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Abstract. We study minimal flows and their extensions by means of the associated
maximally highly proximal flows. These, in turn, can be represented by highly
proximal generators, which are certain subsets of the universal minimal flow. From
this point of view we obtain information on relative disjointness, coalescence, the
Bronstein property, and RIC extensions.

Introduction

In this paper we study a class of minimal flows which can be defined in terms of
certain subsets of the universal minimal flow. In [3], the highly proximal extensions
were introduced. These can be described as the extensions for which a fibre is
shrunk uniformly to a point. To every minimal flow there is associated a unique
‘maximally highly proximal’ (MHP) minimal flow which, in turn, is defined by a
‘maximally highly proximal generator’, a subset of the universal minimal flow M,
whose orbit closure in the ‘hyperspace’ 2" is the given flow.

The present paper is devoted to an intensive study of these flows and some
related questions. In § 1, we show that 2™ admits an associative multiplication. In
addition to its application here, this semigroup structure may also be useful in other
problems in topological dynamics. In § 2, the main objects of interest are defined
and studied. We review relevant concepts and results from [3], and give several
alternative characterizations of maximally highly proximal flows and generators. It
is shown (when the acting group has the discrete topology) that there are no
non-trivial distal maximally highly proximal flows, and coalescence of MHP flows
is discussed. Since disjointness is a ‘highly proximal invariant’, it is natural to
consider disjointness and relative disjointness from the point of view of MHP
generators, and this is done in § 3. We also consider some questions concerning
RIC extensions and the Bronstein property, and use the results obtained to discuss
disjointness of minimal flows more general than the MHP flows (§ 4).

We now establish some terminology and notations. A flow is a continuous action
of a topological group T on a compact Hausdorff space X. We write (X, T), or
just X, for a flow and denote the action of t€ T on x € X by

(x, )y—>xt.
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The flow X is minimal if the orbit closure xT=X for all xeX. The trivial
(one-point) flow will be denoted by 1. If X and Y are flows (with the same acting
group T'), a homomorphism from X to Y is a continuous equivariantmap¢ : X > Y:

P(xt)=¢(x)t, forxeX, teT.

The term ‘extension’ is a synonym for homomorphism.

If (X, T) is a (not necessarily minimal) flow, its enveloping semigroup, E or E(X),
is the closure of the T in X™ (the collection of all maps from X to itself, provided
with the topology of pointwise convergence). E is a semigroup of (not, in general,
continuous) maps of X onto X.

For a fixed group T, there is an isomorphically unique universal minimal flow
M. Its defining property is that every minimal flow (X, T') is a homomorphic map
(‘factor’) of M. The flow M is isomorphic with a minimal right ideal in E(M). Thus
M is itself endowed with a semigroup structure, and acts on any minimal flow. We
write J for the set of idempotents in M and choose u € J. (This idempotent u will
be fixed in this paper.) If G = Mu then G is a group (which can be identified with
the group of automorphisms of (M, T')), and every p € M can be uniquely decom-
posed as p = av, when a € G and v € J. See [5] for further details and as a general
reference.

1. 2™ as a semigroup

If (X, T) is a flow, then T naturally acts on the ‘hyperspace’ 2%, the space of
non-empty closed subsets of X, provided with the Hausdorff topology. A quasi-
factor of X is a minimal subset of the flow (2%, T). If X is minimal, the universal
minimal flow M acts on 2% by means of the ‘circle operation’: if Ae2* and pe M,
then Aop €2¥ is defined by

Acp=1lim A¢,
where (1) is a net in T with ¢, » p (see [7] and [3]).

In particular, M acts on 2" via the circle operation. We now show that the circle
operation can be extended so that 2™ (and, in fact, all subsets of M ) becomes a
semigroup.

If Ce2™ and @ # D < M, we define

CoD={J[C-d|deD].
(Note that if de M, Co{d}=C°d > Cd.)
(1.1) LEMMA. (1) If C, De2™, then CoD e2™ (‘the product of two closed sets is

closed’).
(2) IfCe2™, D<M, then CoD =C-D.

Proof. The straightforward proof of (1) is omitted. If C and D are as in (2), then
C-D<(C-D,
which is closed by (1), so

CoDc CoD.
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Letge Ce°D,soqeCo8, for § e D. Let (d,) = D be a net with d, > 8. Then there
are g, € Cd, with g, »q. Thus

q.€Ced,cCe°D and qeC-D. d
(1.2) LemMA. If C, D €2™ and E = M, then
Co(DoE)=(CeD)°E.
Proof. Let fe D<E. Then fe Dog, for some ¢ € E. We show

Cofc(CeD)os.
Let (d,)< D, (t,)< T be nets with
t,>e, dit,->f

Then
Codut,» Cof
and
Ceod,t,<(CoD)t, > (C°D)oe.
Hence
Cofc(CoD)osg
and therefore
Co(DoE)c=(CeD)°E.
To prove the opposite inclusion, let ¢ € E, and let (¢,) be anetin T with ¢, - £. Then
(CoD)t, > (CeD)eg,
and also
(CoD)t, =Ceo(Dt,)» Co(Dog),
S0
(CoD)eg=Ceo(D°E)
and hence
(CoD)eEcCe(D¢°E). O

(1.3) THEOREM. With respect to the circle operation, 2™ is a semigroup in which
multiplication is continuous in the second argument.

Proof. The continuity assertion (if D, » D then C°D, -» C°D) is straightforward.
The other properties follow from (1.1) and (1.2). O
Now, we extend the circle operation to all non-empty subsets of M by defining
CeD=C-°D (C,D<M).
If G, D, E = M, then
(CoD)oE =(CeD)oE =(CoD)oE =Co(D°E)=Co(D°E)=Co(D°E),
so multiplication is still associative.
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2. Maximally highly proximal flows and generators
We begin this section by reviewing the notion of highly proximial extensions. If
¢ :X > Y is a homomorphism, then 22 is the closed invariant subset of 2% defined
by
2*=[Ae2¥|Ac ¢ \(y), for some ye Y].
Write ¢ for the homomorphism of 2% to Y defined by ¢(A) =y, where A = ¢ ' (y).
Recall that x, x' € X are proximal if there is a z € X and a net (t;) = T with

xt;=>z and x't->z.

