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Introduction

The double affine Hecke algebras were introduced by Cherednik [C1], [C2] in con-
nection with affine quantum Knizhnik—Zamolodchikov equations and eigenvalue
problems of Macdonald type. As a general principle one can associate to any type
of root system (finite, affine, elliptic) a Weyl group, an Artin group and a Hecke alge-
bra. Along these lines, double affine Hecke algebras are associated with a certain
class of elliptic root systems. Section 1 contains the definitions and relevant results
about double affine Weyl groups, their Artin groups and their Hecke algebras as well
as a topological interpretation of affine Artin groups due to H. van der Lek.

One of the key features of double affine Hecke algebras is that they contain two
commutative subalgebras. Our main result roughly states that there exists a pairing
between the root systems in question such that their corresponding Weyl groups,
Artin groups and Hecke algebras are canonically isomorphic in such a way that
for the Hecke algebras the roles of the above mentioned commutative subalgebras
is interchanged. Section 2 contains the precise statements of these results.

This involution of the double affine Hecke algebra plays a central role in the
theory of Macdonald polynomials. For example, Cherednik [C3] used it to define
the difference Fourier transform which is the crucial ingredient in his proof of
Macdonald’s evaluation-duality conjecture. The evaluation-duality phenomenon
was first noticed and proved by Koornwinder in the A, case [Ko] [M1, Chapter
IV, Section 6] and then formulated as conjecture for all root systems by Macdonald.
This phenomenon was recognized by Cherednik as a Fourier type duality: the inter-
change of variable and spectral parameter. The transform responsible for this duality
is the difference Fourier transform. As another consequence of the existence of such
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canonical isomorphisms let us mention the construction of affine intertwiners. The
importance of the intertwiners was first understood by Knop and Sahi [Kn, KS,
S1] for GL,, and then by Cherednik [C4] in the general (reduced) case.

The proof relies on the topological interpretation of extended Artin groups due to
H. van der Lek [L1, L2]. This relates the double affine Artin groups and the funda-
mental groups of certain complex hyper-plane complements. Section 3 reveals this
connection and establishes the canonical isomorphism at the level of Artin groups.
The advantage of this point of view is that the isomorphism of the fundamental
groups, and consequently of the Artin groups, is induced from a very simple trans-
formation of the space of complex hyperplane complements: the interchange of real
and imaginary parts. Section 4 finishes the proof of the existence of the canonical
isomorphism at the level of Hecke algebras.

The statements of our main result as well as the connection between the double
affine Artin groups and certain fundamental groups were announced in Theorem 2.2
and Theorem 2.4 of [C1]. Macdonald [M5, Chapter III, Sections 3.5-3.7] also
checked the existence of the involution using a case-by-case analysis.

1. Preliminaries
1.1. AFFINE AND DOUBLE AFFINE WEYL GROUPS

For the most part we shall adhere to the notation in [K]. Let 4 = (@) < ;1 < » be an
irreducible affine Cartan matrix, S(4) the Dynkin diagram and (ao,...,a,) the
numerical labels of S(A4) in Table Aff from [K], p. 4849. We denote by
(ay, ..., a)) the labels of the Dynkin diagram S(4’) of the dual diagram which is
obtained from S(A4) by reversing the direction of all arrows and keeping the same
enumeration of the vertices. Let (f), R, RY) be a realization of 4 and let (§, R, RY)
be the associated finite root system (which is a realization of the Cartan matrix
A = ()1 <j k<n)- If we denote by {o}g<;<, a basis of R such that {o}; <;<, Is a

basis of IS we have the following description

§* = b* + R + RA,,

where 0 = Y77 a;o;. The vector space " has a canonical scalar product defined as
follows

(o, o) == dj_laj/\” (Ao, ) == 8j0ay"  and  (Ag, Ag) := 0,

with d;:= a,ajy_l and ¢;0 Kronecker’s delta. The simple coroots are {o) :=
dizo < j<n- Denote by Q = @, Zo; and Q¥ = @, Za/ the root lattice, respec-

o

tively the coroot lattice of R and by Q = @7:0 Zoj = Q @D Zo the root lattice of R.
Given 2 € R, x € §* let
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The affine Weyl group W is the subgroup of GL(§*) generated by all s, (the simple

reflexions s; = s,, are enough). The finite Weyl group IjVis the subgroup generated by
s1, ..., Sy. Both the finite and the affine Weyl group are Coxeter groups and they can
be abstractly defined as generated by sy, .. ., s,, respectively s, . .., s,, and some rela-
tions. These relations are called Coxeter relations and they are of two types: the
reflection relations SJZ =1 and thgv braid relations (see [H] for details).

