MONOTONE AND E-SCHAUDER BASES OF SUBSPACES
JOHN P. RUSSO

1. Introduction. The notions of monotone bases and bases of subspaces
are well known in a normed linear space setting and have obvious extensions
to pseudo-metrizable linear topological spaces. In this paper, these notions
are extended to arbitrary linear topological spaces. The principal result gives
a list of properties that are equivalent to a sequence (M;) of complete sub-
spaces being an e-Schauder basis of subspaces for the closed linear span of
\UL1® M ;. A corollary of this theorem is the fact that an e-Schauder basis for
a dense subspace of a linear topological space is an e-Schauder basis for the
whole space.

2. A sequence, (M;), of non-trivial subspaces of a linear topological space
(X, T) is called a basis of subspaces for (X, T) provided that for each x € X,
there exists a unique sequence of vectors (x;) such that x; € M; and
> 1x; — x. (Here the arrow denotes convergence in the vector topology <.)
A basis for (X, T) is a sequence of vectors (x;) in X such that for each x € X
there is a unique sequence of scalars (a;) such that >.7 a; x; — x. Note that
if (x;) is a basis for (X, T) and M, denotes the one-dimensional subspace of
X spanned by x;, then (M) is a basis of subspaces for (X, T). Conversely,
it can easily be shown that a space with a basis of one-dimensional subspaces
has a basis. These facts and others which will be noted below imply that the
theorems concerning bases of subspaces which follow have corollaries involving
bases. These, however, will be stated only when they seem of particular
interest. If (x;) is a basis for (X, ) and M, is the one-dimensional subspace
spanned by x;, we shall call (M) the basis of subspaces associated with (x;).
If (M) is a basis of subspaces for (X, ¥), then it is possible to define for
each 7 a projection E;: X — M, as follows: E,(x) = x;, where (x;) is the
unique sequence of vectors such that x; € M, and > 7 x; — x. If each E; is
continuous, then (M) is called a Schauder basis of subspaces. Let S, = > 1 E,.
Then S, is a linear mapping from X into X. Moreover, S,(x) — x and
SplS, (x)] = S,(x) where » = min (m, n). If O is a point of equicontinuity
of the sequence (S,), then (JM,) is called an e-Schauder basis of subspaces for
(X, ). Throughout the remainder of this paper we shall adopt the con-
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vention that if (M) is a basis of subspaces, then E; will denote the projection
defined above and .S, will denote the projection >_1 E;. An e-Schauder basis
of subspaces is a Schauder basis of subspaces, but in general, the converse
is not true. The two notions are clearly equivalent in all spaces in which
pointwise bounded families of continuous linear functions are equicontinuous,
e.g. in second category and barrelled spaces.

Associated with a basis (x;) is a sequence of linear functionals (f;) defined
by fi(x) = a;, where (a;) is the unique sequence of scalars such that
>ia;x;—x. 1f each of the coefficient functionals f; is continuous, (x;) is
called a Schauder basis. A basis is a Schauder basis if and only if the basis
of subspaces associated with it is a Schauder basis of subspaces. A basis is
defined to be an e-Schauder basts if and only if the associated basis of sub-
spaces is an e-Schauder basis of subspaces.

A real-valued function ¢ on a linear space X is called a paranorm on X
provided it has the following properties:

(2.1) p(x) > 0 for all x € X,

22)  »p0) =0,

23)  ple+y) <pl) +p@) foral x,y € X,
(2.4) p(—x) = p(x) for all x € X,

(2.5) if (a,) is a sequence of scalars such that @, —a and (x,) is a
sequence in X such that p(x — x,) — 0, then p(ax — a, x,) — 0.

If p is a paranorm on a linear space X and for x,y € X we define

dx,y) = plx —y),

then it is easy to show that d is an invariant pseudo-metric which generates
a vector topology for X. Conversely, if (X, ¥) is a pseudo-metrizable linear
topological space and d is an invariant pseudo-metric (one always exists; see,
for example, (2, p. 48)) which generates the vector topology <, then p, defined
by p(x) = d(x,0) is a paranorm on X.

Let P be a family of paranorms on a linear space X. For » € P and ¢ > 0,
define V,. = {x € X: p(x) < ¢}. It is not difficult to show that the family
of sets {Myer Vye: € > 0 and F is a finite subset of P} is a local base for a
vector topology for X. This topology will be called the topology generated by
P. Note that properties (2.1)-(2.4) are sufficient to guarantee that P generates
a topology and (2.5) ensures that scalar multiplication will be a continuous
operation in this topology.

