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The Spectrum and Isometric Embeddings
of Surfaces of Revolution

For Gus and Sonia

Martin Engman

Abstract. A sharp upper bound on the first S1 invariant eigenvalue of the Laplacian for S1 invariant

metrics on S2 is used to find obstructions to the existence of S1 equivariant isometric embeddings

of such metrics in (R
3, can). As a corollary we prove: If the first four distinct eigenvalues have even

multiplicities then the metric cannot be equivariantly, isometrically embedded in (R
3, can). This leads

to generalizations of some classical results in the theory of surfaces.

1 Introduction

The problem of isometrically embedding (S2, g) in (R
3, can) has a long history which

goes back at least as far as 1916. In that year, Weyl [22], and in the years since, Lewy
[17], Nirenberg [19], Heinz [11], Alexandrov [2], and Pogorelov [20, 21], to name a
few, proved embedding theorems of various orders of differentiability (or analyticity)
in case the Gauss curvature is positive. The recent results of Guan and Li [10], and

Hong and Zuily [13] address the case of non-negative curvature. But, of course, not
every metric on S2 admits such an isometric embedding. The reader may refer to
Greene [9], wherein one finds examples of smooth metrics on S2 for which there is
no C2 isometric embedding in (R

3, can).

In the presence of examples such as Greene’s, one might naturally ask if there ex-
ist intrinsic geometric conditions on metrics which obstruct such isometric embed-
dings. Inasmuch as the above mentioned embedding theorems require, at least, non-

negativity of the Gauss curvature, one must look for embedding obstructed metrics
among those with some negative curvature. Of course, having some negative cur-
vature is not enough, but one might hope that some stronger condition, associated
with the existence of some negative curvature, might satisfy our requirements. The

purpose of this paper is to provide, in a special case, conditions on the spectrum
of the Riemannian manifold which are intrinsic obstructions to the above isometric
embedding problem.

It is no surprise that the spectrum might make an appearance in this subject.
There is an extensive literature which associates the spectrum with (more generally)
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Spectrum and Embeddings 227

isometric immersions (see [4, 18]). Much of this work relates the spectrum to the
mean curvature, and is associated with the Willmore conjecture. By way of com-

parison, the embedding problem of this paper is almost trivial, but it is the intrinsic
relation between the spectrum and embeddability which we hope the reader will find
interesting.

In the case of S1 invariant metrics on S2, one can prove that, while the first eigen-

value must be bounded above by 8π/area (Hersch’s theorem, [12]), the first S1 in-
variant eigenvalue can be arbitrarily large. At the same time, however, there is a
sharp upper bound, depending on the metric, for the first S1 invariant eigenvalue.
We will prove that it is this upper bound which, upon exceeding a certain critical

value, becomes an obstruction to the existence of equivariant isometric embeddings
into (R

3, can). As a result, if the first S1 invariant eigenvalue becomes too large then
the surface cannot be isometrically embedded in (R

3, can) as a classical surface of
revolution. (See also Abreu and Freitas [1].)

Another characteristic of the spectrum of a surface of revolution is that the eigen-

spaces are even dimensional unless the eigenvalue happens to correspond to an S1

invariant eigenvalue. As a result, one way of increasing the first S1 invariant eigen-
value is to insist that the multiplicities be even up to a certain point. This leads to a

result, proved in Section 5, that even multiplicity for the first 4 distinct eigenvalues is
an obstruction to isometric embeddability.

In the last section, we will remark on how these results give a generalization of a
well known corollary of the Gauss–Bonnet Theorem regarding the existence of non-
positive integral curvature.

The author is indebted to Andrew Hwang for a brief but enlightening conversation
about momentum coordinates.

2 Isometric Embeddings and Momentum Coordinates

The results that we obtain are based on a well known and quite elementary result
regarding S1 invariant metrics on S2 which can be found in Besse [3, pp. 95–106].
The reader will find the results of this section to be, essentially, nothing but a refor-

mulation of Besse’s treatment. We use the terminology surface of revolution when
referring to a classical surface of revolution, i.e., a surface generated by rotation of a
curve about a line. This is an example of an S1 equivariant embedding. An S1 invariant
metric on S2 is sometimes called an abstract surface of revolution. See the definition

in Hwang [14].