The double affine Weyl group W is defined to be the semidirect product Wx Q of
the affine Weyl group and the lattice Q (regarded as an abelian group with elements
75, where f§ is a root), the affine Weyl group acting on the root lattice as follows

W‘C/;Wil = Ty(p)-

This group is the hyperbolic extension of an elliptic Weyl group which is by defini-
tion the Weyl group associated with an elliptic root system (see [ST] for definitions).
It also has a presentation with generators and relations (elliptic Coxeter relations).
We refer the reader to [ST] for the details.

The affine Weyl group W can also be presented as a semidirect product in the fol-
lowing way. For 1 <j < n, let ¢; = max{ay', d;}. Recall that ay = 1 in all cases except
for 4 = A(Zi), where a9 = 2. Denote by M the lattice generated by {4; = ¢jo}; < j < -
Then W is the semidirect product of W and the lattice M (regarded as an abelian
group with elements 4,, where p is in M), the finite Weyl group acting on the lattice
M as follows

Wi = -

Let us remark that the numbers e; depend only on the length of the corresponding
simple root. Therefore, we will write e,, ¢; for e; if the corresponding simple root
is short, respectively long. The number

pi=¢

will play an important role. It is easy to see that p € {1, 2, 3} (it represents in fact the
affine type of 4%). If § € R, ep will denote e or ¢; depending on the length of . With
this notation define

Ap:=epf and A :=e;'p".
For r a real number, §); = {x € ) ; (x, ) =r} is the level r of [)*. We have
b7 = B3 4+ Ao = 6 + R0+ rA.

The action of W preserves each ); and we can identify each f) canonically with b
and obtain an (affine) action of W on b;. For example, the level zero action of sy and
Jyu on by is

so(x) = s0(x) + (x, 0)9,

Au(x) = x — (x, @9,
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and the level one affine action of the same elements on §* is
So(x) = sp(x) + aaIG, Ju(x) =x+u,

where we denoted by 0 = d — agay.

1.2. ARTIN GROUPS AND HECKE ALGEBRAS

To any Coxeter group we can associate its Artin group, the group defined with the
same generators which satisfy only the braid relations (that is, forgetting the reflexion
relations). The finite and affine Weyl groups are Coxeter groups; we will make pre-
cise the definition of the Artin groups in these cases. First let us make the following
convention

For the rest of the paper we assume our irreducible affine Cartan matrix to be of any
type except Agzn)'

Note that the corresponding definitions and results of this paper (at the level of
Hecke algebras) for the case omitted can be found in [S2].

DEFINITION 1.1. With the notation above define

(1) the finite Artin group Al;i/ as the group generated by elements 71,..., T,
satisfying the same braid relations as the reflexions sy, ..., s,;

(ii) the affine Artin group Ay as the group generated by the elements Ty, ..., T,
satisfying the same braid relations as the reflexions sy, ..., s,.

From the definition it is clear that the finite Artin group can be realized as a subgroup
inside the affine Artin group. To define the Hecke algebras, we introduce a field I (of
parameters) as follows: fix indeterminates g and fy, ..., #, such that ¢; = ¢ if and only
if di =dy; let m be the lowest common denommator of the rational numbers
{(j, 2x) | 1 <Jj, k < n}, and let I' denote the field of rational functions in qm and 7.
Because in our case there are at most two different root lengths we will also use
the notation ¢, t, for ¢ if the corresponding simple root is long, respectively short.

For further use we also introduce the following lattices My :={Y,; u € M} and
Oy := {Xp; p € O}. We will use the same notation for their group [-algebras.

