D*f;

8*{D* op) = y'p,

is highly proximal. Now D* is an MHP generator with D*'~ D, and [3, lemma III. 1]
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i//88*±4>,so

C°D* = E.

By the defining property of D, we have D* = D, and it follows that 6 is an
isomorphism. Thus the theorem is proved if X and Z are MHP.

Now we suppose that X is arbitrary and that <f> is open. Let <f>* :X*-*Z* be the
induced homomorphism of MHP flows. By the first part of the proof there is an
MHP minimal flow Y = Y* and a homomorphism ip: Y->Z* such that i/f is
maximally disjoint from <f>*. If, as in (*), £: Z*-*Z and ij/ = £°tj/: Y-*Z, then by
(4.11) (3), <f>lil/. We show that tjj is maximally disjoint from <f>. For suppose W
is a minimal flow and 8: W-> Y is a homomorphism for which <f> ±<j/°6. Then,
lifting the homomorphisms <f>:X->Z and \p ° 6: W -* Z to their MHP extensions,
we have, by (4.11) (2), that

(f>*±(iji°0)*.
But

so
</>*±(A°6>*.

By the maximality of ip, 6* is an isomorphism and (recalling that Y* = Y) it follows
that 0 is an isomorphism. The proof is completed. •

Note that (4.13) applies if <f> is RIC or if Z is MHP.
In what follows, we write X xwY instead of R^ (where <f>: X -> W and tft:Y-*W

are homomorphisms) and write

for the homomorphism

Suppose </>: X -» W is an open homomorphism of minimal flows and let i//: Y -* W
be a homomorphism which is maximally disjoint from </>. Let Z = X xw Y, and
suppose A': Z ' -+ W is a homomorphism with A' 1 (</>, ip). Then

X xw (Y xwZ') = (X xw Y) xwZ' = Z xwZ'

is minimal, and therefore Y x WZ' is minimal and disjoint from X over W. By the
assumed maximality of t//, Y xwZ' is isomorphic with Y. But in this case

{YxwZ')xwZ'=YxwZ\

and so (Y xwZ') xwZ' is minimal. It follows that Z ' xwZ' is minimal. But this
can only occur if A' :Z'-» W is an isomorphism. This proves:

(4.14) THEOREM. If<f>:X-> Wand i//:Y-* Ware homomorphisms of minimal flows
such that \\i is maximally disjoint from c/>, then any homomorphism A' :Z'-*W which
is disjoint from {</), tj/) is an isomorphism.

(4.15) COROLLARY. If X is any minimal flow and Y is a maximal minimal flow
such that X1Y, then
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In addition to (*), there are other diagrams derived from ( # ) which are naturally
associated with a pair of homomorphisms <j>:X-*Z, t//:Y-*Z. For instance, the
flows on the upper level of ( # ) can be the maximal proximal extensions of X, Y,
and Z. Another case of interest is obtained by putting, for z

and
Z' = Z.

We hope to study these and related constructions in a subsequent paper.
We conclude by obtaining a sufficient condition for a homomorphism of minimal

flows to be RIC. A homomorphism cf>: X -* Y is called regular if, whenever (x\, x2) e
R4 is an almost periodic point, there is an automorphism 6 of X such that

(So, i fY = l,(/>:AT-*lis regular if and only if the minimal flow X is regular.)

(4.16) THEOREM. Let C and D be MHP generators with C<=-D, and let <f>: C -*• D.
(1) If <f> is regular, then Du ° C is an MHP generator.
(2) / / <f> is regular and Bronstein, then <j> is RIC.

Proof. (1) If feDu, then (C, C°f)eR,t, is an almost periodic point, and there is an
automorphism 6 of CTsuch that d(C) = C°f, so

rx°e-.c^rxc<>f
is an isomorphism. Since f~lC°f is an MHP generator (2.5 (4)),

rlcc/=c.
Then, if feDu, we have

Du°C = Du°rx°C°f = Du°u°C°f = Du°C°f,

so

Du°C = Du°C°Du.

Hence

Du°C°Du°C = Du°C°C = Du°C.

(2) We have C <= Du ° C and, since Du ° C is an MHP generator,

C°Du°C = Du°C.

By (4.2) (2),

C°Du°C = D,

so

Du°C=D

and, by (4.2) (1), <f> is RIC. •

We omit the easy proof of the following lemma.

(4.17) LEMMA. Let <f> :X-> Y be a regular homomorphism of minimal flows. Then
the induced homomorphism <f>* :X*-> Y* of the MHP extensions is also regular.
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(4.18) THEOREM. Let 4> :X -> Y be a homomorphism of minimal flows which is

open, regular, and Bronstein. Then <j> is RIC.

Proof. The homomorphism <j>* is Bronstein (4.12 (2)) regular (4.17) and open

(always). By (4.16) <j>* is RIC. It follows from (4.12) (2) that <f> is RIC. •
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