We will, henceforth, assume R
3 to be endowed with its standard flat metric and

therefore suppress any further mention of its metric. Let (M, g) be an S1 invariant
Riemannian manifold which is diffeomorphic to S2 and whose area is 4π. We will
assume the metric to be C∞. Since (M, g) has an effective S1 isometry group there

are exactly two fixed points. We call the fixed points np and sp and let U be the chart
M \ {np, sp}. On U the metric has the form ds ⊗ ds + a2(s) dθ ⊗ dθ where s is the
arclength along a geodesic connecting np to sp and a(s) is a function a : [0, L] → R

+

satisfying a(0) = a(L) = 0 and a ′(0) = 1 = −a ′(L).
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One can always isometrically embed such a metric into R
2 × C as follows:

(2.1)

ψ1(s, θ) = a(s) cos θ

ψ2(s, θ) = a(s) sin θ

ψ3(s, θ) =

∫ s

c

√

1 − (a ′)2(t) dt

for some c ∈ [0, L]. Using this formula, it can be shown that (M, g) can be isometri-

cally C1 embedded as a surface of revolution in R
3 if and only if

(2.2) |a ′(s)| ≤ 1 for all s ∈ [0, L].

We will find it convenient to make a change of variables to action-angle coordinates.

These are given by a diffeomorphism (s, θ) → (x, θ) where x ≡ φ : [0, L] → [−1, 1]
is defined by:

(2.3) x ≡ φ(s) ≡
∫ s

b

a(t) dt

for a suitably chosen value of the constant b.
These are also called symplectic coordinates since φ is a moment map of the S1

action. These coordinates play an important rôle in the explicit construction of a
large class of complete Kähler metrics of constant curvature. (See Hwang and Singer

[15].)
If we let f (x) ≡ (a2 ◦φ−1)(x), then in the new coordinates the metric on the chart

U takes the form

(2.4) g =
1

f (x)
dx ⊗ dx + f (x) dθ ⊗ dθ

where (x, θ) ∈ (−1, 1)×[0, 2π). In these coordinates the conditions at the endpoints
translate to f (−1) = 0 = f (1) and f ′(−1) = 2 = − f ′(1). In this form, it is easy
to see that the Gauss curvature of this metric is given by K(x) = (−1/2) f

′ ′

(x). It is

also worth observing that the function f (x) is the square of the length of the Killing
field (infinitesimal isometry) ∂/∂θ on the chart U . The canonical (i.e., constant
curvature) metric is obtained by taking f (x) = 1 − x2 and is denoted by can.

Using these coordinates, Hwang [14] proves a general proposition which includes

the following version of Besse’s result.

Proposition 2.1 Let (M, g), with metric g as in (2.4), be diffeomorphic to S2. (M, g)
can be isometrically C1 embedded in R

3 as a surface of revolution if and only if
| f ′(x)| ≤ 2 for all x ∈ [−1, 1].

Furthermore, since f ′ is simply −2 times an antiderivative of the curvature, this
result can be restated in terms of integral curvatures as follows. (The details appear
in [8].)
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Corollary 2.2 Let (M, g) be an S1-invariant Riemannian manifold that is diffeomor-
phic to S2. Let np and sp denote the fixed points of the S1-action, and let K be the Gauss

curvature of (M, g). Then (M, g) has an isometric C1-embedding in R
3 as a surface of

revolution if and only if
∫

Ω

K ≥ 0

for all geodesic disks Ω, of constant radii, centered at np or sp.

3 Some Properties of the Spectrum

In the interest of presenting a self-contained exposition we will review some of the
relevant facts about the spectrum (eigenvalues) of a surface of revolution in this sec-

tion. The interested reader may consult [5, 6, 7] for further details.
Let ∆ denote the scalar Laplacian on a surface of revolution (M, g), where g is

given by (2.4) and let λ be any eigenvalue of −∆. We will use the symbols Eλ and
dim Eλ to denote the eigenspace for λ and it’s multiplicity respectively. In this paper

the symbol λm will always mean the m-th distinct eigenvalue. We adopt the con-
vention λ0 = 0. Since S1 (parametrized here by 0 ≤ θ < 2π) acts on (M, g) by
isometries and because dim Eλm

≤ 2m + 1 (see [7] for the proof), the orthogonal
decomposition of Eλm

has the special form

Eλm
=

k=m
⊕

k=−m

eikθWk

in which Wk(= W−k) is the “eigenspace” (it might contain only 0) of the ordinary
differential operator

Lk = − d

dx

(

f (x)
d

dx

)

+
k2

f (x)

with suitable boundary conditions. It should be observed that dim Wk ≤ 1, a value
of zero for this dimension occuring when λm 6∈ Spec Lk.

