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EQUIVALENTS OF EKELAND'S PRINCIPLE

W. OETTLI AND M. THERA

In this note we present a new result which is equivalent to the celebrated Ekeland's
variational principle, and a set of implications which includes a new non-convex
minimisation principle due to Takahashi.

It is the purpose of this note to give a result which is equivalent to Ekeland's
variational principle, to a fixed point theorem of Caristi and Kirk, and to a recent
result of Takahashi about the existence of certain minima. The motivation for still
another equivalent stems from the observation that the present proposition gives the
previous results in the most direct way and seems to be somehow the "barycenter" of
these results [12]. The previous results have been slightly extended to obtain a uniform
level of generality.

Let (V, d) be a complete metric space. Let / : V x V —> (—oo,+oo] be a function
which is lower semicontinuous in the second argument and satisfies

(1) f(v,v) = 0 for allt> G V,

(2) f{u,v) < f(u,w) + f(w,v) for all u,v,w G V.

Assume that there exists vo G V such that

(3) mtvf(v0,v)> -oo.

Let

(4) So:={veV\f(vo,v) + d(vo

From (1) it follows that v0 G So ̂  0.

Under these specifications the following results are true:
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386 W. Oettli and M. Thera [2]

THEOREM 1 . (Ekeland [5]). There exists v* G So such that f(v*,v)+d(v*,v) >

Oforallv^V, v ̂  v*.

THEOREM 2 . (Takahashi [11]). Assume that

rfor every v £ So with inf f(v,v) < 0 there exists

G V such that v ̂  v and f{v,v) + d(v,v) < 0.

Tien tiere exists v* £ So such that f(v*,v) ^ 0 for all v G V.

THEOREM 3 . (Caristi - Kirk [2]). Let T : VZX V be a multivalued mapping such
that

{ for every v £ So there exists

v £ T(v) satisfying f{v,v) + d(v,v) ^ 0.

Tien tiere exists v* £ So such that v* G T(v*).

We add to these:

THEOREM 4 . Let * C V have the property that

{ for every v £ So \ $ there exists
_ _ _

v G V such that v ̂  v and f(v,v) + d(v,v) ^ 0.
Tien tiere exists v* £ So O * .

For the sake of completeness we give a self-contained proof of Theorem 4 which is

similar to the proof of Ekeland's Theorem given in [4, p. 16], [9].

PROOF OF THEOREM 4: We shall construct inductively a sequence of points vn £

V (n — 0,1,.. .). To each vn we adjoin the closed set

Sn:={v£V \ f{vn,v) + d{vn,v) ̂  0},

and define the number
7n := inf f(vn,v).

From (1) it follows that vn G Sn ^ 0, and that fn ^ 0. The starting point v0 is the
same as in (3). So coincides then with the set introduced in (4), and from (3) it follows
that 70 ̂  inf f(vo,v) > —oo. Let n ̂  1 and suppose that un_i with 7n-i > —oo is
known. Then choose vn G Sn-i such that

(8) f(Vn-l,Vn) ^7n - l + - •
n
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Using (2) and the fact that vn G S n - i , it follows readily that 5 n _ i D Sn. As a result,
by virtue of (2) and (8) we obtain:

7 n = «>i f(vn,v)~2 inf (/(vn_i,t>) - / ( » n - i , i ) n ) )
veSn v£Sn

> inf f(vn-uv)-f(vn-uvn)

= 7n-l - /(vn-l,Un) > .
n

If u G 5n > then d(vn,v) ^ — /(vn,f) ^ —Yn ^ 1/n. This implies that the diameter
of the sets Sn tends to zero. Moreover for all k ^ n one has »i G 5j C SB, hence
d(vn,Vk) < 1/n. Thus the sequence {«„} is Cauchy and tends to a limiting point
v* G V. It is clear that v* G njj"lo Sn. Since the diameter of the sets Sn tends to zero,
it follows that n ^ 0 Sn = {«*}. We claim that v* G * . If this was not true, then from
(7) there would exist v ^ v* with f(v*,v) + d(v*,v) ^ 0. Since v* 6 n~=0 Sn, we have
f(vn,v*)-\-d(vn,v*) ^ 0 for all n. Using (2) we would then obtain /(un>'")+^(vn)W) ^ 0
for all n, so that v G n~=0 5 n . This would contradict w ^ v*. Thus v* G *. D

THEOREM 5 . Theorems 1 through 4 are equivalent.

PROOF:

(1) "Theorem 4 => Theorem 1".

Let Theorem 4 hold. For all v £ F let T(v) := {u G V | u ^ v, f{v, v)+d(v, v) ^ 0}.
Choose * := {u G F | T(v) = 0}. If v $. * , then from the definition of * there exists
v G T(v). Hence (7) is satisfied, and by Theorem 4 there exists v* G So n * . Then
T(v*) = 0, that is, f{v*,v) + d(v*,v) > 0 for all v ^ w*. Hence Theorem 1 holds.