DEFINITION 1.2. The finite Hecke algebra Hﬁ/ is the quotient of the group -
algebra of the finite Artin group by the relations

T,-T;' = £ (1)
for1 <j<
Recall that the affine Weyl group also has a second presentation, as a semidirect
product. There is a corresponding description of the affine Artin group (and

consequently of the affine Hecke algebra) due to van der Lek [L1], Lusztig [Lu]
and Bernstein (unpublished).
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PROPOSITION 1.3. The affine Artin group Ay is generated by the finite Artin group
and the lattice My such that the following relations are satisfied for all 1 <j<n

(W) T;Y, =Y, T; if (u, A,v) =0,

() T;Y,T; = Yy if (u, A,\/) =1

Remark 1.4. In this description Y, = T;, for u any anti-dominant element of the
lattice M. For example Y_g = T, T.

DEFINITION 1.5. The affine Hecke algebra H) is the quotient of the group
[-algebra of the affine Artin group by the relations

1l
T,—T;'=6—17° forall0<j<n, )
1l
Y o T = TYy =6—1° foralll <j<n. 3)
The elements T4, ..., T, generate the finite Hecke algebra HVOV' There are natural
bases of Hy and Hﬁ/: {T,},, indexed by w in W and in IjV respectively, where
Tw=1T,,....,T; if w=s,...,s; is a reduced expression of w in terms of simple
reflexions.

We must remark that the objects we define here are not the objects traditionally
used in the literature: extended affine Artin groups and Hecke algebras. Nevertheless,
their structure is completely similar. Regarding the definition of Hecke algebras we
note that the relations (3) and (2) are conjugate inside the extended affine Artin
group, but not always inside the affine Artin group. Therefore, only the relations
(2) have to be required in the definition of extended affine Hecke algebras.

As before, the affine Hecke algebra has a presentation in terms of the finite Hecke
algebra and the group algebra My (see [Lu] for the proof).

PROPOSITION 1.6. The affine Hecke algebra Hyy is generated by the finite Hecke
algebra and the group algebra My such that the following relation is satisfied for any u
in the lattice M and any 1 <j < n:

) Y, — Yy
1—Yy '

1 _1
YT = TjY g = (’f —

Remark 1.7. An immediate consequence of Proposition 1.6 is that the relation
Ll
To-Ty' =6 —1,°

it is contained in the ideal generated by all the other relations defining the affine
Hecke algebra.

The definition of the double affine Artin group and Hecke algebra is due to Chered-
nik (see, for example, [C1]).
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DEFINITION 1.8. The double affine Artin group AVT/ is generated by the affine
Artin group Ay, the lattice Qy and the element X such the following relations are
satisfied for all 0 <i<n

(1) Xs is central,
(i) 73Xy = XpT; if (B o)) =0,

The double affine Weyl group is not a Coxeter group, but a generalized Coxeter
group (in the sense of Saito and Takebayashi, see [ST]) and we can define the asso-
ciated Artin group in the same way as for a Coxeter group (i.e. by keeping the gen-
eralized braid relations and forgetting the reflexion relations). For some elliptic Artin
groups the equivalence of the two definitions is estabilished in [T].

DEFINITION 1.9. The double affine Hecke algebra HV; is the quotient of the
group [-algebra of the double affine Artin group by the relations

~
ST
ol—

T]._Tj—1 =7, forall 1<j<n, S

11
YouT7' = TYy = =", forall 1<j<n, )
Ty~ XoyTy= i~ 1% forall 1<j<n ©)

[
TalX%O _ X—OCO T() — [6 _ lOZ’ (7)

and by

X5 = q_l. (8)

As before, Hﬁ/ can be described in terms of Hj and Qy.

PROPOSITION 1.10 ([C1]). The double affine Hecke algebra HV; is the F-algebra
generated by the affine Hecke algebra Hy and the group algebra Qy such that, with the
notation Xs = q~", the following relation is satisfied for any f in the root lattice and
any 0<j<n:

Xp — Xyp)

1 1
Y}Xﬁ—Xs,'(/)’)T/:([%_lT/Z) 1-X,
—o

©)

The proof is completely similar to the proof of Proposition 1.6.

1.3. SOME RESULTS OF VAN DER LEK

Inspired by the techniques introduced in [D], H. van der Lek developed in [L2] a
machinery which allows one to compute fundamental groups of complex hyperplane
complements. As an application he realized the affine Artin groups as fundamental
groups of such spaces. Below, we will briefly review his result.
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With the notation from Section 1.1 let

V=0

The finite Weyl group acts properly discontinuously on V" and in consequence the
diagonal action of W on the domain V' + i} has the same property (here i = v/ —1).
For € R any root and any integer k denote by

Hyy o= 1{ve V|(v, Ap) = k(Ag, Ap)}.
Consider the domain

Q=V+iV
and the following action of W on it:

o s;(v) + ivp) = 55(v1) + isj(v2) for j # 0;
o Ju(vy +ivy) =v1 +u+ivy for ue M.