The homomorphism ¢ : X > Y is called proximal if x and x' are proximal whenever
d(x)=d(x").

Let ¢: X > Y be a homomorphism of minimal flows. Then ¢ is called highly
proximal (HP) if it satisfies one of the following equivalent conditions:

(a) ¢ is irreducible (if A < X such that ¢(A)=Y, then A = X).

() The homomorphism ¢ :2% > Y is proximal.

(¢) 2% hasa unique minimal subset.

(d) Thereis a y€ Y and a net (;) in T such that (df’(y)ti) converges (in 2%) to
a singleton.

(e) fyeY,peM and xe ¢ '(y), then ¢ '(y)op = {xp}.

(The equivalence of (a), (d) and (e) is shown in [3]. It is trivial that (e) > (b)=> (¢),
and (¢)=>> (d) follows from the fact that X is a minimal subflow of 2°.)

It is an immediate consequence of (b) that highly proximal extensions are
proximal. The converse fails (see [3]). A minimal flow X is said to be maximally
highly proximal (MHP) if it admits no non-trivial highly proximal extensions. (That
is, if ¢ : Z » X is highly proximal, then ¢ is an isomorphism.) In [3], it is shown
that to very minimal flow X there is associated a unique MHP flow X* which is
an HP extension of X. It follows that the class of minimal flows (with acting group
T) is partitioned with ‘HP equivalence classes’ —two flows are HP equivalent if
their associated MHP flows are isomorphic.

The MHP flow X* is obtained as follows: if ¥: M - X is a homomorphism and
x € X, then

X*=[y " (x)oplpeM].
It follows from this representation that to every homomorphism of minimal flows
there is induced a homomorphism of their maximally highly proximal exten-
sions. In fact, if $: X->Y, y:M->X, §=¢y:M->Y, xeX, and y = ¢$(x), then
¢*: X*> Y* is defined by
¢*(y H(x)ep)=8""(y)ep  (peM).

Moreover, the map y '(x)op > xp of X* to X is HP. It is also shown in [3] that
a minimal flow X is MHP if and only if some (equivalently every) homomorphism
from M to X is open. (It follows that every homomorphism from a minimal flow
to X is open. In particular, ¢*: X*-> Y* is open.)

In case T is endowed with the discrete topology we shall characterize the MHP
minimal flows in terms of the topology of the phase space. Recall that a topological
space is extremely disconnected if the closure of every open set is open.
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(2.1) THEOREM. Let T be a discrete group. A minimal flow (X, T) is MHP if and
only if X is extremely disconnected.

Proof. If Z is any compact Hausdorff space there is an associated ‘Gleason space’
Zs which is compact Hausdorff and extremely disconnected, and there is a surjective
continuous map from Zs to Z [1]. Moreover, if T is a discrete group which acts
minimally on Z, there is a minimal action of T on Zs, and the map Zs»>Z is a
homomorphism. Therefore the universal minimal flow M for the discrete group T
is extremely disconnected. Now if (X, T') is MHP, then the homomorphism y : M - X
is open, and it follows easily that X is extremely disconnected. Conversely, if (X, T')
is 2 minimal flow with X extremely disconnected, then it is an elementary exercise
[1%, 17P] that there is no irreducible continuous map with codomain X. Thus
(X, T) is MHP, and the proof is completed. O

Note that, if X is a minimal flow and, as above, X5 is the minimal flow on the
Gleason space, then (still assuming the acting group T is discrete) X is isomorphic
with X*. For the homomorphism from X5 to X is irreducible, hence HP, and X5
is MHP by (2.1), so Xz =X*,

{2.2) TueOREM. Let T be a discrete group. If (X, T) is distal and MHP, then X is
a finite space (and so (X, T) is equicontinuous).

Proof. Let (X.q, T') denote the maximal equicontinuous factor of (X, T'). Now any
homomorphism whose domain is a distal minimal flow is open, and’it follows that
Xeq is extremely disconnected. An equicontinuous flow has a homogeneous phase
space [5] and any extremely disconnected homogeneous compact space must be
finite [4]. So X4 is finite.

If X is infinite, the canonical homomorphism 7 : X » X, is non-trivial and, by
the Furstenberg structure theorem [6], there is a factor Y’ of X which is a non-trivial
almost periodic extension of X.,. But, as is easily checked, an almost periodic
extension of a flow on a finite space is equicontinuous. (See [8] for a more general
result.) That is, X' is an equicontinuous flow. This contradicts the definition of X,
as the maximal equicontinuous factor of X. O

A minimal flow is coalescent if every endomorphism is an automorphism. We now
find conditions for the MHP extension of a distal minimal flow to be coalescent.
First, we require a lemma.

(2.3) LEMMA. Let X and X' be minimal flows with X distal, and let w: X' > X be
a proximal extension.

(1) If ¢': X'> X' is an endomorphism, then there is an endomorphism ¢ of X
such that w¢' = .

(2) Let ¢ and ¢' be endomorphisms of X and X' respectively with w¢' = pm.
Suppose ¢ is not an automorphism. Then ¢' is not an automorphism.

Proof. (1) If x € X, define
¢ (x)=md'(x),

where x'e 7 '(x). To see that ¢ is well defined let y'e 7 (x). Then x' and y' are
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proximal, so m¢'(x') and wé'(y') are proximal. Since X is distal,
md'(x") =md'(y").
(2) Let xq, x,€ X, with x4y # x, and ¢ (x,) = ¢{x2). Let x1, x5 € X' such that
m(x1)=x1,  mw(x2)=1xs,

and (x{, x2) is an almost periodic point of X X X. Now, if ¢'(x1) # ¢'(x3), then
(d'(x3), ¢'(x3)) is an almost periodic point of X X X with

7P (x1) = dm(x1) = ¢ (x1) = ¢ (x2) = d7(x2) = m'(x2).
This contradicts the assumption that = is proximal. O

(2.4) THEOREM. Let X be a distal minimal flow. Then X* is coalescent if and only
if X is coalescent.