It is easy to see that Spec(−∆) =
⋃

k∈Z
Spec Lk and consequently the non-zero

part of the spectrum of −∆ can be studied via the spectra Spec Lk = {0 < λ1
k <

λ2
k < · · · < λ

j
k < · · · } ∀k ∈ Z. The eigenvalues λ

j
0 in the case k = 0 above are called

the S1 invariant eigenvalues since their eigenfunctions are invariant under the action
of the S1 isometry group. If k 6= 0 the eigenvalues are called k equivariant or simply

of type k 6= 0. Each Lk has a Green’s operator, Γk :
(

H0(M)
)⊥ → L2(M), whose

spectrum is {1/λ
j
k}∞j=1, and whose trace is defined by, tr Γk ≡

∑

1/λ
j
k.

Proposition 3.1 (See [5, 6]) With the notations as above:

(i)

tr Γk =

{

1
2

∫ 1

−1
1−x2

f (x)
dx if k = 0,

1
|k| if k 6= 0.

(ii) For all k ∈ Z and j ∈ N, λ
j
k = λ

j
−k.
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(iii) ∀k ≥ 1 and ∀ j ≥ 0, λk+ j ≤ λ
j+1

k ; and λ1 ≤ λ1
0.

(iv) dim Eλm
is odd if and only if λm is an S1 invariant eigenvalue.

Remark One must be careful with the definition of tr Γ0 since λ0 = 0 is an S1 invari-
ant eigenvalue of −∆. To avoid this difficulty we studied the S1 invariant spectrum

of the Laplacian on 1-forms in [6] and then observed that the non-zero eigenvalues
are the same for functions and 1-forms.

4 A Sharp Upper Bound for the First Eigenvalue

In [7] we derived sharp upper bounds for all of the distinct eigenvalues on an abstract
surface of revolution diffeomorphic to S2. These estimates were obtained using the

the k-type eigenvalues for k 6= 0. In this section we will obtain a sharp bound for λ1

using the S1 invariant spectrum. In contrast with the more general result of Hersch
[12], the reader will find that this bound exhibits, more explicitly, its dependence on
the metric. This fact will play an important rôle in embedding problems.

Proposition 4.1 Let (M, g) be an S1 invariant Riemannian manifold of area 4π which
is diffeomorphic to S2 with metric (2.4). Let λ1

0 be the first non-zero S1 invariant eigen-
value for this metric; then

λ1
0 ≤

3

2

∫ 1

−1

f (x) dx

and equality holds if and only if (M, g) is isometric to (S2, can).

Proof The minimum principle associated with the first non-zero S1 invariant eigen-

value problem,

(4.1) L0u = − d

dx

(

f (x)
du

dx

)

= λ1
0u,

states that

(4.2) λ1
0 ≤

∫ 1

−1
f (x)( du

dx
)2 dx

∫ 1

−1
u2 dx

for all S1 invariant functions u ∈ C∞(M) with u ⊥ ker L0. Equality holds if and
only if u is an eigenfunction for λ1

0. Since ker L0 consists of constant functions and
∫ 1

−1
x · 1 dx = 0, we see that u(x) = x is an admissible solution of (4.2) and therefore

λ1
0 ≤ 3

2

∫ 1

−1
f (x) dx. Equality holds if and only if u(x) = x is the first S1 invariant

eigenfunction. In this case, upon substitution of u(x) = x into (4.1) we obtain the
equivalent equation − f ′(x) = λ1

0x. Recalling that f (x) and f ′(x) must satisfy certain

boundary conditions forces λ1
0 = 2 and yields the unique solution f (x) = 1 − x2. In

other words, g = can.