(2) "Theorem 4 => Theorem 2".

Suppose that both Theorem 4 and the hypothesis of Theorem 2 hold. Choose
* := {v G V | inf f(v,v) ^ 0}. Then (7) follows from (5), and Theorem 4 furnishes

some v* G 50 D * . From the definition of * follows then inf f(v*,v) > 0. Hence
t>ev

Theorem 2 holds.
(3) "Theorem 4 => Theorem 3".

Suppose that both Theorem 4 and the hypothesis of Theorem 3 hold. Choose
* :- {v G V | v G T(«)}. Then (7) follows from (6), and Theorem 4 furnishes some
v* G So H 9 which, from the definition of 9, necessarily belongs to T(v*). Hence
Theorem 3 holds.

(4) "Theorem 1 => Theorem 4".

Let Theorem 1 and the hypothesis of Theorem 4 hold. Theorem 1 gives v* £ 5o
such that f(v*,v) + d(v*,v) > 0 for all v ^ v*. From (7) follows then v* G * . Hence
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v* G So n * , and Theorem 4 holds.

(5) "Theorem 2 => Theorem 4".

Let Theorem 2 and the hypothesis of Theorem 4 hold. Assume, for contradiction,
that v £ * for all v G 5 0 . Then by (7) for all v G So

(*) there exists v ^ v with f(v,v) + d(v,v) < 0.

Hence (5) is satisfied. By Theorem 2 there exists v* G So such that f(v*,v) ^ 0 for all
v G V. This implies that /(u*, v) + </(«*, t>) > 0 for all v G V, v ^ v*, a contradiction
with (*). Hence « 6 $ for some v 6 So, and Theorem 4 holds.

(6) "Theorem 3 => Theorem 4".

Let Theorem 3 and the hypothesis of Theorem 4 hold. Define T : V Zt V by
T(u) := {« £ V | v ^ v } . Assume, for contradiction, that v (£. 9 for all v £ So • Then
(6) follows from (7), and by Theorem 3 there exists v* G T(v*). But this is clearly
impossible from the definition of T. Hence v G $ for some v £ So, and Theorem 4
holds. D

R E M A R K S .

1. Assumptions (1) and (2) are satisfied for instance if f(u,v) :— tp(Tv — Tu),

where T maps V into a linear topological space X and (p : X —* R U {+00} is
subadditive on X and satisfies <p(0) = 0.

2. The primitive version of Ekeland's Theorem is obtained from Theorem 1 by
choosing /(w,w) := F(v) — F(u), where F(.) is lower semicontinuous on V. With this
choice, one obtains from Theorem 1: If

-e:= MF{v)-F{v0)>-oo,

then there exists v* G V such that

F(v) > F(v") - d(v*,v) for all v G V, v ̂  v*,

(the last two inequalities come from F(v*) — JF'(vo) + d(vo,v*) ^ 0 ) . Slight variants are

obtained by replacing d with the equivalent metric (e/c) • d for some c > 0.

3. As a byproduct of Theorem 1 we can obtain a result about perturbed equilibria:

Let f,g : V x V —* R be lower semicontinuous in the second argument and satisfy

(1), (2). Let E(f) denote the equilibrium points of / , in the sense that E(f) :=

{v e V \ inf f{v,v) ^ 0} . Likewise define E(f + g) and E(f + d). Assume that
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g(u,v) ^ e for all u ,v G V. Let vo G E(f + g). This implies inf f(vo,v) ^ — e.

By Theorem 1, there exists v* G E(f + d) such that «* £ 5 0 . From v* G 5 0 follows
(̂•UojW*) ^ — f(vo,v*) ^ e. Therefore we have obtained the following

PROPOSITION . Ifvoe E(f + g) and if g(u,v) ^ e for all u,v £ V, then there

exists v* G E(f + d) such that d(vo,v*) ^ e.

We may interpret this result as follows: If we can control the changes in equilibria

for the specific perturbation / —• f + d, then we can also for general perturbations

/ - > / + </•
4. Let —e := inf f(vo,v). Replacing d by the equivalent metric (1/n) • d we

obtain from Theorem 1 for arbitrary n G N the existence of v* G V such that

(9) f{v*,v) + -d(v',v)>0 VveV,
n

f{Vo,v*) + -d{v0y)^o.

n

The second inequality implies in particular

(10) f(vo,v*) ^ 0

and, since — f(vo,v*) ^ e,

(11)

As an application of Theorem 1 we consider a globalised version of [6, Theorem 4.7
and Theorem 5.10], which does not need a linear structure. The Palais-Smale condition
employed in [6] will be replaced here by the following Condition (C).