It is known (2, p. 50) that any linear topological space can be embedded
in the product of pseudo-metrizable linear topological spaces. Using this and
the definition of the product topology, it is not difficult to show that any
vector topology for a linear space X can be generated by a family of para-
norms on X (see (2, 6C, p. 51)). In view of the remarks above, it is evident
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that if (X, ) is pseudo-metrizable, it is possible to choose a single paranorm
which generates . It is well known that if (X, ) is locally convex, then
there exists a family P of paranorms on X which generates ¥ and has the
additional property that its members are pseudo-norms. Also, if T, is the
weak topology and we define for each f € X*, p,(x) = |f(x)], then {p,: f € X*}
generates T ,.

Let (M) be a sequence of subsets of a linear topological space (X, T) and
let P be a family of paranorms on X. Then (M) is defined to be monotone
relative to P if and only if >_1 x; — x and x; € M, implies that for each p € P,
p (X1 x,) is a non-decreasing function of #.

A sequence (M,) of non-trivial subspaces of a linear topological space
(X, 2) is called w-independent provided that 3.7x; — 0 and x; € M, implies
that x; = 0 for each 7. Note that a basis of subspaces is w-independent.

In general, we shall use the notation of (2).

3. The following lemma is a slight improvement of a result found in (4).
The proof of part (i) is essentially the same as the one given there and so it
will be omitted.

3.1. LEMmA. Let (M) be an w-independent sequence of subspaces of a linear
topological space (X, T) and let X, = {x: there exists a sequence (x;) such that
x; € M; and Y 1x;— x}. Let B be a local base for T consisting of closed sets
and for V € B define V', = {x € X.: X1x, € V for each n, where x, € M,
and Y ix; — x}. Then the following hold:

1) B, = {V'e: V € B} is a local base for a vector topology T', for X ..

(i1) (M) is an e-Schauder basis of subspaces for (X, T',).

Proof of (ii). Let T, denote the topology induced on X, by . Since (M)
is w-independent, it is evident that (M) is a basis of subspaces for (X, T,).
B, ={V:V,=VNX,VEB} is a local base for T, which consists of
T ~closed sets. Since V, is T-closed, V', & V,, so T', is stronger than .. If
x € X, then there exists a unique sequence (x;), with x; € M, having the
property that > 7x;— x (relative to T,). We show that this convergence
also holds relative to I’,. Since T’ is stronger than I, if the convergence
holds, then the sequence (x;) must be unique. Let V’, be given. Since
S 1x;—x (relative to T,), there exists an integer N such that m,n > N
imply that S, (x) — S,(x) € V.. (Recall that S,(x) = 3" x;). We show that
if m > N, then x — S, (x) € V', ie. S,lx — Sn(x)] € V, for each n. Suppose
m > N, If n < N, then

On the other hand, if # > N, then S,[x — S,(x)] = S,(x) — S,(x), where
r = min (n,m). Since #,7 > N, we have S,(x) — S,(x) € V.. Thus, it fol-
lows that > 7x; — x (relative to T',) and so (M) is a basis of subspaces
for (X., T',).
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We now show that for each m, S,(V’.) € V’,, thus proving that (S,) is
T’ -equicontinuous at O and completing the proof of (ii). If x € V', then
S,(x) € V., for each n, so S,[Sy ()] = Swne.m () € V. for each n. There-
fore, if x € V',, Sp(x) € V', for each m, ie. S,(V',) S V'..

3.2. LEmMMA. Let (M) be a basis of subspaces for a linear topological space
(X, ) and let B be a local base for T consisting of closed sets. For V € B define
V' = {x:S,(x) € V for each n}. Then B = {V': V &€ B} 4s a local base for
a vector topology T’ for X. T’ is sironger than T and (M) is an e-Schauder
basis of subspaces for (X, T').

Proof. A basis of subspaces is w-independent, so the lemma follows almost
immediately from Lemma 3.1.

3.3. LEmmaA. Let (M), (X,%),T,3,, B, and B', be defined as in 3.1.
Then E,=Z'. if and only if (M;) 1s an e-Schauder basis of subspaces for
X To).

Proof. If T, = T, it is clear from Lemma 3.1 that (M) is an e-Schauder
basis of subspaces for (X, T.).

Conversely, suppose (M) is an e-Schauder basis of subspaces for (X, T.).
Then O is a point of equicontinuity of the sequence of projections (S,). It
follows that for each V., & L, there exists a neighbourhood U, € B, such
that S,(U,) € V, for each #n. This implies that U, C V’, and hence that
T, C .. It is always true that T, C T’ so the proof is complete.