Because of Proposition 3.1(iii), we have the immediate corollary:
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Corollary 4.2 Let (M, g) be an S1 invariant Riemannian manifold of area 4π, which
is diffeomorphic to S2 with metric (2.4). Let λ1 be the first, non-zero, distinct eigenvalue

for this metric, then

λ1 ≤
3

2

∫ 1

−1

f (x) dx

and equality holds if and only if (M, g) is isometric to (S2, can).

5 Spectral Obstructions to Equivariant Isometric Embeddings

In [6] we used the trace formula of Proposition 3.1(i) to show that there exist abstract
surfaces of revolution with arbitrarily large first S1 invariant eigenvalue. This fact,

together with Proposition 4.1 of the last section, shows that as λ1
0 increases so does

the integral
∫ 1

−1
f (x) dx. This fact is the key to the results of this section, but first we

will prove a lemma which gives lower bounds for our eigenvalues.

Lemma 5.1 Let f (x) and λm
k be defined as above then for all m ∈ N

λm
k >

{

2m[
∫ 1

−1
1−x2

f (x)
dx]−1 if k = 0,

m|k| if k 6= 0.

Proof From Proposition 3.1(i)

1

2

∫ 1

−1

1 − x2

f (x)
dx =

∞
∑

j=1

1

λ
j
0

and
1

|k| =

∞
∑

j=1

1

λ
j
k

.

Each of the sequences {λ j
k}∞j=1 is positive and strictly increasing so by truncating the

above series after m terms and then replacing each term with the smallest one we
obtain

1

2

∫ 1

−1

1 − x2

f (x)
dx >

m

λm
0

and
1

|k| >
m

λm
k

.

This produces the desired inequalities.

As was observed in [6], the k = 0, m = 1 case of this inequality, together with the
minimal restrictions on the function f is enough to ensure that there exist surfaces
of revolution with arbitrarily large λ1

0. Because of this, we can be confident that the
next two results are non-vacuous.

Proposition 5.2 Let (M, g) be an S1 invariant Riemannian manifold of area 4π which
is diffeomorphic to S2 and let λ1

0 be it’s first non-zero S1 invariant eigenvalue. If λ1
0 > 3

then (M, g) cannot be isometrically C1 embedded in R
3 as a surface of revolution.
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Proof By Proposition 4.1, since λ1
0 > 3, then

∫ 1

−1
f (x) dx > 2. Upon integrating by

parts we have −
∫ 1

−1
x f ′(x) dx > 2 so that

2 <
∣

∣

∣
−

∫ 1

−1

x f ′(x) dx
∣

∣

∣
≤

∫ 1

−1

|x| | f ′(x)| dx ≤ max
x∈[−1,1]

| f ′(x)|.

So there exists x0 ∈ [−1, 1] with | f ′(x0)| > 2, thus, by Proposition 2.1, precluding
the possibility of an isometric embedding as a surface of revolution.

An immediate consequence of Corollary 2.2 is:

Corollary 5.3 Let (M, g) be an S1 invariant Riemannian manifold of area 4π which

is diffeomorphic to S2, let K be it’s Gauss curvature, and let λ1
0 be it’s first S1 invariant

eigenvalue. If λ1
0 > 3 then there exists a pole-centered disk Ω ⊂ M such that

∫

Ω
K < 0.

Remark Rafe Mazzeo and Steve Zelditch have brought to our attention a recent re-
sult of Abreu and Freitas, [1], which is a significant improvement of Proposition 5.2.

They prove, with the same hypothesis as Proposition 5.2 and using the notation of
this paper, that, for a metric isometrically embedded in R

3 as a surface of revolu-

tion, λ
j
0 < ξ2

j/2, for all j where ξ j is a positive zero of a certain Bessel function or

its derivative. In particular, λ1
0 < ξ2

1/2 ≈ 2.89. We have left Proposition 5.2 in the
paper since its proof is so easy, and because the eigenvalue bound contained therein
is sufficient for proving the main theorem (Theorem 5.5) below.

