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1. I n t r o d u c t i o n . T h e notions of monotone bases and bases of subspaces 
are well known in a normed linear space sett ing and have obvious extensions 
to pseudo-metrizable linear topological spaces. In this paper, these notions 
are extended to arbi t rary linear topological spaces. The principal result gives 
a list of properties t h a t are equivalent to a sequence (Mi) of complete sub-
spaces being an e-Schauder basis of subspaces for the closed linear span of 
VJi00 M^ A corollary of this theorem is the fact t h a t an e-Schauder basis for 
a dense subspace of a linear topological space is an e-Schauder basis for the 
whole space. 

2. A sequence, (Mt), of non-trivial subspaces of a linear topological space 
(X, X) is called a basis of subspaces for (X, X) provided t h a t for each x f l , 
there exists a unique sequence of vectors (xt) such t h a t xt £ Mi and 
J^i Xi —> x. (Here the arrow denotes convergence in the vector topology X.) 
A basis for (X, X) is a sequence of vectors (xt) in X such tha t for each x f l 
there is a unique sequence of scalars (at) such tha t ]TÏ at xt —> x. Note t h a t 
if (x^ is a basis for (X, X) and Mt denotes the one-dimensional subspace of 
X spanned by xu then (Mt) is a basis of subspaces for (X, X). Conversely, 
it can easily be shown tha t a space with a basis of one-dimensional subspaces 
has a basis. These facts and others which will be noted below imply t ha t the 
theorems concerning bases of subspaces which follow have corollaries involving 
bases. These, however, will be s ta ted only when they seem of part icular 
interest. If (xt) is a basis for (X, X) and Mt is the one-dimensional subspace 
spanned by xu we shall call (Mt) the basis of subspaces associated with (xt). 
If (Mi) is a basis of subspaces for (X, X), then it is possible to define for 
each i a projection Et: X —> Mt as follows: Et(x) — xit where (xt) is the 
unique sequence of vectors such t ha t xt £ Mt and X!ï x% ~* x- If e a c h Et is 
continuous, then (Mt) is called a Schauder basis of subspaces. Let Sn = £ ï Et. 
Then Sn is a linear mapping from X into X. Moreover, Sn(x)—> x and 
Sm[Sn(x)] = Sr(x) where r = min (m, n). If 0 is a point of equicontinuity 
of the sequence (Sn)y then (Mi) is called an e-Schauder basis of subspaces for 
(X, X). Throughou t the remainder of this paper we shall adop t the con-
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vention that if (Mt) is a basis of subspaces, then Et will denote the projection 
defined above and Sn will denote the projection ]£!-Ej. An e-Schauder basis 
of subspaces is a Schauder basis of subspaces, but in general, the converse 
is not true. The two notions are clearly equivalent in all spaces in which 
pointwise bounded families of continuous linear functions are equicontinuous, 
e.g. in second category and barrelled spaces. 

Associated with a basis (xt) is a sequence of linear functionals (ft) defined 
by fi(x) = aù where (at) is the unique sequence of scalars such that 

If each of the coefficient functionals ft is continuous, (xt) is 
called a Schauder basis. A basis is a Schauder basis if and only if the basis 
of subspaces associated with it is a Schauder basis of subspaces. A basis is 
defined to be an e-Schauder basis if and only if the associated basis of sub-
spaces is an e-Schauder basis of subspaces. 

A real-valued function p on a linear space X is called a paranorm on X 
provided it has the following properties: 

(2.1) p(x) > 0 for all x Ç X, 

(2.2) p(0) = 0, 

(2.3) p(x + y) < p (x) + p(y) for all x,y £ X, 

(2.4) p(-x) = p(x) for all x U , 

(2.5) if (an) is a sequence of scalars such that an-^ a and (xn) is a 
sequence in X such that p (x — xn) —> 0, then p {ax — an xn) —•> 0. 

If p is a paranorm on a linear space X and for x, y £ X we define 

d(x, y) = p(x — y), 

then it is easy to show that d is an invariant pseudo-metric which generates 
a vector topology for X. Conversely, if (X, X) is a pseudo-metrizable linear 
topological space and d is an invariant pseudo-metric (one always exists; see, 
for example, (2, p. 48)) which generates the vector topology X, then p, defined 
by p(x) = d(x, 0) is a paranorm on X. 

