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Abstract. The Cohen-Lenstra—Martinet heuristics give precise predictions about the class groups
of a ‘random’ number field. The 3-rank of quadratic fields is one of the few instances where these
have been proven. We prove that, in this case, the rate of convergence is at least sub-exponential.
In addition, we show that the defect appearing in Scholz’s mirror theorem is equidistributed with
respect to a twisted Cohen—Lenstra density.
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1. Introduction

Through the far-reaching heuristics of Cohen, Lenstra and Martinet [4, 5] and the
subsequent results in that direction by Gerth [14], and Datkovsky and Wright [7], a
picture is emerging of what the class group of a ‘random’ number field should look
like, expressed in terms of natural densities. Even conjecturally, much remains to
be understood (see [6] for instance). In addition, to our knowledge nobody has
so far risked a conjecture about the actual speed of convergence, the available
experimental data being rather scarce.

One of the rare proven results on class group densities is due to Davenport and
Heilbronn [10, 11]. They devised a clever bijection between isomorphism classes of
cubic fields and an explicit set of classes of integral binary cubic forms, compatible
with the arithmetic structure of the fields. They used it to compute the mean 3-rank
of quadratic fields and related densities. (In an earlier book, Delone and Faddeev
[12, Sect. 15] studied the same application in a simpler setting. It then yielded a
one-to-one correspondence between orders of cubic fields and classes of integral
irreducible binary cubic forms.)

In this paper, we show that, contrary to what computed data could have sugges-
ted, these densities converge (at least) at a sub-exponential rate (see Theorem 1.1
for a precise statement), and this suggests that the Cohen—Lenstra—Martinet den-
sities also converge at least that fast.

More precisely, we will calfundamental discriminantthe discriminants of
number fieldsK of degree at most 2 ovép. That is the set of integer& without
odd square factors, such that= 1 mod 4 orA = 8 or 12mod 16.
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Denote byA*(X) the intersection of the half-linB* with {A € Z, |A| < X},
and Aind(X) the subset of fundamental discriminantsAif (X). Then, setting

L.(X) = exp(—c(log X log log X)¥/?),
the main result of this paper, proven in Section 3(a), is as follows:

THEOREM 1.1.Let N3"(X) be the number of cubic fields belonging 4G (X),
and sett = 2,2~ = 1 Forall ¢ < 2472, we have

Ny (X) &
= a0, (1)
Z 3’3(A)/ Z 1 = l + )\,i + Oc(LC(X))’ (2)
AeAE (X A€Ajng(X)

wherers(A) denotes th&-rank of Q(v/A).

Let Cl(A) denote the class group @f(+v/A), 2 be the set of all GA), A > 0,
andA C Q. Following Cohen and Lenstra, we consider, when the limit exists,

P = lm Y nci@ay/ Y o1

AeAf (X) AeAf (X0

P is only finitely additive, but is one’s best choice for defining a ‘probability’
on Q. If A is a positive fundamental discriminant, we define tlefects (A) by
r3(—3A) = r3(A) + 1 — 8(A). A classical mirror theorem, due in this case to
Scholz [16], implies thad (A) belongs to{0, 1}. In Section 3(b), we will prove

THEOREM 1.2.WhenX tends to+oo, we have

Z 3r3(A)/ Z 33(d) — %—i— O.(L.(X)).

AeAf 4(X) AeAf 4(X)
5(A)=0

In other wordsg§(A) is equidistributed with respect to a twisted Cohen—Lenstra
density.

2. Cubic Forms and Congruences

Let F be a class of binary forms modulo @G, Z) (notthe modular group), or a
number field. In both cases, the discriminant will be denoted\lb¥). By abuse
of notation, we say thak belongs toA*(X), or Afjfmd(X), wheneverA (F) does.

We first need to count the classes of integral cubic forms satisfying a given
congruence. This congruence needs to be compatible with tH&, @) action,
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which is, for instance, the case when it depends only on the discriminant of the
form. We follow the proof given in [1] in the special cagg F) is fundamental

and ¢ divides A. In this paper, we will deal with an adelic congruence. If one
wants a privileged congruence modujpand needs to keep control gfin the

error term (as in [1] or [3]), the computations become much more involved, and
highly dependent on the congruence considered.