Consider the space

PER,
ke?,

and the orbits space associated to the above action

X=Y/W.
Let p: Y — X denote the canonical projection. Fix ¢ € ¥ such that ¢ is in the funda-
mental chamber for the action of W. We can choose

)
as a base point for X. Such orbits spaces occur as the complement of the discrimi-
nant of the semi-universal deformation of simply elliptic and cusp singularities
[Lo, Chapter III] and their fundamental group becomes the monodromy group of
this type of singularities. The computation of the fundamental group was done by

van der Lek [L2, Chapter 3, Theorem 2.5]. Before stating his result we need the fol-
lowing notation

o Y;:[0,1]— )z; Yi(r) = ¢+ 571, o)y, 1<j<n

® y4: [0, 1] > Vi yy()=c+14;, 1<j<n
Note that, ﬁoY_'j and poyy, are closed paths in X. Now, Theorem 2.5 in [L2,
Chapter 3] states as follows.

THEOREM 1.11. With the notation above, the fundamental group m (X, %) and the
affine Artin group Ay are isomorphic. Under the isomorphism the homotopy classes of
the paths p o X;, and p o y 4, correspond to T; and Y 4, respectively.
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In fact, van der Lek’s result is more general. It can be stated for an arbitrary finite
Coxeter group. Although the statements don’t include the eventual existence of ima-
ginary roots in the root system associated with this Coxeter group, once one appro-
priately modifies the regular orbits space the proofs work exactly the same way to
produce a corresponding result. In Section 3 we will define the space which has
the fundamental group isomorphic with the double affine Artin group.

2. The Involution

In this section we will define an involution 1 on the set with elements of the form
(A4, {o;}) where A is a irreducible affine Cartan matrix satisfying our convention in
Section 1.2 and {o;} is a basis of the corresponding root system.

Because the irreducible root systems are classified by their Dynkin diagrams it is
enough to make precise a basis of R’, which we denote by {«}y < ;< , and the scalar
products between the simple roots. The fact that we want our involution to preserve
the affine type allows us to specify only {«}; < ;<,. For 1 <j < n, define

the scalar product being the canonical one in §*. It will cause no confusion we will
realize the root system R' on §*. Also,

0'=90 and Aj=Ao.

The finite Weyl groups associated to R and R' coincide and we will not distinguish
between them. The affine and double affine Weyl groups associated with R' we
denote by W', respectively we.

At the level of affine root systems the involution fixes all irreducible affine Cartan
matrices, except B\ and C(V which are interchanged. At the level of roots the invo-
lution acts as identity for the all root systems except B, C\V, F{" and G'". For root
systems of these types these the involution interchanges short and long roots. At the
level of double affine Weyl groups the following result holds.

PROPOSITION 2.1. With the notation above M' = ﬁé and él = ﬁM Further-
more, the map

(f)[;: W — W'
defined as follows

d)l;(a’) =w for we IjV
¢I;()”“):Tﬁu for neM,

05 =2pp for peo.
(pbp';(r()"):f’,‘;'
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is an isomorphism of groups. The inverse of q’)l; is ¢,,T/l'
Proof. All computations are straightforward. O

The main results of the paper state that the isomorphism between the double affine
Weyl groups from the previous proposition induces isomorphisms at the level of dou-
ble affine Artin groups and double affine Hecke algebras. In order to keep our nota-
tion as simple as possible we denoted all these isomorphisms by the same symbol.