Let P be a family of paranorms on a linear space X. For p Ç P and e > 0, 
define F^e = \x £ X: p(x) *C e}. I t is not difficult to show that the family 
of sets j n ^ F Vpe: e > 0 and F is a finite subset of P] is a local base for a 
vector topology for X. This topology will be called the topology generated by 
P . Note that properties (2.1)-(2.4) are sufficient to guarantee that P generates 
a topology and (2.5) ensures that scalar multiplication will be a continuous 
operation in this topology. 

I t is known (2, p. 50) that any linear topological space can be embedded 
in the product of pseudo-metrizable linear topological spaces. Using this and 
the definition of the product topology, it is not difficult to show that any 
vector topology for a linear space X can be generated by a family of para
norms on X (see (2, 6C, p. 51)). In view of the remarks above, it is evident 
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that if (X, X) is pseudo-metrizable, it is possible to choose a single paranorm 
which generates X. I t is well known that if (X, X) is locally convex, then 
there exists a family P of paranorms on X which generates X and has the 
additional property that its members are pseudo-norms. Also, if Xw is the 
weak topology and we define for each/ G X*, pf(x) — \f(x)\, then \pf\ f G X*} 
generates Xw. 

Let (Mi) be a sequence of subsets of a linear topological space (X, X) and 
let P be a family of paranorms on X. Then (Mt) is defined to be monotone 
relative to P if and only if X i #* —> # a n d tf * G -Mi implies that for each p G P , 
£ Œ ï # 0 is a non-decreasing function of n. 

A sequence (AT*) of non-trivial subspaces of a linear topological space 
(X, X) is called co-independent provided that YA xt—^0 and xt G Mi implies 
that xt = 0 for each i. Note that a basis of subspaces is co-independent. 

In general, we shall use the notation of (2). 

3. The following lemma is a slight improvement of a result found in (4). 
The proof of part (i) is essentially the same as the one given there and so it 
will be omitted. 

3.1. LEMMA. Let (Mt) be an co-independent sequence of subspaces of a linear 
topological space (X, X) and let Xc = {x: there exists a sequence (xt) such that 
Xf G Mf and YJi xt-^ x}. Let 23 be a local base for X consisting of closed sets 
and for V G 23 define Vc = {x G X c : £ ! xt G V for each n, where xt G Mt 

and J^ixt-^x}. Then the following hold: 
(i) 23/ = {Vc\ F G 23} is a local base for a vector topology X'cfor Xc. 

(ii) (Mi) is an e-Schauder basis of subspaces for (Xc, Xf
c). 

Proof of (ii). Let Xc denote the topology induced on Xc by X. Since (M{) 
is co-independent, it is evident that (Mt) is a basis of subspaces for (Xc, Xc)> 
33c = { Vc: Vc = V C\ Xc, F G 23} is a local base for Xc which consists of 
£c-closed sets. Since Vc is £c-closed, Vc Q Vc, so X'c is stronger than Xc> If 
x G Xc, then there exists a unique sequence (xt), with xt G Mi} having the 
property that YAXI~^X (relative to Xc). We show that this convergence 
also holds relative to X'c- Since X'c is stronger than Xc, if the convergence 
holds, then the sequence (xt) must be unique. Let Vc be given. Since 
Z ï̂ xi ~* x (relative to Xc), there exists an integer N such that rn, n > N 
imply that Sm(x) — Sn(x) G Vc. (Recall that Sn(x) = YT xd- We show that 
if m > N, then x — Sm(x) G V'c, i.e. Sn[x — Sm(x)] G Vc for each n. Suppose 
m > N, If n < N, then 

Sn[x - Sm(x)] = Sn(x) - Sn[Sm(x)] = Sn(x) - Sn(x) = 0 G Ve. 

On the other hand, if n > N, then Sn[x — Sm(x)] = Sn(x) — Sr(x), where 
r = min (n, m). Since n, r > N, we have Sn(x) — Sr(x) G Vc. Thus, it fol
lows that YH (relative to X'c) and so (M{) is a basis of subspaces 
for (Xc, X'c). 
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We now show that for each m, Sm(V c) Q Vc, thus proving that (Sn) is 
SVequicontinuous at 0 and completing the proof of (ii). If x Ç V'„ then 
Sn(x) £ Vc for each n, so Sn[Sm(x)] = Sm^n,m)(x) € Vc for each n. There
fore, if x Ç F'c , vSw(x) G F'c for each m, i.e. Sm(V c) C F'c . 