Proof. Suppose X is not coalescent. Let ¢ be an endomorphism of X which is not
an automorphism, and let ¢* be the induced endomorphism of X*. By (2) of (2.3),
¢* is not an automorphism.

Suppose X is coalescent, and let ¢* be an endomorphism of X*. By lemma 2.3
(1), ¢* projects to an endomorphism ¢ of X which, by assumption, must be an
automorphism.

Let ¢* be the lift to X * of ¢ ~'. Then, if  : X* - X is the natural homomorphism,

mprop*=m
and, if x*e X*, ¢*¢*(x*) is proximal with x* (since 7 is HP, hence proximal).
But this is impossible unless ¢*¢* is the identity. O

Since there are non-coalescent distal minimal flows [9], theorem 2.4 shows that
there are MHP minimal flows which are not coalescent.

As we have noted, an MHP minimal flow can be ‘represented’ as a quasi-factor
of the universal minimal flow M. This motivates the following definition. Fix an
idempotent 4 in M. A non-empty subset C of M will be called a maximal highly
proximal generator (‘MHP generator’) if ue C and Ceop = C for all pe C (so that,
ifpeM, Cop=C if and only if pe C).

If C is a subset of M, with ue C and C-~u = C, then the following conditions
are equivalent [3, theorem 1.3]:

(i) C is an MHP generator;

(ii) the sets [Coplp € M]form a partition of M ;

(iii) Cep<=C forallpeC.

Thus, if X is a minimal flow x € X, and y : M > X is defined by

y(p) = xp,
then
C=y"'(x)ou
satisfies (ii}) and so is an MHP generator. Also, if C is an MHP generator, the

homomorphism p+—> Cep is open (by condition (ii) above). Hence the minimal flow
CT is in fact an MHP flow.
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Note that if & # D €2 is an idempotent (D e D =D) and C =D ° u, then

CoC=DouoDey=DoDou=Dou=C.
Since D is closed and DD < D, D contains an idempotent v, so u =vu € C, and
therefore C is an MHP generator.
The next theorer correlates algebraic properties of MHP generators with the
dynamical properties of the minimal flows they define.

(2.5) THEOREM. Let C and D be MHP generators and let € =C_T, @ =DT. Then

(1) Ifge G, gCog™" is an MHP generator.

(2) There is a homomorphism ¢ : € > D with $(C) =D if and only if C = D.

(3) The flows € and @ are isomorphic if and only if B€ = D, for some B € G.

(4) The flow € is regular if and only if gC<c €, for all ge G if and only if
g 'Cog=C, forallgeG.

(Recall that a minimal flow X is regular [2] if, whenever x, x' € X with (x, x’) an
almost periodic point of X X X, then there is an automorphism of X taking x to x'.)

Proof. (1) Let E=gCog'. Then u € E, and
Eou :gCog—loungog_le.
Also
EoE:(gCog_l)o(gCog_l)zgCouCog—l=gCoCog_1=gCog—l=E'
(2) If C< D and pe M such that Cep=C, thenpe C< D, so

Dop=D.
If p, g e M with Cop = Ceogq, then
DepnDog#J,
$O
Dep=Doq.
Then

¢(Cop)=Dep  (peM)

defines a homomorphism from € to & with ¢(C) = D. Conversely, if ¢ is such a
homomorphism and p € C, then

Cop = c
$O
Dop=¢(Clep=¢(Cep)=¢(C)=D
and pe D.
(3) Sufficiency is clear. Suppose ¢ : € > &'is an isomorphism. Then
$(C)=D-8,
for some B e G. Let
D'=B7'D-B.
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By (1) D' is an MHP generator and, if @'=D'T, B '¢ : € > @' is an isomorphism
with

B'¢(C)=D".
By (2) C=D'so

B7'¢(C)=C
and

¢(C)=D-p=BD"'=C.
If follows that 86 = 9.
(4) For ge G, gC e € if and only if gC°g '€ € if and only if gCeog ™' = C (since

ueCngCog"). Suppose € is regular. Then, if g€ G, there is an automorphism
& of € such that

S(C)=Cog™.

Then Cop —» gd(Cop) (p € M) defines an isomorphism of € onto the flow g%. Since
gC © g~ is an MHP generator whose orbit closure g% is isomorphic with € we have

(by (2))

gCo g#1 =C
Conversely, if gC-o g '=C for ge G, then gC = Cog € € so left multiplication by
g defines an automorphism of € taking C to Ccg. Hence € is regular. O

If C is an MHP generator with € = C_T, and ¢ : € - € is an automorphism, then
¢(C)=gC for some g € G (by (3) of (2.5)). If h € G, then clearly ¢(C) = hC if and
only if & =ga for some a € A =C N G. Thus the group of automorphisms of €
may be identified with the set
[gAeG/Alg ' Cog=C].
We now consider the structure of MHP generators as well as the (apparently

more difficult) question of when an almost periodic point of 2" is an MHP generator.
The ‘r-topology’ on the group G = Mu is defined by the closure operator

clLA=AounG=(A°u)u,

for A = G. G provided with the 7-topology is a compact T space. Group multiplica-
tion is (separately) continuous, as is inversion.

(2.6) LEMMA. (1) Let Cbein M with Cou=C. Then Cu=C G is t-closed in G.
(2) Let H L<M. Then

(HoLeouw)u=He-ouw)u(Leu)u.
Proof. 1) Cuc(Cucu)u<(Couct)ucCounG=CnG=Cu,so
CuounG=(Cuou)u=Cu

is 7-closed.
(2) We may suppose that Hou = H and Loy = L and show that

(HoL)u = HuLu.
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Now
HulucHoueLou=HeLou=H-oL
and, since HuLu < G, we have
Huluc<(HeL)u.
Let a e (HoL)u,so a =pu, withpe HeL. Then pe Hol, for [e L, and
a=puc(Hel)ou=Holu,

with Ju € Lu. Hence

a(lu)y e HnG=Hu,
SO

a € (Hu)lu < (Hu)(Lu). O
(2.7) THEOREM. Let C be an MHP generator. Then

(1) A=Cn~G =Cuis a r-closed subgroup of G.
2) fFK=CnJ, then C=AK =A-K.