3.4. LEmMMA. Let (X, ) be a linear topological space with a basts of sub-
spaces (M), and let P be a family of paranorms which generates T. For each
p € P, define p'(x) = sup{p[S,.(x)]:n =1,2,...}. Then P' = {p': p € P} 1s
a family of paranorms which generates X', where T’ 1is the topology defined
in 3.2.

Proof. 1t is easy to verify that p’ possesses properties (2.1)—(2.4). Thus,
letting Ve = {x: p'(x) < ¢}, we see that the family of sets {1V, e: e > 0} is
a local base for a topology ¥, for X. To establish the fact that p’ satisfies
(2.5), it suffices to show that T, is a vector topology. Property (2.5) will
then follow from the fact that p’ is continuous relative to the topology it
generates and the fact that scalar multiplication is always a continuous
operation in a linear space with a vector topology. Each element p in P is
a paranorm and so the family of sets { V,.: ¢ > 0} is a local base for a vector
topology %,. (Here V,. is defined just as V,.. was above.) Recall that
S, (x) = X1 x,, where (x;) is the unique sequence of vectors such thatx; € M,
and X_7 x;, — x. The topology T, is weaker than T, so since S, (x) — x (relative
to ¥), we have S,(x) — x (relative to ,). Using this and the fact that each
S, is linear, it is an easy matter to verify that if V', = {x: S,(x) € V,. for
each n}, then {1V, e > 0} is a local base for a vector topology ¥’,. Note
that V', = Ve so that §,, = T, and hence p’ is a paranorm.
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Let &’ be the topology defined in Lemma 3.2. For each finite subset F of
P and each € > 0, let Vye = Myer Vye, where V,. is defined as above. Since
P generates T, the family of sets L = {Vre: € > 0 and F is a finite subset
of P} is a local base for T which consists of closed sets. Then {V'ze: Ve € B}
is a local base for T’'. (Note that T’ does not depend upon the particular
local base for T chosen, but only upon Z.) The proof is concluded by observing
that V'pe = Myer Ve and V'pe = {x: p'(x) < €} so that P’ generates T'.

4.1. LEMMA. Let (M) denote an w-independent sequence of subspaces and let
M denote the closure of {O}. Then M, N\ M = {0} for each 1.

Proof. If for some k, m € M; M\ M, then > 1x;— 0, where x, = m and
x; = 0 for 7 # k. This implies that m = 0.

An immediate consequence of this lemma is that a linear topological space
is Hausdorff if it has a basis of closed subspaces, since each closed subspace
contains the closure of {O}. Another application will follow later.

The proof of the following is routine and will be omitted.

4.2. LEMMA. Let (X, T) be a linear topological space. Y a subspace of (X, T),
and T a continuous linear mapping from Y into a complete subspace M of
(X, ). Then :

(i) T can be extended to a continuous linear mapping T: Y — M. (Y denotes
the closure of Y.)

(i) If F is a family of linear mappings from Y into M which is equicon-
tinwous al O, and for each T € F, T is a continuous extension of T to Y, then
the family F = {T: T € F} is also equicontinuous at O.

We are now ready to state and prove the principal result of this paper.

4.3. THEOREM. Let (M) be an w-independent sequence of complete subspaces
of a linear topological space (X, T). Then the following are equivalent:

(A) (M) is an e-Schauder basis of subspaces for the linear span of \J,* M.

(B) (M) is an e-Schauder basis of subspaces for the closed linear span of
U™ M,

(C) There exists a family P* of paranorms generating I such that (M;) is
monotone relative to P*.

(D) There exists a family P of paranorms generating T which has the pro-
perty that for each p € P, there exist a constant K, and a T-continuous para-
norm q, on X such that x; € M; and n < m imply that

P(Zyltxz) <K, sz(Z'l" %)

(E) There exists a family P of paranorms generating T which has the pro-
perty that for each p € P, there exist a constant K, and a T-continuous para-
norm q, on X such that Y 1x,— x and x; € M, imply that

P %) < K, g,(x).
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(F) There exists a local base B for I such that if x; € M, VE B, x €V,
and Y.t x;—> x, then > 1x; € V for each n.

(G) There exists a local base B for T such that if x, € M,;, V € B, and
Stx, €V, then Y2 'x, € V.

Proof. (A) = (B): Let Y denote the linear span of \U,” M ;, and let (E;)
denote the sequence of linear operators associated with (M ;). For each ¢,
E;:Y— M, and M, is complete, so by (1) of Lemma 4.2, each E; can be
extended to a continuous linear mapping E;: ¥ — M,.