3.2. LEMMA. Le£ (M*) &£ a basis of sub spaces for a linear topological space 
(X, X) and let 33 be a local base for X consisting of closed sets. For V £ 53 define 
V = {x: Sn(x) 6 V for each n\. Then 23' = {V: V Ç 33} w a local base for 
a vector topology X' for X. Xf is stronger than X and (Mt) is an e-Schauder 
basis of sub spaces for (X, X'). 

Proof. A basis of subspaces is co-independent, so the lemma follows almost 
immediately from Lemma 3.1. 

3.3. LEMMA. Let (Mt), (X, X), Xc, X'CJ 33c, and 33;
c be defined as in 3.1. 

Then Xc = X' c if and only if (Mt) is an e-Schauder basis of subspaces for 
(Xc, Xc)-

Proof. If Xc = X'c, it is clear from Lemma 3.1 that (Mi) is an ^-Schauder 
basis of subspaces for (Xc, Xc)-

Conversely, suppose (Mi) is an ^-Schauder basis of subspaces for (Xc, Xr)> 
Then O is a point of equicontinuity of the sequence of projections (Sn). I t 
follows that for each Vc G 33c, there exists a neighbourhood Uc G 93c such 
that Sn(Uc) ^ Vc for each n. This implies that Uc Ç Vc and hence that 
Xrc £ £c- I t is always true that Xc ^ ï 'c» so the proof is complete. 

3.4. LEMMA. Let (X, X) be a linear topological space with a basis of sub-
spaces (Mi) j and let P be a family of paranorms which generates X. For each 
p G P , define pf(x) = sup\p[Sn(x)]: n = 1, 2, . . .}. Then P' = {p'\ p G P] is 
a family of paranorms which generates X', where Xf is the topology defined 
in 3.2. 

Proof. I t is easy to verify that p' possesses properties (2.1)-(2.4). Thus, 
letting Vp>e = \x: pf(x) < e}, we see that the family of sets {Vv>e\ e > 0} is 
a local base for a topology Xv> for X. To establish the fact that p' satisfies 
(2.5), it suffices to show that Xv> is a vector topology. Property (2.5) will 
then follow from the fact that p' is continuous relative to the topology it 
generates and the fact that scalar multiplication is always a continuous 
operation in a linear space with a vector topology. Each element p in P is 
a paranorm and so the family of sets { Vpe: e > 0} is a local base for a vector 
topology Xp. (Here Vpe is defined just as Vv>e was above.) Recall that 
Sn(x) = 2]ï xnj where (xt) is the unique sequence of vectors such that xt 6 Mt 

and 52Ï %i —» x. The topology Xv is weaker than X, so since Sn(x) —> x (relative 
to X), we have Sn(x) —> x (relative to Xp). Using this and the fact that each 
Sn is linear, it is an easy matter to verify that if V'pt = {x: Sn(x) G Vp€ for 
each n}, then {V'pt\ e > 0} is a local base for a vector topology X'v. Note 
that Vpe = VP'€ so that XP' = Xp' and hence p' is a paranorm. 
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Let X' be the topology defined in Lemma 3.2. For each finite subset F of 
P and each e > 0, let VFe = C\v<zF Vpe, where Vpe is defined as above. Since 
P generates X, the family of sets 33 = {VF£: e > 0 and F is a finite subset 
of P} is a local base for X which consists of closed sets. Then { V Ft\ VFe £ 23} 
is a local base for X\ (Note that X' does not depend upon the particular 
local base for X chosen, but only upon X.) The proof is concluded by observing 
that V'Fe = C\VZF V'Vi and V'pt = {x: p'(x) < e} so that P' generates X'. 

4.1. LEMMA. Let (Mi) denote an ^-independent sequence of sub spaces and let 
M denote the closure of {0}. Then Mi C\ M = \0] for each i. 

Proof. If for some k, m £ Mk H M, then £ ï xt —* 0, where xk = m and 
Xi = 0 for i T^ k. This implies that m = 0. 

An immediate consequence of this lemma is that a linear topological space 
is Hausdorfï if it has a basis of closed subspaces, since each closed subspace 
contains the closure of {0}. Another application will follow later. 

The proof of the following is routine and will be omitted. 

4.2. LEMMA. Let (X, X) be a linear topological space. Y a subspace of (X, X), 
and T a continuous linear mapping from Y into a complete subspace M of 
(X,X). Then : 

(i) T can be extended to a continuous linear mapping T: Y —> M. (Y denotes 
the closure of Y.) 