THEOREM 2.2. The map
$o(T)=T"" for 1<j<n,
(Y =Xy, for weM.

b (Xp) =Y 5y for e,
b (X5) = XL,

can be uniquely extended to an isomorphism
P~ A~ — A~
w'w w

between the double affine Artin groups. The inverse of q’)l; is d)p},'

THEOREM 2.3. The group isomorphism from Theorem 2.2 extended C-linearly and by
(1) =17" forj#0,
oy — =1
P =q"
induces an isomorphism between the corresponding Hecke algebras. The inverse of (l)l;
is (;51;/,.
The proofs of Theorem 2.2 and Theorem 2.3 will be concluded in Section 3 and
Section 4, respectively.
3. The Topological Interpretation
3.1. THE ORBITS SPACE

The proof of Theorem 2.2 relies on the interpretation of the double affine Artin
group A~ as a fundamental group of a certain topological space. In what follows
we will present the construction of this space.
With the notation from Section 1.1 let
V=10" and V=10"+RA,.
The Tits cone is defined to be

I .= U W(@,

weW
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where
={0eV|@0) >0 0</<n

is the fundamental chamber for the action of the affine Weyl group W. The interior
of the Tits cone is

Ioz{v—i—r/\o lveV, r>0}.

Recall that x € I is an interior point if and only if staby/(x) is a finite group. The
affine Weyl group acts properly d1scont1nuously on [ and in consequence the diag-
onal action of W on the domain ¥ + i I has the same property.

For f € R any real root (that is, nonproportional with the imaginary root §) and
any integer k denote by

Hy={@eV| @)=k}
Consider the domain
Q=F+il)xC
and the following action of W on it:

o 5i(U1 + ivy; 2) = (s{(D1) + is(D2); z) for j# 0 ;

o s5o(01 + it; 2) = (B + it + () + lvz %0)0; ze2! .0~ CrCh Oy,
b

o 13(01 + ivo; 2) = (U1 + f + ivo; ze“”z @) for f € Q
o 15(0) + ivy; 2) = (V) + vy, —2).

Consider the following space

57 = <<I~/—|— I ]O) — ﬁg,Je_(ﬁﬁ'k + iﬁ[;yo)) x (%
kez

and the orbits space associated to the above action X = Y/ W. Let p:Y — X denote
the canonical projection. Fix ¢ € V' such that ¢ 4+ Ay is in the fundamental chamber
and the numbers {(c, o)}, < j <, are positive and sufficiently small. Fix also zy a posi-
tive real number and let u = ¢ + ic. Then the pomt (u + iAg; zp) 18 in Y and we can
choose *x = p(u + iAg; zp) as a base point for X. To state Theorem 2.5 in [L2,
Section 3] adapted to our present situation we need the following notation

T [0,1] — y T(z‘)—(u—i—le—i—e _1(u,oc )oj; 20), 1 <j <

Yo: [0, 1] — y Yo(r) = (u+ iA 5= (u+ iAo, 00)0; zoez(" (’))
Xy [0, 1] — y; Xy (1) = (u+ iAo + tocj, zoe7 M, 1<j<

X5 [0, 1] = V5 %5(0) = (u+ iRo; 20e™).

Note that p o Y‘_/-, P o X, and p o X5 are closed paths in X. Now, van der Lek’s result
for the affine Weyl group reads as follows.
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THEOREM 3.1. With the notation above, we have an isomorphism between the
fundamental group m(X,%) and the double qfﬁye Artin group AI;. Under the
isomorphism the homotopy classes of the paths p o X}, p o X,; and p o X5 correspond to
T;, Xy and Xs, respectively.

What will be crucial in the proof of Theorem 2.2 is another presentation of the
double affine Artin group as a fundamental group of a slightly different topological
space. Consider the subspace

Q:(V+iV)><*’C‘—>S~2; (v1 + ivy; 2) = (v1 + vy + iAg; 2).

It is a simple fact that Q is invariant under the action of W. Let us make this action
explicit:
o s5;(v1 + ivo; z) = (s55(v1) +isi(v2); 2) forj#0;
so(v1 + iv2; 2) = (s0(v1) + ise(vy) + i0; ze3©-0);
Au(vi + iv2; 2) = (01 + ivy + ip; ze" 300 for p e M;
w5 + ivy; 2) = (v + B+ ivg; ze¥P) for f e Q;
15(v1 + iv; 2) = (v1 + vy, —2).

For any nonzero f§ € V and k € 7 define the hyperplanes

(B.B)

As before, we can consider the space

H,g,k = {U eV Z(V’ ﬂ) =k }

Vi=|WV+iv)— | J(Hps+ iHa i) | x C*,
Pe RO.

h,ke?,

the orbits space X = )/ W and the canonical projection p: )Y — X. The point (u; zg)
is in ) and we can choose x = p(u; z) as a base point for X.
We can define a mapret: ) — ), as follows

(01,0) . .