Proof. (1) AAc(CoucCou)u=Cu=2A, so A is a 7-closed subsemigroup of G,
and so[5, 2.11] A is a group.
(2) Let pe C and v € J with pv =p. Then
C=C°p =Copv =Copov =Cov’
sov=uveC. Thus ve CnJ =K, and p = puv € AK. Therefore
CcAKcAK=C-C=C.
For the remainder of this section, we are concerned with the converse direction.

(2.8) LEMMA. Let A be a subgroup of G and let K be a non-empty subset of J.
Suppose that C = AK satisfies Cou=C. Then ueK, CnG=A, CnJ =K, and
A is 7-closed.

Proof. Let v € K. Then
v=uvecAK =_C,
and
u=vueCou==C
Since every p € M has a unique decomposition
p=aw (aeG,wel),
it follows that « € K and also that
CnG=A, CnJ=K.
Finally
AounGecCounG=CnG=A=AucA-ungG,
s0 A is 7-closed. O

If C = AK is as in (2.8) it follows from (2.6) (2) that the ‘group part’ of any power
of C (in the semigroup (2,°)) is A.
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(2.9) THEOREM. Let A be a t-closed subgroup of G, let O #K <J and let C=
Ao K ou. Suppose that either

(1) KeA°KeucGK and (Keu)u< A, or

2) KeAeuuKeoKoucC.
Then C is an MHP generator.

Proof. (1) From (2.6),
Cu=(A°Kou)u=Aeu)u(Kou)ucAA =A.
Similarly,
(KeA°Kou)uc A,
s0 (since K°cAoKou < GK),

KocAoKouc AK.
Then

CoC=CoCou=(AcKoAoKou)ouc(A°cAK)ouc(A°AoK)ou
={AcucK)eu=AcKeu=C_C
Note that, if v € K|
u=vuvuc KoA-Kou=GK,

so u € K. Clearly, Cou = C and C is an MHP generator.
2) fvek,

u=uvucAcKeu=C and Cou=C.
Also
CoC=AcKoAcKou=AoKoAoyoKoucAcAoKoyoKou
=AcAcKoKoucAcAcAoKou=AcuoKou=A-Kou=C. O
Note that if C satisfies the hypotheses of (i), then C = AL, where L=CnJcK.
If KcunJ =K, then CnJ=K and C = AK.

(2.10) CoroLLARY. If A is a T-closed subgroup of G such that (Jou)u < A, then
C=AocJouis an MHP generator.

(2.11) CorOLLARY. Let A be a t-closed subgroup of G, let K < J and let C = AK.
Suppose Cou=C, and that KcA°K ou < GK. Then
C=AK=AKou=A°Kou=AcK
is an MHP generator.
Proof. (Keu)uc{(Ceu)u=Cu=2A, so AeKoy is an MHP generator. But, as in
the proof of (2) in (2.9),
KocAoKouc AK =C,
SO
AcKoucKoAeKoucC=CoucAoKouy,

and

A°Kou=C O
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(2.12) THEOREM. Let C = AK, where A is a T-closed subgroup of Gand & #K < J.
Suppose Cou = C. Then the following are equivalent:

(1) Cis a MHP generator;

2) Co-CnJcK;

3) AcKuKeAUK°Kc(C.
Proof. Itis clear that (1) implies (2) and (3). Suppose (2) holds. Let pe C-C, p = B,
BeG,vel Since (CoCluc A (2.6 (2)), B€ A and

veB'CoCnJ=C-CnJcK.
Thus
CoCc(CoCNnGCeCnI)=AK =C,
and (1) is proved. If (3) holds, then
CoC=AK°AKcAo(KoA)eKcA°(AK)oKcAoA°(K°K)
cAcAcAcKcAoyoK=AKc(

Note that u =vu e Cou = C (where ve CnJ), so C is an MHP generator. O

It is not clear that all of the hypotheses of (2.9)—(2.12) are necessary for the
conclusion that C (=A< K ou or AK) is an MHP generator. In particular, it is
possible that the hypotheses of (2.8) are sufficient, but we have teen unable to
prove this.

In this connection, we recall that, if A is a 7-closed subgroup of G, then C=A-u
is an MHP generator, and the minimal flow it generates is maximally proximal (has
no non-trivial proximal extensions). Hence C = AK for some K <J and an interest-
ing problem is to determine the subset K of J such that C = A-u = AK. More
generally, if L < J is such that C = A o L is an MHP generator, for which subsets K
of J is it the case that C = AK (=A°K)?

3. MHP flows and disjointness

Recall that the minimal flows X and Y are disjoint (X 1Y) if the product flow
X %Y is minimal. If X, Y and Z are minimal flows, and ¢ : X >Z, ¢: Y > Z are
homomorphisms, we say that X and Y are (relatively) disjoint over Z (and write
X 1 7 Y, where the homomorphisms are understood) if the set

Ry =[(x, Yl (x) =¢(y)]

is a minimal subset of X X Y. In this case, we also say that the homomorphisms ¢
and ¢ are disjoint (and write ¢ L ¢).

Also, if xoe X and yo€ Y, we say that X is relatively disjoint from Y with respect
to xo and yo (and write X L ., Y) if there is a minimal flow Z and homomorphisms
¢ X->2Z, y:Y->Z with ¢d(xo)=¢(yo) such that ¢ L ¢. We now show that, if
X L (xoy0) Y» the flow Z in the preceding definition is unique. Precisely, we have:

(3.1) THEOREM. Suppose ¢:X->Z, :Y->Z, ¢" ' X->2Z', y':Y>Z' are
homomorphisms of minimal flows with ¢(xo) = ¢(ye), &'(x0) =¢'(yo), and ¢ L,
&' L' Then Z is isomorphic with Z'.
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Proof. Write R for Ry, and R’ for Ry, . Since ¢ L ¢, ¢' L/, then R and R’ are
minimal, and (xo, yog)ERNR',s0 R=R’. Let

z = ¢ (x0)=¢(yo),

z'=¢'(x0) = ¢'(yo).
If p, g €e M with zp = zq, then

¢ (xop) =zp =29 = ¢(yoq),

so

(xoP, yoq)€ R =R/,
and

2'p=¢'(xop)=4'(yoq) = 2'q.