Let S, = 1 E; (recall that S, = 31 E;). The family {S,:n =1,2,...}
is equicontinuous at O and S, is a continuous extension of S,, so by (11) of
Lemma 4.2 it follows that {S,: » = 1,2, ...} is equicontinuous at O. We show
that if 5 € ¥, then 3% E;(§) — 5. Since E;(§) € M, and (M) is w-inde-
pendent, it will then follow that (M) is a basis of subspaces for Y. Let V
(any neighbourhood of O) be given. Choose a neighbourhood U of O such
that U+ U+ U C V. Since {S,} is equicontinuous at O, there is a neigh-
bourhood W of O such that for each #n, S,(WNY) C UNY C U. Also,
there is at least one point ¥ € ¥ such that y —y € W U. Then for each
n, S,(y — 5) = S,(y) — S.(§) € U. Recalling that S, is an extension of S,,
we also note that S,(y) = S,(y) and so there exists an integer N such that
if > N,y —2S,(y) € U. Hence if n > N, we have

=S =3—-y+y =S50 +350) -S»MHc U+ U+ UCT.
Therefore (M) is a basis of subspaces for ¥, the closed linear span of \U;* M,
and in fact, since {S,} is equicontinuous at O, (M) is an e-Schauder basis
of subspaces for Y.

(B) = (C): If (M) is an e-Schauder basis of subspaces for Y, it is evident
that ¥ = X, = {x € X: there exists a sequence (x;), such that x; € M, and
Six;— x}. If Pis a family of paranorms which generates ¥, then P also
generates T, the relative topology for X, For x € X, define

p'(x) = sup{p[S.(x)]: 2 = 1,2,...}.
Applying Lemmas 3.3 and 3.4 to the space (X, ,) we obtain the fact that
P’ is a family of paranorms on X, which generates ¥,. Using this and the
fact that p(x) < p’(x) it is a routine matter to verify that if for p € P we
define

_Jp'(x) if x € X,
) = {;b(x) if x ¢ X,

then P* = {p*: p € P} is a family of paranorms on X which generates T.
We show that (3,) is monotone relative to P*. Suppose # < m and x ¢ X..
Then

P*[Su(%)]

P'[Sa(x)] = supy {p[Sk (S, ()]}
supp{p[S:(x)]: ¥ = min(k, #)} < sup{p[S,(x)]: » = min(k, m)}
P*[Sn(x)].

https://doi.org/10.4153/CJM-1968-022-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-022-6

MONOTONE BASES OF SUBSPACES 239

(C) = (D): Let P = P*, K, =1, and ¢, = p*.
(D) = (E): This is evident from the fact that if ¢, is T-continuous and
> 1x;— x, then

7,201 %:) = g, (x).

(E) = (F): Let P be a family of paranorms which satisfies the condition
given in (E). Since (M) is w-independent, (M) is a basis of subspaces for
(X, ), where X, = {x: there exists a sequence (x;) with x; € M, such that
>ix;— «} and T, is the relative topology for X,. The equicontinuity of the
linear mappings follows easily from the fact that given p € P there exists
a constant K, and a T-continuous paranorm ¢, such that [S,(x)] < K, ¢, (x).
Hence (M) is an e-Schauder basis of subspaces for (X,, T,). Let LB, be any
local base for T, and define &', as in Lemma 3.1. Then by Lemma 3.3, %',
is also a local base for T,. Recall now that in the proof of Lemma 3.1 it was
shown that if V', € L', then S,(V’,) C V’'.. In other words, if x; € M,,
Vi,e X, x€ V', and Xix;,—x, then Xix; =S,(x) € V.. It is now
clear from the definition of X, that if ¥ is any local base for T such that
B, ={VNX;: Ve B}, then B will have the desired property.

(G) = (A): Let (X, Z.) be as defined in the proof of (F) = (G). Since
X, contains the linear span of \U;* M; and () is a basis of subspaces for
(X., T.), it suffices to show that the family {S,:# = 1,2,...} is equicon-
tinuous. We are given that there exists a local base ¥ for T such that if
x € X, S,(x) € V,and V€ DB, then S,_1(x) € V. If welet V.=V NX,
then B, = {V,: V € B} is a local base for T, We complete the proof of
the theorem by showing that if 1/, is the interior of V,, then S, (V%) C V,
for each n. If x € V9, then since S,(x) — x, there exists an integer N such
that # > N implies S,(x) € V.° C V.. Hence, using the given condition
N — 1 times, we conclude that S,(x) € V. for all .

The above theorem demonstrates the close connection between monotone
and e-Schauder bases of subspaces. It also shows that if X is an infinite-
dimensional Banach space, then X does not possess a basis of subspaces
which is monotone relative to any family of paranorms generating the weak
topology, since McArthur and Retherford (3, Remark 3, p. 208) have proved
that such a space does not possess a weak e-Schauder basis of subspaces.