DEFINITION: We say that v0 G V satisfies Condition (C) if and only if every
sequence {«„} C V satisfying f(vo,vn) ^ 1/n Vn and 0 ^ f(vn,v) + (l/n)d(vn,v)

V D £ 7 , Vn has a convergent subsequence.

THEOREM 6 . Let (V, d) be a complete metric space. Let f : V x V -> R be lower
semicontinuous in the second argument, upper semicontinuous in the £rst argument,
and satisfy (1), (2).

(a) If for some vo G V, inf f(vo,v) > —oo, and Vo satisfies Condition (C),
v€V

then there exists v* G V such that f(v*,v) ^ 0 Vt> G V.

(b) If for some v* G V, f(v*,v) ^ 0 Vv G V, and v* satisfies Condition (C),

then for every a > 0: either inf{/(«*,«) | v G V, d(v*,v) = a} > 0,
or there exists ua G V with d(v*,ua) = a and f(v*,ua) = 0 (implying
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PROOF:

(a) By Remark 4 above for all n G N there exists vn € V such that, correspondingly
with (9), (10),

(12) f(vn,v) +-d(vn,v) > 0 VveV,
n
f{vo,vn) < 0.

From Condition (C) there exists a subsequence of {«„} converging towards some v* G
V. Then from (12) and the upper semicontinuity of /(•,») we have

f(v*,v) ^0 Vii£V.

(b) Let a > 0 and assume that ini{f(v*,v) \ v e V, d(v*,v) = a} = 0. Then for
all n G N there exists vn € V with d(v*,vn) = a such that f(v*,vn) ^ 1/n2. Then
for all vG V,

0 ^ f(v*,v) < f(v*,vn) + f(vn,v) ^~ + f(vn,v).

Hence inf f(yn,v) ~£ —1/n2 > —oo. By Remark 4 above we obtain then, for all n £ N,

some un £V such that correspondingly with (9), (10), (11),

(13) f(un,v) + -d{un,v) ^ 0 V»eV,
n

(14) /(«„,«„) ^ 0,

(15) d(vn,un)^-.
n

From (14) and f{v*,vn) ^ 1/n2 follows f(v*,un) ^ f(v*,vn) +f{vn,un) < 1/n2 ^
1/n. From this and (13) follows, since v* satisfies Condition (C), the existence of a
subsequence of {un} converging towards some u a £ V. From f(v*,un) ^ 1/n follows
f(v*,ua) ^ 0, hence f(v*,ua) = 0. Moreover d(v*,vn) = a and lim d(vn,un) = 0

n—>oo

imply that d(v*,ua) = a. It is clear that f(v*,ua) = 0 and f(v*,v) ^ 0 Vv G F
imply

0^f(v*,v)^f(v*,ua) + f(ua,v) = f(ua,v) VveV. U
The next result is a metric variant of the "Drop Theorem" [3], [6, Theorem

7.3]. Here we return to the setting described in the beginning. Thus we assume that
V, d, f, «o are as specified in the paragraph preceding Theorem 1. Moreover, for a > 0

and w G V we define

Sa(w) := {v G V | f(w,v) + ad(w,v) < 0}.

Then we have:
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THEOREM 7 . Let A C V be a closed set such that v0 G A. Let B C V be

bounded. Assume that

(16) sup f(u,v) =: p <0.
u€A, i£B

For given b G V let R ^ d(b,v0) and AR := {« G A | d(6,v) ^ .R}. Then there exists
a > 0 and v* G ^(vo) D AH suci that

Sa(v*)DB, Sa(v')nAR = {v*}.

PROOF: Since «o G AR we can apply Theorem 1 with V replaced by AR . We

replace d by the equivalent metric a • d, where

0 < a s£ -p/(R + r ) , r := sup <£(&, w).
t>€B

From Theorem 1 we obtain v* G Sa{v0) D A/j such that f(v*,v) + ad{v*,v) > 0 for
all v G i4/i> v ^ v*. Then v G J4H with v ^ v* cannot be an element of Sa{v*). If
v & B, then

^ p + a(i? + r) ^ 0,

and therefore v G Sa(v*). U

If V is in addition a linear space and the functions /(u, •) and d(u, •) are convex,
then Sa(y*) is a convex set, hence contains with v* and B also the "drop" D(y*, 5 ) :=
cl conv({«'} U B). The conclusion of Theorem 7 gives then D(v*,B) f) AR - {v*}.
If furthermore f(u,v) := d(b,v) — <f(6,u), then (16) implies that supd(b,v) ^

veB
inf <f(b,u) ^ d(b,vo) ^ 72. Hence v* and B and therefore also D(v*,B) are con-
tained in the ball around b with radius R, and therefore every point of D{v*, B) C\ A
must be in AR. The conclusion of Theorem 7 gives then D(v*,B) D A = {«*}, the
classical result. See also [1, 7, 8, 10].
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