- - |
ret(v) + ivy; z) = (01 — (. 0) vy — iAo; Z)-

Simple computations show that this map is well defined.

PROPOSITION 3.2. The map ret: Y — Y defined above is a deformation retract.
Moreover, ret is W equivariant and consequently X and X have the same homotopy

type.
Proof. All computations are straightforward. O
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Now Theorem 3.1 takes a more symmetric form. Let us define first the ingredients:

Y [0,1]=> YY) = u+< _l(u o/ )o; z0), 1 <j <

Yo: [0, 1] = V; Yo(?) _(u—e"”—l(u+l/\0,ao)0 zoe°("9))
Y [0, 1] = V3 ya (1) = (u+ itAj; zoe™2@), 1 <j <
Xy [0, 1] = V5 %0, (8) = (u+ 1o 2063, 1 <j<m

RN [0, 1] — y ; X(S([) — (Ll, Z()em,),

Note that po Y, poyg;, pox, and p o xs are closed paths in X.

THEOREM 3.3. With the notation above, we have an isomorphism between the
Sfundamental group (X, *) and the double affine Artin group AV;. Under the iso-
morphism the homotopy classes of the paths poX;, poys, pox, and pox;
correspond to T, Y, X,, and X, respectively.

Proof. It follows from Theorem 3.1 and Proposition 3.2 that the fundamental
group 7(X, ) and the double affine Artin group A~ are isomorphic. Under the
isomorphism the homotopy classes of the paths p o ret(Y) =poY; (for 0 <j<n),
poret(Xy) = pox, (for 1 <j<n)and poret(xs) = p o xs correspond to T, X,/. and
X, respectively. Moreover, by a computation very similar to the one done in the
proof of Theorem 5.5 in [L2, Chapter 3] one can show that this is also an iso-
morphism between the subgroup of 7;(X, x) generated by p o y4, (for 1 <j < n) and
po Yj(for 1 <j<n)and the affine Artin group Ay and that p o y,, correspond to
Yy under this isomorphism. O

3.2. PROOF OF THEOREM 2.2

Let us start by an analysis of the constructions in Section 3.1 for the group w'
Because

= /F0 and 0 :J%M,

we obtain that there exists a one-to-one correspondence between the finite root sys-
tems R and R' which assigns to any f € R a root §' € R' such that

1
'=——A43 and Ay = .
B N p = ~/PB
Therefore, we have that

1
—Hu,x and  Hyy, p = /pHpp,

N/

and in consequence the topological space

Hﬁl’k =

((V+1V) U(fHA/,,‘Jrszﬁh)) x C*,

pe R
h.keZ,
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If we denote by

= <(V—|— lV) — U(HA/"k + iH[?,h)) X C*,

BeR,
hke'Z,

we see that the map
pz s (v )
— Z, (v +ivy;z) > /oo +i—uvy;z
N/

is a homeomorphism. We can push forward the action of w' obtaining the following
formulas for the action on Z:

o si(v1 + iv2; 2) = (s(v1) + isj(v2); 2) for j# 0

J—ﬁ(vl + ivy; z) = (v + vy + if; ze 30, ) for pe Q
o 7 Y (01 + ivy; z) = (v + p + ivy; ze3 W) for ue M;
° ro(vl + ivy; z) = (v + ivy, —2).

By Theorem 3.3 and the above considerations the double affine Artin group AV;,
is isomorphic to the fundamental group of X”, the orbits space associated with
Z and the above action of W'. To make this precise let us define the following
paths on Z:

o Y0, 1] 25 YU0) = (u+ 5 ()i 20), 1 <<
° yfx [0,1] = Z 55 5, (1) = (u + it zoe~ Te) ] <]<n
o X\ 011> 21X (1) = (u+td;; z0eTeM) 1< <
7 7
o x4 [0, 1] = Z; x4(1) = (u; zge™).

By p': Z — X’ we denote the canonical projection. Theorem 3.3 reads now as
follows.