Thus the map a:Z->2Z', a(zp)==z'p, is well defined. By symmetry, the map
a':Z'>Z, a'(2'p) = zp, is well defined and « is an isomorphism. |

We adopt the following notational conventions. If C and D are almost periodic
points in 2, we write C > D if there is a homomorphism ¢ from CT to DT
with ¢(C)=D. We also write ¢ : C > D to denote this (unique) homomorphism.

If C, D, and E are almost perlodlc points of M , we wr1te ClegD if C>E,
D - E and the flows CT and DT are disjoint over ET. (If CT is disjoint from
DT we write C 1L D.)

(3.2) LEmMA. Let C, D and E be MHP generators with C < E and D c E. Then
the following are equivalent:

(a) C _LED,

(b) CopnDoq# D, for every p,q e M with Ecp = Eecq;

(c) C°D=E.

Proof. Let ¢ :C > E, ¢: D~ E. Suppose C LgD. Let

F=[(Cep, Doq)|CopnDeq# & and Ecp=E-q].
Then % is a closed invariant and non-empty (since (C, D) =(Cou, Dou)e .¥) subset
of R,,. By the assumed relative disjointness,

L = Ryy.
That is,
CeopnDoqg#, whenever Ecp=E-o°q.
Next suppose (b) holds, and let / € E. Then
Ecl=E=Eou,
SO
ColnD=ColnDou#J,

and there is a d € D with d € Col Then

leCel=Codc=Co°D.
Thus

EcCeDcE-E=E.
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Suppose (c) holds. If (Cop, D°gq)e R4,, then
Eep=E-q,
sO
peEcq=CoDogq.
Then pe Ceor for some re Deg, so
Cor=Cop, Dor=D-°q
and
(Cop,Dogq)=(Cor,Dor).

Therefore Ry, is minimal, and (a) is proved. ‘ O
(3.3) COROLLARY. Let C and D be MHP generators, € = CT, and 9 = DT. Then
the following are equivalent:

(1) the flows € and @ are disjoint;

(2) CopnDeog#J, forallp,qge M,

(3) Co-D=M.

Condition (2) may be paraphrased as ‘disjointness of flows is equivalent to non-
disjointness of sets’. Note that it implies the known (necessary) condition, in terms
of groups, AB = G [5] (which is sufficient in case T is strongly amenable).

In [3]}, it is shown that disjointness is a ‘highly proximal invariant’. That is,
disjointness of two flows depends only on their highly proximal equivalence classes.
This implies:

(3.4) COROLLARY. Let X and Y be minimal flows,xe X,ye Y,y M->X,6:M-> Y,

defined by y(p)=xp, 8(p)=yp (p e M). Then X and Y are disjoint if and only if
vy (x)e8 7 (y)ou =M.

Now we consider disjointness (and relative disjointness) of flows defined by MHP

generators.
If Ce2™ with Cou = C, we write C* for the MHP generator

[reM|Cer=Coulou.
Note that if y: M > % = CT, y(p) = Cop, then
C*=y7(C)ou,
so that
¥*=C*T.

If C contains an idempotent, then C*< C.
(3.5) THEOREM. Let Cand D be MHP generators. Then the following are equivalent:

(a) CoD is an MHP generator;

(b) D-CcCe°D;

(c) D-C=C°D;

(d) C>C-D;

() DeC->C-D;
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(f) there is an MHP generator E such that C L g D;

(g) C~»>(C-D)*;

(h) C<=(CD)*;

(i) (DoC)*<=(C-D)*.
Proof. (a)=>(b). DeC < (C°D)o(CeD)=CoD.

(a)=>(c). This follows from (3.2), since the condition C L g D is symmetric in C
and D.

(a)=>(d). C=Co-D and since both C and C-D are MHP generators, we have
C->CeD.

The implication (c)=> (b) is obvious, and (b) = (a) since

(CoD)o(CoD)=Ceo(DoC)eDcCo(CoD)oeD=CoD.
(d)=>(a). By (d) C-> CoD and always D » CoD. Then
C=C*>(CeD)* and D=D*->(C°D)*
sO
C < (C-D)*, Dc(C-D)*
and
CoDc(CoD)*e(CeD)*=(C-D)*.
Since always (C°D)* < CoD, we have
CoD =(C-D)*
which is an MHP generator. Now (f)<>(a) follows from (3.2) and (e)}=>(d) since

C->DoC->CeD.
(g)>(a). C > (C-D)* is equivalent to C = (CoD)*. Always D> Ce°D, so

D> (C - D)*, CeDc(C-D)*
and
CeDc(CeD)*cCeD and CeD=(CeD)*
()= h). C»>D-C,s0 C->(DC)*, and
Cc(D-CY*c(C-D)*.
Since {c)=>(e) and (c)=> (i) are obvious, as is the equivalence of (k) with (g), the
proof is completed. 0

Note that if the MHP generators C and D satisfy the conditions of the preceding
theorem, then C 1 ~.p D (that is, the MHP generator E in (f) is CeD).

(3.6) LEMMA. Let I be a non-empty collection of MHP generators and let
c*=N[C|Ce3]
Then D = C*ou is an MHP generator.
Proof. Since D< C forall CeZX,
DeDcCoC=C
sO
DeDc=C”
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hence

DeD=DoDoucC*u=D. O
(3.7) LEMMA. Let C, E be MHP generators with C < E. Then there is a minimal
(with respect to inclusion) MHP generator D such that CoD =E.

Proof. Let A be the collection of MHP generators D’ with CoD’'= E. Note that
EecA,s0o A# (. Let A’ be a totally ordered subfamily of A,

Do=[D'|D'=A"].
By (3.6), Doou is an MHP generator. Since A’ is totally ordered, it follows easily that
CoDy=E,
and therefore
Co(Doou)=(CoDy)ou=Ecu=E.
Thus Zorn’s lemma applies to A. O
We may interpret (3.7) as follows. If ¢ : X » Z is a homomorphism of MHP minimal

flows, then there is an MHP minimal flow Y and a homomorphism ¢ : Y - Z such
that ¢ is ‘maximally’ disjoint from ¢. (The precise statement is in theorem 4.13.)