The requirement that (3/;) be w-independent can be dropped if (X, T) is
assumed to be a Hausdorff space. This is because the conditions in (A) and
(B) clearly imply w-independence (in any space) and the conditions in (C)-
(G) guarantee that if x; € M, and X1 x; — 0, then x; belongs to the closure
of {0}. The proof of this is easy and will not be given here.

The implication (D) = (B) has been proved by Retherford and McArthur
(4) for complete locally convex Hausdorff spaces.

If (b;) is a basis for a linear topological space (X, T) and (M) is the basis
of one-dimensional subspaces associated with (b;), then (3,) is clearly w-
independent and so by Lemma 4.1, each M; is Hausdorff. From this it follows
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that M, is linearly homeomorphic to the scalar field of X and therefore com-
plete. Thus, the corollary below follows immediately from Theorem 4.3 and
the remarks made above.

4.4, COROLLARY. Lei (b;) denote a sequence of vectors in a Hausdorff linear
topological space (X, T). Then the following are equivalent:

(@) (by) s an e-Schauder basis for its linear span.

(b) (b;) ts an e-Schauder basis for its closed linear span.

(c) There exists o family P* of paranorms gemerating T which has the fol-
lowing property: of p* € P* and (¢;) is a sequence of scalars such that

Z(iotibi =X,

then p*(3_1t,b;) is a non-decreasing funciion of n.

(d) There exists a family of paranorms P which generates T and has the
property that if p € P, then there exists a constani K, and a T-continuous para-
norm ¢, on X such that n < m implies that

pQIT1:b:) < Kpqp(QoT 1:by)
for each sequence of scalars (t;).

(e) There exists a local base B for T such that if V € Band 37 t,0; € V,
then 3% t,b, € V for each n.

The implication (a) = (b) is not true if the “‘¢” is dropped from e-Schauder,
even if (X, T) is a Banach space (see (5, Example 5, p. 209)). However, it
is well known that a basis for a complete metrizable linear topological space
(X, T) must be an e-Schauder basis for (X, ). Thus, in such a space (b)
is equivalent to (c), (d), and (e), even if the assumption that the basis (b;)
is e-Schauder is dropped.

4.5. CorROLLARY. Let (X, T) be a metrizable linear topological space. Then a
sequence (b;) in X is an e-Schauder basis for its closed linear span if and only
if there exists a paranorm p on X which generates T and has the property that for
some constant K, if n < m, then

P(it:b) < Kp(Xitiby)
for each sequence of scalars (t;).
The following is similar to a well-known result due to M. M. Grinblyum (1).

4.6. CoroLLARY. If (X, || ||) 4s a normed linear space, and (b;) is a sequence
of vectors in X, then the following are equivalent:
(i) (by) is an e-Schauder basis for its linear span.
(ii) (b4) s an e-Schauder basis for its closed linear span.
(iii) There exists a constant K such that if (t;) is any sequence of scalars and
n < m, then

(1225604 < K |[207 4404
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Proof. That (i) < (ii) and that (iii) = (ii) follow immediately from Corol-
lary 4.4.

To prove (ii) = (iii) we note that the equicontinuity of the family {S,}
(in this case, S,(2_1 t;0;) = 2 1t;b;) implies that for some K, ||S,|| < K
for each n. Hence, if x = >.7¢;b;, and # < m, then

(225204l = (18] < [[Sull [ls]] < K228 ¢:04]]

Requirement (ii) can be weakened by deleting the words ‘‘e-Schauder,”
but only at the expense of requiring X to be a Banach space. This, with (i)
deleted, is essentially Grinblyum’s theorem. A readily accessible statement
and proof of this theorem is found in (5, p. 211). It is interesting to note
that the only role completeness plays in the proof of this theorem is to ensure
the equicontinuity of the family {S,}.

The strength and usefulness of this equicontinuity will be again demon-
strated in one final corollary (which incidentally follows directly from impli-
cation (A) = (B) of Theorem 4.3 and the previously mentioned fact that
the one-dimensional subspaces spanned by basis vectors are complete).

4.7. CorROLLARY. An e-Schauder basis for a dense subspace of a linear topo-
logical space (X, ) is an e-Schauder basis for (X, ).

The equicontinuity requirement cannot be dropped even if (X, <) is a
Banach space, since (0,) = (cos nr) is a Schauder basis for the dense sub-
space of C[0, 1] consisting of all polynomial functions, but (b,) is not a basis
for C[0, 1]. (See (5, Example 5, p. 209).)
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