(ii) If F is a family of linear mappings from Y into M which is equicon-
tinuous at 0, and for each r G F, T is a continuous extension of T to Y, then 
the family F = {T: T G F} is also equicontinuous at 0. 

We are now ready to state and prove the principal result of this paper. 

4.3. THEOREM. Let (Mi) be an ^-independent sequence of complete subspaces 
of a linear topological space (X, X). Then the following are equivalent: 

(A) (Mi) is an e-Schauder basis of subspaces for the linear span of VJi°° Mt. 
(B) (Mi) is an e-Schauder basis of subspaces for the closed linear span of 

ur M^ 
(C) There exists a family P* of paranorms generating X such that (Mt) is 

monotone relative to P*. 
(D) There exists a family P of paranorms generating X which has the pro

perty that for each p Ç P , there exist a constant Kp and a X-continuous para-
norm qv on X such that xt £ Mi and n < m imply that 

pŒ2ni%i) <Kvqv(£jiXi). 

(E) There exists a family P of paranorms generating X which has the pro
perty that for each p G P , there exist a constant KP and a X-continuous para-
norm qv on X such that ]£! xt —> x and xt Ç Mt imply that 

p(EJiXi) <Kvqv(x). 
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(F) There exists a local base 33 for X such that if xt G Mi, V G 33, x G F, 
and YA xi ~~* *> then YJiXi £ F / o r eac/z- w. 

(G) There exists a local base 33 for X such that if xt G Af*, V G 33, awd 
L U z G F, /Ac» L ï _ 1 x , G F. 

Proo/. (A) =» (B): Let Y denote the linear span of VJ^ M^, and let (Et) 
denote the sequence of linear operators associated with (Mi). For each i, 
Et: Y-^Mi, and Mi is complete, so by (i) of Lemma 4.2, each Et can be 
extended to a continuous linear mapping £*: Y —•» Mi. 

Let 5W = B £ , (recall that 5, = £ " £ , ) . The family {Sn: n = 1, 2, . . .} 
is equicontinuous at 0 and Sn is a continuous extension of Sn, so by (ii) of 
Lemma 4.2 it follows that {Sn: n = 1, 2, . . .} is equicontinuous at 0. We show 
that if y G F, then L* JÊ^y) -» ?• S i n c e -Ê*(50 G M/ and (¥<) is co-inde
pendent, it will then follow that (Mt) is a basis of subspaces for Y. Let V 
(any neighbourhood of 0) be given. Choose a neighbourhood U of 0 such 
that U + U + U C F. Since {on} is equicontinuous at 0, there is a neigh
bourhood IF of 0 such that for each n, 5 K ( I f n F ) Ç £7 H F Ç £7. Also, 
there is at least one point y G Y such that J — y G TF Pi £7. Then for each 
n, Sn(y — y) = Sn(y) — Sn(y) C [7. Recalling that *SW is an extension of Sn, 
we also note that Sn(y) = Sn(y) and so there exists an integer N such that 
if n > N, y — Sv(y) G U. Hence if n > TV, we have 

5 - 3» (50 = y - y + y - 5n(y) + 3» (y) - Sn(y) ZU+U+UQV. 

Therefore (Mi) is a basis of subspaces for Y, the closed linear span of Ui°° ikf *, 
and in fact, since {Sn} is equicontinuous at 0, (Mj) is an e-Schauder basis 
of subspaces for Y. 

(B) => (C): If (ikfj) is an £-Schauder basis of subspaces for Y, it is evident 
that Y = Xc = {x G X: there exists a sequence (xz), such that x* G Mt and 
S i x^ —->x}. If P is a family of paranorms which generates X, then P also 
generates £ c , the relative topology for Xc. For x G Xc, define 

£'(x) = sup{p[Sn(x)]: n = 1, 2, . . .}. 