4. Lifting properties

In this section we shall consider the commutative diagram of minimal flows and
homomorphisms shown as (3 ). We shall be concerned with the relation between
dynamical properties on the upper and lower levels of the diagram. The main
interest is the case that the vertical arrows are proximal or highly proximal, but
this is not assumed unless it is explicitly stated.

|
N

(%)

Yy’

Y

We recall the following definitions.

Let A be an index set of cardinality >1 and let ¢, : X, = Y (A € A) be homomorph-
isms of minimal flows (with the same codomain Y). The collection (¢, )rca is said
to be Bronstein if the subset R 4,),., of XX, defined by

Ris)acr =L(xa)renlfor some ye Y, ¢r(xa) =1y, for all A € A]

has a dense set of almost periodic points. (This is usually called the generalized
Bronstein condition [10].) A homomorphism of minimal flows ¢ : X » Y will be
called Bronstein (‘¢ satisfies the Bronstein condition’) if (¢, ¢) is Bronstein; that
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is, the relation
Ry =Rys =[(x, ) e X x X|op(x) = ¢(x")]

has a dense set of almost periodic points. Finally, the minimal flow X is Bronstein
if the homomorphism X - 1 is Bronstein. (This is always the case if the acting
group T is strongly amenable [7].)

The homomorphism ¢: X > Y is called RIC (relatively incontractible) if

xoF’p=¢""(yor) (peM),

where xo€ X with xou = x4, yo= ¢ (x0), and F =[a € G/yoa = yo]. The homomor-
phism ¢: X » Y is RIC if and only if ¢ L ¢ for every proximal extension ¢y: Z > Y
(7], (X, 1.3)), so the notion of RIC extension is independent of the choice of a
basepoint.

If x € X, we write J(x) for the set of u € J such that xu = x.

(4.1) THEOREM. (1) The homomorphism ¢: X » Y of minimal flows is Bronstein
if and only if, for every x € X and u € J(x),

R, =({x}x¢ " (¢(x)u)T
2) Let $: X €Y and yn: Zy > Y (A €A), be homomorphisms of minimal flows,

and suppose that each ) is RIC. Then (¢, (yn)rcn) is Bronstein. (In particular, a
RIC extension is Bronstein.)

Proof. (1) Let Q, denote the almost periodic points of R,. Let x € X, u € J(x), and
let

L=(x}x¢ (¢(x)u)T.
Then L < Q, and, if L =R,, then ¢ is Bronstein. Suppose that ¢ is Bronstein. We
first show that Quuc L. Let

(x',y)=(x", y)u ey,
s0
x'=xa, y' = xB,
where a, 8 € G. Then
o (xa)=¢(xB),

SO
¢ (xBa ") = ¢ (x),
and
(x, xBa™ e {x}x ¢~ (@(x)u.
Then

(x', y)=(x,xBa Y eL.
Finally, if (x', y') € Q, then
(', y)=(x"u, y'u)w,
for some minimal idempotent w, and
(x',y)e(Quu)T< L.

https://doi.org/10.1017/50143385700001334 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700001334

Maximally highly proximal generators 405

This completes the proof of (1). The proof of (2) is straightforward and is therefore
omitted.
Before discussing { # ) we consider conditions under which a homomorphism ¢ : C »
D of MHP generators is Bronstein or RIC. These criteria will be applied at the
end of the paper.

(4.2) THEOREM. Let C and D be MHP generators with C<=D. Let ¢ : C > D. Then
(1) ¢ is RIC if and only if Du°C = D;
(2) ¢ is Bronstein if and only if CoDu°C = D,

Proof. (1) Ducu is an MHP generator and the minimal flow (_EuOT)T is the
maximal proximal extension of DT. It follows from (4.1) (2) that ¢:C->D is
RIC if and only if
DueC=Duou-C=D.
(2) Suppose CoDu°C =D. Let (Cop, Coq)€ Ry, s0 Dop =Dv°q. Then
qeCoDycCeq=Dogq=Dop=Ce(Du°Cop).
Then there is an r€ DuoCop, with g Cer, so
Ceqg=Cor.

Let re Ducs, with s € Cop. Let (;) and (f;) be nets with

)T, >, (f)<Du and ft;>r.
Then

Coqg=1limCofit; and Ceop=Cos=limCt,

SO

(Cop, Coq)=lim (C, Cof)t; e {CYX{Cflf e DuhT.

By (4.1) (1), ¢ is Bronstein.
Conversely, suppose that ¢ is Bronstein and let d € D. Then (C, C°d)€ Ry, so
there are nets (%) = T, (f;) < Du with

(C, Ceod)=1im (C, Cf)t;
(4.1 (1) again). Let

c=lim ut;elim Ct, = C,

and let
g =1lim fit;e Ducc.
Then
Cod=Coq,
S0
deCod=CeqcCoDu-C.
Hence
DcCeDueC<D°DoD =D,
and

CoDu-C=D. [
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Now we turn to a detailed discussion of (#).