THEOREM 3.4. With the notation above, we have an isomorphism between the

Sfundamental group m\(X', %) and the double affine Artin group AI;I Under the iso-

morphism the homotopy classes of the paths p' o Y’ P oyfa ploxh Y, and p' o xj
1 1 1 VP

correspond to T, Y\/—a 1A and X, respectlvely

Looking back at the way X was defined we see that the map
Y= Z, (v +ivyz)— (vy+ivy;2),

induces an isomorphism of fundamental groups of the associated orbits spaces (by z

we denoted the complex conjugate of z). A straightforward analysis shows that the

homotopy classes of the paths po Y, po y4, poxy, poxsand (p'o Y’) , plox! Sp
L4,

ploy oy (' o xé)_ correspond respectively. Combining this with the Theorem 3.3

and Theorem 3.4 we finish our proof of Theorem 2.2.
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4. Descent to Hecke Algebras
4.1. SOME COMBINATORIAL RESULTS

Let us first establish some notation. For each w in W let /(w) be the length of a
reduced (i.e. shortest) decomposition of w in terms of the s;. We have

Iow) = )H(w)), (10)
where
M(w) ={o € Ry | w(a) € R_}. (11

If w=ys;, ---s; is a reduced decomposition, then
M(w) = {® | 1 <k <p),

with o™ =5, .. .55 (0.
For the basic properties of the length function on Coxeter groups see [H]. Let us
list the most important ones:
(1) For each 0 < j < n we have l(sjw) = [(w) £ 1;
(2) If I(sjw) = I(w) — 1 then s;w can be obtained from a certain reduced decomposi-
tion of w by omitting a s; factor.

When w € W can be written as vov}t#, with w € IjV and p € M the formula (10) takes
the following form (see [Lu])

o . s sV
0vi) = Y ‘(“e )+1‘+ 3 '(“e )‘. (12)
seRy. * sekty. ”
Po)eR— MoeR

Next, we will consider an application of the above formula. In this subsection we
will suppose that our irreducible affine Cartan matrix satisfies the restriction
imposed in Section 1.2 and moreover it is such that p # 1. Precisely in this case 0
is the highest root of the associated finite root system and it is not equal to 60, the
highest short root of the associated finite root system.

LEMMA 4.1. Let Aw be the Artin group associated to an irreducible affine Cartan
matrix as above. Then, in Ay we have Y,(;\v =T, ToTs, , To.

Proof. First, let us see that the formula in the statement makes sense. When p # 1
each e, is equal to d,, therefore e, 'a¥ = o and M = QV. In consequence —0, is an
anti-dominant element of M. Moreover, using basic facts about root systems, which
can be found for example in [B, yI, Sections 1, 3], we obtain that (8, 6;) = 1, which
implies that 0 — 0, = s9(—0;) € R. Denote by w = sps9_g,50. A simple computation
shows that sp,w = 4_g. In the view of Remark 1.4 our statement follows from the
following formulas

I(w) = K(sp-0,) +2 (13)
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and
I(w) + U(so,) = l(A_g"). (14)

The Equation (13) immediately follows from the second property of the length func-
tion mentioned above keeping in mind that w ¢ W, fact which can be easily checked.
Writing down formula (12) for 4_gv, sp, and for w = sy 4_g» we obtain

)= Y (0}, o),

o€ RO+.
(,07)#0
(s0)= > 1,
o€ RO+V
(,0)#0
lso,A-g) = D (0], ) 1),
o€ RO+.
(2,0))#0

These formulas show that Equation (14) holds. The proof statement is comple-
ted. O

The following fact will be crucial.

LEMMA 4.2. With the notation above we have
M(s0_,) — (0 — 0,) € (% € Ry (2.0 — 0) = 1).

Proof. In the case when p = 3, the matrix A equals G, and our statement can be
checked. Indeed, if a4, oy is the standard basis, with «; the short root and «; the long
root, we have that 0 = 3oy + 2000, 0y = 2001 + 0 and 0 — Oy = & + on. Furthermore,
Sp—p, = $25152 1s a reduced decomposition and

I(s9—p,) = {ot1 + 02, 02, 301 + 2000}.
Keeping in mind that

(e, 1) =2/3, (1, 0) =—1 and (o2, 0) =2,
the conclusion follows.