Applying Lemmas 3.3 and 3.4 to the space (XCJ Xc) we obtain the fact that 
Pf is a family of paranorms on Xc which generates Xc- Using this and the 
fact that p(x) < £'(x) it is a routine matter to verify that if for p G P we 
define 

(£'(x) if x G Z c , 
^ * W l£(*) if x G Z c 

then P* = {p*: p £ P} is a family of paranorms on X which generates X. 
We show that (Mt) is monotone relative to P*. Suppose n < m and x G -3TC. 
Then 

/>*[&(*)] = p'[Sn(x)} = sup, {^[5,(5w(x)]i 
= supA;{^[5r(x)]: r = min(fe, w)} < sup{£[SV(x)]: r = min(fe, m)\ 
= £*[S»(*)]. 
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(C) => ( D ) : Le t P = P* , 2T, = 1, and qp = £*. 
(D) => ( E ) : This is evident from the fact t h a t if qp is ^ -cont inuous and 

2^ï x^ —> x, then 

(E) =» (F ) : Let P be a family of paranorms which satisfies the condition 
given in (E) . Since (Mi) is co-independent, (Mi) is a basis of subspaces for 
(Xc, Xc), where Xc = {x: there exists a sequence (xt) with x* G Mi such t h a t 
S i x^ —> x} and Xc is the relative topology for Xc. The equicontinuity of the 
linear mappings follows easily from the fact t ha t given p G P there exists 
a cons tant Kp and a ^-cont inuous paranorm gp such t h a t p[Sn(x)] < iÊp qp(x). 
Hence (Mt) is an ^-Schauder basis of subspaces for (Xc, Xc)- Let 33 c be any 
local base for Xc and define 33'c as in Lemma 3.1. Then by Lemma 3.3, 33'c 

is also a local base for Xc. Recall now tha t in the proof of Lemma 3.1 it was 
shown t h a t if Vc G 33'c, then Sn(Vc) Ç V'c. In other words, if xt G Mu 

Vc G 33%, x G F ' c and 2ZÏ x^ —> x, then £ ! x^ = 5w(x) G V'c. I t is now 
clear from the definition of Xc t h a t if 33 is any local base for X such t h a t 
$ ' c = | F n i c : V G 33}, then 33 will have the desired property. 

(G) =$ (A): Let (Xc , Xc) be as defined in the proof of (F) => (G). Since 
X c contains the linear span of U i œ Mt and (Mi) is a basis of subspaces for 
(Xc, Xc), it suffices to show tha t the family {Sn: n = 1, 2, . . .} is equicon-
tinuous. We are given t h a t there exists a local base 33 for X such t h a t if 
x G XCJ SJx) G V, and F G 33, then Sn^(x) G V. If we let Vc = V C\ Xe, 
then 33c = { Vc: F G 33} is a local base for 3%. We complete the proof of 
the theorem by showing t ha t if Fc° is the interior of Vc, then Sn(Vc°) Ç Vc 

for each ?z. If x G Fc°, then since Sn(x) —» x, there exists an integer TV such 
t h a t w > iV implies <Sw(x) G Fc° Ç F c . Hence, using the given condition 
N — 1 times, we conclude t ha t 5w(x) G Vc for all w. 

The above theorem demonstrates the close connection between monotone 
and £-Schauder bases of subspaces. I t also shows tha t if X is an infinite-
dimensional Banach space, then X does not possess a basis of subspaces 
which is monotone relative to any family of paranorms generating the weak 
topology, since McAr thur and Retherford (3, Remark 3, p. 208) have proved 
t h a t such a space does not possess a weak e-Schauder basis of subspaces. 

T h e requirement t h a t (Mt) be co-independent can be dropped if (X, X) is 
assumed to be a Hausdorfï space. This is because the conditions in (A) and 
(B) clearly imply co-independence (in any space) and the conditions in ( C ) -
(G) guarantee t h a t if xt G Mt and £ ! xt —* 0, then xt belongs to the closure 
of {0}. T h e proof of this is easy and will not be given here. 

T h e implication (D) => (B) has been proved by Retherford and McAr thur 
(4) for complete locally convex Hausdorfï spaces. 

If (bi) is a basis for a linear topological space (X, X) and (Mt) is the basis 
of one-dimensional subspaces associated with (bi), then (Mt) is clearly co-
independent and so by Lemma 4.1, each Mt is Hausdorfï. From this it follows 
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that Mf is linearly homeomorphic to the scalar field of X and therefore com
plete. Thus, the corollary below follows immediately from Theorem 4.3 and 
the remarks made above. 