(4.3) LEMMA. In (3% ), suppose (P, ¢) is Bronstein and { is proximal. Then
(0 X 7)(Rgry) = Ry
Proof. Let (x, y) be an almost periodic point in Ry, and let (x', y') be almost periodic
in X'x Y’ with
alx)=x, t(y)=y.
Then, by the commutativity of (#),
{'(x") =Ly'(y"),
S0
(@'(x), ¢'(y))eP,
and since also (¢'(x'), ¢'(y")) is almost periodic,
¢'(x)=¢'(y') and (x',y’)e Ry
Since almost periodic points are dense in Ry, we have
(o X7)(Ry'y) 2 Ryy.
The opposite inclusion always holds, so the proof is completed. O
4.4) LEMMA. Let :X Y, y: Y >Z be homomorphisms of minimal flows with
dopenand y HP. Letz€ Z, y e ¢ '(2), and pe M. Then
()= (W (2))ep.
Proof. Since ¢ is open, the map A»—>¢_1(A) of 2% to 2% is continuous. Then
¢\ W 2)ep =0T W (2)op) =0 (yp).
(4.5) LEMMA. In (%), suppose that ¢, ¢' and ' are open and that { is HP. Then
(0 X7)(Rgy) =Ry
Proof. Let zoe Z and z; € {”l(zo). Note that
Ry =UI¢'(z1p) X ¢ (z1p)|p e M].
By (4.4),
Ryy=[(¢"" (¢ (z) e P X (W' (T (z0) o PP € M].
Now
o (6" (¢ (zo)op) = (z0)op =& (20p)
(since ¢ is open), and
(W' (¢ (20))op) = ¥ (20)op.
Also
¥ (zop) = LY (20) ° glz0g = zop],
so
(X 1) (Ryry) =L@ (zop) X b (20) e p|p € M]
=Ul¢ " (zop) X ¥ ' (z0p)|p € M1= Ry, O
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(4.6) LEMMA. Let ¢:X>Z and ¢: Y > Z be homomorphisms of minimal flows.
Suppose that (¢, ) is Bronstein or that one of ¢ and ¢ is open. Let W be a non-empty
open set in Ry, Then there are open subsets U of X and V of Y such that:
(i) (UX V)~ R4y is a non-empty subset of W ;
(i) if xe U, thereis a y € V with (x, y) € Ryy.
Proof. Define 8: Ry, = Z by
6= (¢ X ‘//)IR,W,

and choose Uy and V, open in X and Y respectively with & # Uy x Vo Ry, <= W.
It is sufficient to prove that

W'=int 8((Uo X Vo) N Rgy) = int (¢ (Up) N4 (Vo))
is non-empty. (For, in this case,
U=Usnd (W) and V=Vony (W)

satisfy (i) and (ii).)
If (¢, ) is Bronstein, let (xo, yo) be an almost periodic point of Uy X Vo Ry,
and define

W = (Uo X Vo) A Ry N (x0, o) T.
Since mis minimal,
int 9((Uo X Vo) N Ryy) 2 int 8(W) # .
If ¢ is open, then
V=Vony '8 (U0
is open and non-empty, so
int (¢ (Uo) (Vo)) 2int ¢(V) = &.
(If ¢ is open, the argument is completely analogous.) O
(4.7) COROLLARY. Let ¢: X >Z and : Y > Z be homomorphisms of minimal

flows, and suppose that one of ¢ and  is open. If ¢ is point distal, then (P, ) is
Bronstein.

Proof. Let W be a open subset of R, and let U< X and V< Y be as in (4.6).
Let x € U be such that, if ¢(x)=¢(x'), then x and x’ are distal. Let y € V be such
that ¢ (x) = ¢(y), and let w be a minimal idempotent such that yw =y. Then

d(xw)=y¢(yw)=¢(y) =o(x),
and x is proximal to xw, so xw = x. Then (x, y)e U X V < W is an almost periodic
point. O
(4.8) COROLLARY. An open point distal homomorphism of minimal flows is RIC.
Proof. Let ¢ : X > Y be open point distal, and let ¢ : Z > Y be proximal. Now, by
the previous corollary, R,, has a dense set of almost periodic points. But, since

is proximal, the projection R4, - X is proximal, and so R, is minimal. Thus ¢ 1L ¢,
and by (4.1) (2), ¢ is RIC. a
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(4.9) THEOREM. In (), suppose that o and v are HP. If (@', ¢') is Bronstein or
@' is open or ' is open, then

o X7: Ry > (0 X 1) (Ryy)
is irreducible.

Proof. Let W' be an open subset of Ryy. Let U'< X' and V'< Y’ be open sets
as in (4.6). Then

Ul=e ' (X-o(X'-U")
is open and non-empty (since o is irreducible) and int ¢'(U?) is a non-empty subset
of ¢'(V'). Hence
Vi=y'  Hint o' (U~ V'
is non-empty and open. Define
Vi=r"(Y (Y- V).

Then V> < V2. Since 7 is irreducible, V? is non-empty and

(V) g (V)
Clearly,
U>x V:=(ax71) (e xT)(U**x V?)
and
DB #U*XVHARyy < W'
Hence W’ contains a o X 7 fibre, so o X 7 is irreducible. O

Recall that a flow is (topologically) ergodic if every invariant non-empty open set
is dense. In the following lemma, the flows X and Y need not be minimal. We
omit the straightforward proof.

(4.10) LEMMA. Let ¢ : X - Y be an irreducible homomorphism. Then Y is minimal
(ergodic) (has a dense set of almost periodic points) if and only if X has the
corresponding property.

Given homomorphisms of minimal flows ¢ : X » Z, : Y > Z we apply the results
obtained in this section to the diagram *(¢, ¢) (or just (*)). Here (as in § 2), X*,
Y* and Z* are the MHP extensions of X, Y and Z, respectively, o, { and 7 are
the natural HP homomorphisms, and ¢* and ¢* are the induced (open) maps.

e 1/

Y
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(4.11) THEOREM. Consider ().
(1) If (¢, ¥) is Bronstein, then (¢*, ¢™*) is Bronstein.
(2) If ¢ Ly then ¢* Ly*.
(3) Suppose (b, ) is Bronstein or ¢ (or ) is open. Then
(@) ¢ L if and only if ¢* L ¥,
(b) Ry, is ergodic if and only if Ry+y+ is ergodic.
(4) Suppose ¢ or  is open. Then (¢, &) is Bronstein if and only if (¢*, ™) is
Bronstein.

Proof. Use (4.3) (or 4.5), (4.9) and (4.10). d

(4.12) THEOREM. Let ¢ : X » Y be a homomorphism of minimal flows.

(1) If ¢ is Bronstein or RIC, then ¢* has the corresponding property.

(2) If ¢ is open, then @ is Bronstein or RIC if and only if * has the corresponding
property.

(3) If ¢ is open or Bronstein, then ¢ is weakly mixing (Rse is ergodic), if and
only if ¢* is weakly mixing.
Proof. Most of the assertions follow directly from (4.11). For the RIC versions of
(1) and (2), use the characterization of RIC extensions given in the discussion
preceding (4.1). O

Now, as promised we generalize (3.7).