As we allow the first S1 invariant eigenvalue to increase one might suspect that,
so to speak, some small eigenvalues with even multiplicity are “left behind”. This
suggests that we might find an obstruction to embedding if the first few eigenvalues
have even multiplicities. We will soon see that even multiplicities for the first four

eigenvalues will constitute such an obstruction, but first it would be a good idea to
know if metrics with this property exist. This is the subject of:

Theorem 5.4 There exist metrics on S2 whose first four distinct non-zero eigenvalues

have even multiplicity.

Proof To prove this theorem we will find an S1 invariant metric of area 4π with this

property.
By Proposition 3.1(iv), dim Eλm

is even if and only if λm is not an S1 invariant

eigenvalue, i.e., if and only if λm 6= λ
j
0 for any j. It is now clear that the first four

multiplicities are even if and only if λ4 < λ1
0, and, by Proposition 3.1(iii), this will

occur if our metric satisfies λ1
4 < λ1

0. Using a variational principle, as in [7], for the

operator L4, we obtain the upper bound

λ1
4 ≤

∫ 1

−1
[ f (x)( du

dx
)2 + 42

f (x)
u2] dx

∫ 1

−1
u2 dx
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∀u ∈ C∞(−1, 1) such that u(−1) = u(1) = 0.
Comparing this upper bound with the lower bound on λ1

0 provided by Lemma

5.1, the proof of this theorem may now be reduced to finding a function f and a
suitable test function u such that

(5.1)

∫ 1

−1
[ f (x)( du

dx
)2 + 16

f (x)
u2] dx

∫ 1

−1
u2 dx

< 2
[

∫ 1

−1

1 − x2

f (x)
dx

]−1

.

We claim that f (x) =
10(1−x2)

1+9x36 and u(x) =
√

1 − x2 will satisfy the inequality (5.1).

It is not difficult to see that 2[
∫ 1

−1
1−x2

f (x)
dx]−1

=
185
23

> 8 for this choice of f (x).

So the right hand side of (5.1) is greater than 8. Calculating the left hand side of (5.1)

for this choice of f (x) and u(x) yields:

∫ 1

−1
[ f (x)( du

dx
)2 + 16

f (x)
u2] dx

∫ 1

−1
u2 dx

=
3

4

[

10

∫ 1

−1

x2

1 + 9x36
dx +

8

5

∫ 1

−1

(1 + 9x36) dx
]

<
3

4

[

10 · 2

3
+

16

5
· 46

37

]

=
1477

185
< 8,

where the first integral in brackets has been approximated in the obvious way. Since

the left hand side is less than 8 and the right hand side is greater than 8, the proof is
finished.

The proof of this theorem is hardly optimal since there are, certainly, many such

metrics. We also believe that using a similar technique, one should be able to find
metrics whose first m distinct eigenvalues have even multiplicity for arbitrary m, but
we will not address these problems here.

Theorem 5.5 Let (M, g) be an S1 invariant Riemannian manifold which is diffeomor-
phic to S2 and let λm be its m-th distinct eigenvalue. If dim Eλm

is even for 1 ≤ m ≤ 4
then (M, g) cannot be isometrically C1 embedded in R

3 as a surface of revolution.

Proof Without loss of generality, we may assume the area of the metric is 4π. As

seen in the proof of Theorem 5.4, the first four eigenvalues have even multiplicity if
and only if λ4 < λ1

0. This result will then follow from Proposition 5.2 as long as we
can prove that λ4 > 3. This is most easily accomplished by contradiction.

Assume λ4 ≤ 3 so that 0 < λ1 < λ2 < λ3 < λ4 ≤ 3. Now each λi for 1 ≤ i ≤ 4

must satisfy λi = λl
k for some k 6= 0 and l ≥ 1. However, by Lemma 5.1, λl

k > l|k|
so if λi = λl

k ≤ 3 it must be the case that l|k| ≤ 2. By Proposition 3.1ii λl
k = λl

−k

so there are only three (possibly) distinct eigenvalues with these properties and their
values coincide with λ1

1, λ1
2, and λ2

1. There are, therefore, at most three distinct values

for the four distinct eigenvalues λi for 1 ≤ i ≤ 4, but this contradicts the pigeonhole
principle.