When p = 2, it is well known (see [B, VI, Sections 1, 3]) that we have the following
possible values for the scalar products (a, ) for any roots «, f such that o # %p:

1. if B is long, («, B¥) € {0, £1};
2. if B and o are short, («, f) € {0, £1};
3. if B is short and « is long, («, B¥) € {0, £2}.

Moreover, (o, «) € {1, 2}.
Obviously, 0 — 0, € I1(sg—p,). Let o € TI(sg—p,), o # 0 — 0. Then,

(s0-0,(2), 05) = (2, 65) and  (sp-g,(), 0) = (2, 20, — 0).
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Because o is a positive root, and sy_g (o) is a negative root the first scalar product
must be zero. This implies that the second scalar product equals —(«, 6). This one
cannot be zero because it would follow that « is fixed by sy_g,. Furthermore, o # 0
because (0, 6;) =1 # 0. Now, the above considerations on the possible values of
scalar products show that («,0) = 1. Considering all these facts we obtain
(o, (0 — 0,)") = 2. Keeping in mind that 0 — 0, is a short root different from o, the
same considerations on scalar products imply that « is a long root, and consequently

(O(V’Q—QS)ZI, |:|
We can choose a reduced decomposition for sy_g, of the form
Sjp -+ it S Sjy -+ Sjp» (15)

with w =s;, ...s; the minimal length element of W for which w(l — 0;) = aj, is a sim-
ple (short) root. Then, using formula (11) we see that IT1(w) < I1(sg_p,) — {0 — 0s}. As
before denote IT(w) = {o® | 1 < k < p}, where the positive root a® =5, ...s; (o).
By Lemma 4.2 we obtain that (0 — 0,, («®)¥) = 1, or equivalently

(Sjr -+ 55,(0 = 0), 07) = 1. (16)

LEMMA 4.3. With the notation above, the relation Tu‘,,l, Xo—o, = X% T, holds in the
Artin group .AI;.

Proof. Using the formula (16) and the relations in the double affine Artin group
we obtain that forallp >k > 1

T, X, L5 (0-0,) = Xy

s sy (0—0) Ty -

Now, our conclusion follows by applying these formulas. O

PROPOSITION 4.4. Let HV; be the double affine group associated to an irreducible
affine Cartan matrix as before. Then, in HI; we have

1
To Xo-o, — (T g Xo-0) ' =i — 1. (17)
Proof. From (15) we get that Tyg_g, = T,,-1 T}, T,. Therefore,

-1 _ —1p—1p—1
Ty g Xo—o, =T, T, Xo-o,

=T,'T;'X, T,

=T,'(X_y, Tj, + (6 — )T,
=X 900, T Tj, T + (& =17
= (T Xo o)™ + (6 = 1572).

We have used Lemma 4.3 and the fact that a;, is short. O
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4.2. PROOF OF THEOREM 2.3

Because we already have an isomorphism at the level of Artin groups all we need to
prove is that the relations (4) (5) (6) and (7) are satisfied. In order to keep the com-
putations in H’; we will check the relations for (PI;/’(T ), (;SW (T;YY ) and
qﬁv;z(X’ .T}) (the corresponding relations for ¢~ (T) ¢~ (T Y4) and d) (X 5 1))
could be checked in the same way). For j # 0 thls is stralghtforward For j=0 we
have to show that

Gt (X, TG) = § (X, T ™ = i (1) F = (1) (18)

There are two possible situations:
Case 1. If p=1, then o} = o; for all 1 <j < n. This implies that

qﬁl;:(X 0)_¢~’(4X9( A{),) Yle)

=q ' YyT, X g
=Ty Xy
Therefore in this case the relatlon (18) becomes precisely the relation (7).
Case2. Ifp# 1, then o; for all 1 <j < n. As a consequence, with the nota-
tion in Section 4.1 we have that
0/ 0
0'=—"-=/p0; and 0,=—.
N N

Also, it is clear that sy = s, and ¢>~t(to) = 1,. As before

G (XL Th) = b (gX p(T;,)7' Y Lp)

=q YOVTS(J X, 05
Using Lemma 4.1 and the commuting relations in the double affine Artin group we
obtain
¢~,(X’ Ty =T, Ts,; o, Xo-0,To. (19)

Conjugating (18) by Ty we obtain the relation (17) which was proved to be true in
Proposition 4.4. The proof of Theorem 2.3 is complete.
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