(4.13) THEOREM. Let ¢ : X » Z be an open homomorphism of minimal flows. Then
there is a minimal flow Y and a homomorphism :Y - Z which is ‘maximally
disjoint’ from ¢. Thatis, ¢ Lyandif @: Y' > Y is a homomorphism (with Y' minimal)
such that 6 L @, then 8 is an isomorphism. Moreover, the flow Y is MHP.

Proof. We first assume that both X and Z are MH?. In this case we may suppose

that X=_C—T, Z=FT,

where C and E are MHP generators with C = E. Let D be an MHP generator as
in (3.7) (that is, CeD = E, and D is inclusion minimal), let Y=DT,and ¢: Y >Z
be defined by

Y(Deop)=Eop.
Now, suppose 6:Y'> Y is a homomorphism of minimal flows with 26 1 ¢. Let

y'€ Y' with
yu=y', 6(y)=D,
and8'":M->Y',
D*=5""'(y)eu,
O
Y*=D*T,

8*:Y'*> Y’, given by
8*(D*ep)=y'p,
is highly proximal. Now D* is an MHP generator with D*<= D, and [3, lemma I11.1]
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Po8* L, so

CoD*=EFE.
By the defining property of D, we have D*=D, and it follows that # is an
isomorphism. Thus the theorem is proved if X and Z are MHP.

Now we suppose that X is arbitrary and that ¢ is open. Let ¢*: X* > Z* be the
induced homomorphism of MHP flows. By the first part of the proof there is an
MHP minimal flow Y =Y* and a homomorphism ¢: Y >Z* such that ¢ is
maximally disjoint from ¢*. If, as in (), {: Z*>Z and §y ={°4: Y > Z, then by
(4.11) (3), ¢ L¢. We show that z[; is maximally disjoint from ¢. For suppose W
is a minimal flow and 6: W > Y is a homomorphism for which ¢ L ° 6. Then,
lifting the homomorphisms ¢: X > Z and ¢ ° 6: W > Z to their MHP extensions,
we have, by (4.11) (2), that

o* L(do0)*.
But
(o 0)* = yo6%,
SO
d* Lipob*.
By the maximality of ¢, #* is an isomorphism and (recalling that Y* = Y) it follows
that @ is an isomorphism. The proof is completed. O

Note that (4.13) applies if ¢ is RIC or if Z is MHP.
In what follows, we write X Xy, Y instead of Ry, (wherep: X > Wandy:Y-> W
are homomorphisms) and write
(D, 0): X Xw Y>> W
for the homomorphism

(&, ¥)x, y)=(x)=(y).

Suppose ¢ : X » W is an open homomorphism of minimal flows andlet ¢ : Y > W
be a homomorphism which is maximally disjoint from ¢. Let Z =X Xy Y, and
suppose A': Z’'> W is a homomorphism with A’ L (&, ¢). Then

X Xw (Y XwZ’)E(X Xw Y) XWZ’=Z XWZ’
is minimal, and therefore Y Xw Z' is minimal and disjoint from X over W. By the
assumed maximality of ¢, Y Xw Z' is isomorphic with Y. But in this case
(YXwZ)YXwZ'=Y XwZ',
and so (Y Xw Z') Xw Z' is minimal. It follows that Z’ X Z' is minimal. But this
can only occur if A": Z'> W is an isomorphism. This proves:

(4.14) THEOREM. If ¢ : X » Wand ¢ : Y > W are homomorphisms of minimal flows
such that  is maximally disjoint from ¢, then any homomorphism A': Z' > W which
is disjoint from (¢, ¢) is an isomorphism.

(4.15) CorOLLARY. If X is any minimal flow and Y is a maximal minimal flow
such that X 1Y, then
(X xY) ={1}
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In addition to (*), there are other diagrams derived from ( 3 ) which are naturally
associated with a pair of homomorphisms ¢: X > Z, ¢: Y > Z. For instance, the
flows on the upper level of (4 ) can be the maximal proximal extensions of X, Y,
and Z. Another case of interest is obtained by putting, for z € Z,

X'=[¢"(z)oplpe M),

Y'=[¢ 7' (2)°plp e M],
and
Z'=Z
We hope to study these and related constructions in a subsequent paper.
We conclude by obtaining a sufficient condition for a homomorphism of minimal
flows to be RIC. A homomorphism ¢ : X - Y is called regular if, whenever (x4, x») €
R, is an almost periodic point, there is an automorphism & of X such that

6(x1) =X32.
(So,if Y =1, ¢ :X -1 is regular if and only if the minimal flow X is regular.)
(4.16) THEOREM. Let C and D be MHP generators with C = D, and let ¢ : C > D.

(1) If ¢ is regular, then Du o C is an MHP generator.
(2) If ¢ is regular and Bronstein, then ¢ is RIC.

Proof. (1) If f € Du, then (C, C<f)€ R, is an almost periodic point, and there is an
automorphism 8 of CT such that §(C)=C-f, so

flog:Co>f'Cof
is an isomorphism. Since f"1C° f is an MHP generator (2.5 (4)),
flcef=C
Then, if f € Du, we have
DuoC =Ducf 'eCof=DucucCef=Duc-Cof,
SO
DuoC =Du-Ce°Du.
Hence
DuoCeDuoC=DuoCoC=Du-C.
(2) We have C = Du-°C and, since Du°C is an MHP generator,
CoDuoC=Du-C.

By (4.2) (2),
CeDu-C =D,
)
Du-C=D
and, by (4.2) (1), ¢ is RIC. O

We omit the easy proof of the following lemma.

(4.17) LEMMA. Let ¢: X > Y be a regular homomorphism of minimal flows. Then
the induced homomorphism ¢* . X* > Y* of the MHP extensions is also regular.
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(4.18) THEOREM. Let ¢: X > Y be a homomorphism of minimal flows which is
open, regular, and Bronstein. Then ¢ is RIC.

Proof. The homomorphism ¢* is Bronstein (4.12 (2)) regular (4.17) and open
(always). By (4.16) ¢* is RIC. It follows from (4.12) (2) that ¢ is RIC. O
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