4.4. COROLLARY. Let (bt) denote a sequence of vectors in a Hausdorff linear 
topological space (X, X). Then the following are equivalent: 

(a) (bf) is an e-Schauder basis for its linear span. 
(b) (bi) is an e-Schauder basis for its closed linear span. 
(c) There exists a family P* of paranorms generating X which has the fol

lowing property: if p* G P* and (ti) is a sequence of scalar s such that 

J^i tibi = x, 

then p*C%2?i ti bi) is a non-decreasing function of n. 
(d) There exists a family of paranorms P which generates X and has the 

property that if p G P , then there exists a constant Kv and a X-continuous para-
norm qp on X such that n < m implies that 

P(EA h bi) < Kv qp(jy ti bi) 

for each sequence of scalar s (tt). 
(e) There exists a local base 33 for X such that if V G 33 and XT h bi G V, 

then 5Zi hbi G Vfor each n. 

The implication (a) => (b) is not true if the ' V is dropped from e-Schauder, 
even if (X, X) is a Banach space (see (5, Example o, p. 209)). However, it 
is well known that a basis for a complete metrizable linear topological space 
(X, X) must be an e-Schauder basis for (X, X). Thus, in such a space (b) 
is equivalent to (c), (d), and (e), even if the assumption that the basis (bi) 
is e-Schauder is dropped. 

4.5. COROLLARY. Let (X, X) be a metrizable linear topological space. Then a 
sequence (bt) in X is an e-Schauder basis for its closed linear span if and only 
if there exists a paranorm p on X which generates X and has the property that for 
some constant K, if n < m, then 

pCLlhbiXKpCZxtibù 
for each sequence of scalar s (tt). 

The following is similar to a well-known result due to M. M. Grinblyum (1). 

4.6. COROLLARY. If (X, \\ \\) is a normed linear space, and (bt) is a sequence 
of vectors in X, then the following are equivalent: 

(i) (bi) is an e-Schauder basis for its linear span. 
(ii) (bi) is an e-Schauder basis for its closed linear span. 

(iii) There exists a constant K such that if (ti) is any sequence of scalar s and 
n < m, then 

ÏÏLïtibiW <K\\jytib(\\. 

https://doi.org/10.4153/CJM-1968-022-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-022-6


MONOTONE BASES OF SUBSPACES 241 

Proof. That (i) <=> (ii) and that (iii) => (ii) follow immediately from Corol
lary 4.4. 

To prove (ii) =» (iii) we note that the equicontinuity of the family {Sn} 
(in this case, Sn(Yli h bi) = H^Ubi) implies that for some K, \\Sn\\ < K 
for each n. Hence, if x — XT Ubu and n < m, then 

WETiUbtW = ||5K(x)||< WSnWWxiKKWZTtibiW. 
Requirement (ii) can be weakened by deleting the words " e-Schauder, " 

but only at the expense of requiring X to be a Banach space. This, with (i) 
deleted, is essentially Grinblyum's theorem. A readily accessible statement 
and proof of this theorem is found in (5, p. 211). I t is interesting to note 
that the only role completeness plays in the proof of this theorem is to ensure 
the equicontinuity of the family {Sn}. 

The strength and usefulness of this equicontinuity will be again demon
strated in one final corollary (which incidentally follows directly from impli
cation (A) => (B) of Theorem 4.3 and the previously mentioned fact that 
the one-dimensional subspaces spanned by basis vectors are complete). 

4.7. COROLLARY. An e-Schauder basis for a dense subspace of a linear topo
logical space (X, X) is an e-Schauder basis for (X, X). 

The equicontinuity requirement cannot be dropped even if (X, X) is a 
Banach space, since (bn) = (cos mr) is a Schauder basis for the dense sub-
space of C[0, 1] consisting of all polynomial functions, but (bn) is not a basis 
for C[0, 1]. (See (5, Example 5, p. 209).) 

REFERENCES 

1. M. M. Grinbluym, On the representation of a space of type B in the form of a direct sum of 
subspaces, Dokl. Akad. Nauk SSSR (N.S.), 70 (1950), 749-752. 

2. J. L. Kelley , I. Namioka, et al., Linear topological spaces (Princeton, 1963). 
3. C. W. McArthur and J. R. Retherford, Uniform and equicontinuous Schauder bases of sub-

spaces, Can. J. Math., 17 (1965), 207-212. 
4. J. R. Retherford and C. W. McArthur, Some remarks on bases in linear topological spaces, 

Math. Ann., 164 (1966), 38-41. 
5. A. Wilansky, Functional analysis (New York, 1964). 

Andrews University, 
Berrien Springs, Michigan 

https://doi.org/10.4153/CJM-1968-022-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-022-6