Again there is an immediate corollary:
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Corollary 5.6 Let (M, g) be an S1 invariant Riemannian manifold which is diffeo-
morphic to S2, let K be it’s Gauss curvature, and let λm be it’s m-th distinct eigenvalue.

If dim Eλm
is even for 1 ≤ m ≤ 4 then there exists a pole-centered disk Ω ⊂ M such

that
∫

Ω
K < 0.

One cannot help but ponder the possibility that one can remove the, a priori,

assumption of S1 invariance since, according to legend, only S1 invariant metrics
would have a lot of even multiplicities anyway.

6 Remarks on Classical Surface Theory

In this final section we leave behind the question of embeddability and focus our
attention on the way in which Corollary 5.6 can be viewed as an extension of some of

the consequences of the Gauss–Bonnet theorem.

Let (M, g) be any compact, orientable, boundaryless surface with metric g. We
recall that the Euler characteristic, χ(M), and curvature K are related by the Gauss–
Bonnet theorem:

2πχ(M) =

∫

M

K,

so that one has the obvious consequence:

Proposition 6.1 If χ(M) ≤ 0 then
∫

M
K ≤ 0.

Via the Hodge–DeRham isomorphism, one can restate the Gauss–Bonnet Theo-
rem as follows:

Let λq, j be the j-th distinct eigenvalue of the Laplacian acting on q-forms and Eλq, j

its “eigenspace” (this vector space may consist of the zero vector only). Then

(6.1)
1

2π

∫

M

K = 2 − dim Eλ1,0
.

Of course dim Eλ1,0
is simply twice the genus of the surface since λ1,0 = 0. But this

form of the Gauss–Bonnet formula does allow us to observe that: If dim Eλ1,0
is even

(this is automatic) and positive then
∫

M
K ≤ 0.

In case dim Eλ1,0
> 0, M is not a sphere. So these results tell us how non-positive

integral curvature arises from adding handles to the sphere. Corollary 5.6 gives a
philosophically similar result without changing the topology of the sphere.

Collecting the forgoing ideas together, one can state a result which gives a unified,
if not quite complete, answer to the question of the existence of non-positive integral
curvature, in other words: a generalization of Proposition 6.1 which includes surfaces
with Euler characteristic 2.

Corollary 6.2 Let (M, g) be an orientable, compact, boundaryless surface with metric
g, isometry group ℑ(M, g) and j-th distinct q-form eigenvalue λq, j . If, for some q ∈
{| dimℑ(M, g)−1|, 1}, dim Eλq,|1−q|· j

is even and positive for all j such that 1 ≤ j ≤ 4,

then there exists a non-empty open Ω ⊆ M such that
∫

Ω
K ≤ 0.
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Proof If (M, g) satisfies the hypothesis for q = 1 then the statement of this result is
simply Proposition 6.1 with Ω = M as can be seen from Equation (6.1).

If (M, g) satisfies the hypothesis for q = | dimℑ(M, g) − 1|, then, necessarily,
dimℑ(M, g) ≤ 2 since, for all such surfaces, dimℑ(M, g) ≤ 3 (see [16], p. 46, 47)
and (S2, can) is the only one with dimℑ(M, g) = 3; but all of its 2-form eigenspaces
are odd dimensional and dim Eλ1,0

= 0. If dimℑ(M, g) = 0 or 2 then, again, q = 1

and, again, this is Proposition 6.1. Finally, if dimℑ(M, g) = 1 then q = 0 or 1. If,
in this case, the hypothesis holds for q = 0 only, then M is, topologically, the sphere,
and thus the statement of this theorem reduces to Corollary 5.6 with Ω a non-empty
pole-centered disk.

The reader may have noticed that for the case dimℑ(M, g) = 0, if one relaxes the
positivity condition of this theorem and allows dim Eλ1,0

= 0, then the resulting state-
ment is the contrapositive of the 2-dimensional version of a conjecture of Yau [23]

that all compact manifolds of positive curvature must have an effective S1 isometry
group. The author does not yet know how to prove this.
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Universidad Metropolitana

San Juan, Puerto Rico 00928

email: um mengman@suagm.edu

https://doi.org/10.4153/CMB-2006-023-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-023-7