In essence, we count integral points in a volufife(depending on the discrim-
inants being positive or negative), which is a fundamental domain for the action
of GL(2, Z) on the lattice of integral binary cubic forms of discriminant bounded
by X. We consider a compact truncattm?q“_p, whose definition depend on a free
parameterp. To evaluate the number of points which satisfy the congruence, we
cut C;p into hypercubes whose width equals the congruence modulus. Should
the congruence include the Davenport—Heilbronn local conditions, these points
are now in one-to-one correspondence with isomorphism classes of cubic fields,
having the same discriminant.

Here and in the sequel, the lettgrwill always denote a prime number. For
every primep, let E «, be a set of forms modulp®» and, for any integew:, let

E, = ﬂ Eper, E= ﬂEpap.
p

PP im

By abuse of notation, it" is an integral form or is defined modulo a multiple of
m, we will write F' € E,, whenever its reductio modm belongs toE,,. Thus,

by the Chinese remainder theoref,, can be thought as containing forms defined
modulom, the total number of which ig*. Define local densities by

_ |Eper| _
s(p) = ey 1(p) =1—s(p).

Assume, moreover, that the famil¥ ,«» ), satisfies the following two conditions:

e if F € E,« is anintegral form, the o y € E e, for all y € GL(2, Z);
e there exists an integer such thaty, < 4« for almost allp.

LEMMA 2.1. Letm = o(X**). For all ¢ > 0, the number of irreducible classes
of cubic formsF € A*(X)N E,, is equal toH* [, s(p)X + O, (m/4x15/16+e)
where we put{t = 72/72and H~ = n?/24.

Proof. We use the results and notations of [1]: the irreducible classes of forms
in E,, correspond, discarding a.Qx*4+¢), to half the number of integral points in
C5, satisfying the same congruence (Theorems 3.3 and 3) 2fo(X4), the
number of integral points in the truncatL(fg*,p of C§§ belonging toE,, is

plm

2Hi Hs(p)x 4 OS(X17P+€ + mx3/4+3,0+€)
plm
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(Theorem 3.12 and Proposition 4.4) and the number of those poiﬁlﬁ mot be-
longing tocfsp is dominated byx'~*+¢ (Lemma 3.11). Choosg” = X /16, ~1/4
and the lemma is proven. O

Note that, by takingn = 1 in the lemma]A*(X)| is asymptotic toH*X. (This

result is originally due to Davenport [8, 9], and was refined by Shintani [17].)
Hence, we do not need to check the condition= o(X/4) since, otherwise, the
error term dominates the total number of classes of forms. Thus, Lemma 2.1 is also
true (albeit empty) in this case.

COROLLARY 2.2.LetY > 0, and denote byf*(r) the number of irreducible
F € A*(X) such that, for all primeg, we have

e p | rimpliesF modp® & E e,
e p < YimpliesF mod p*» € Epep.

Let Py be the product of all primes less thah Then, for alle > 0, all »r andY
such that(r, Py) = 1, we have

FE@) = HE T s [Te(p) - X + O (x 1518t glotort ).

p<Y plr

Proof. Applying the lemma, we obtain

fEey = [ sy [[rmXx + 0O [ x5 T por

p<Y plr plr Py
and the conclusion follows from the prime number theorem. O

THEOREM 2.3.Suppose there exisd > 0 andu > 1 such that

(H1) t(p) < Cp7",
(H2) the forms inE ,«» are nonzero modul,
(H3) the number of classes belonging4d (X), but not toE ,«», is O(Xp ™).

Then, for allc < cg = (u — 1)/4(a + 1)¥/?, the number of irreducible prim-
itive classes of binary cubic forms in*(X) N E is equal to H* [I,s(mX +
O (XLc(X)) .

Proof. We want to count the classes belongingftg:, for all p, thus primitive
because of hypothesis (H2). Using the notation from our previous corollary, this is
equal to

fO=Y > D pa.pp—O D fp |, €)

k=1 p1<..<pk p=Z
Y<pi<Z
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by the inclusion—exclusion principle, for any paramefefThe remainder term is
dominated byX Z~*, thanks to (H3). We now introduce another paramétemd
decompose the main term in the form

fO=> > D p+O D> (b pi)

1<k<K p1<...<pk P1<..<pK
Y<pi<Z Y<pi<Z

Using Corollary 2.2, this is equal to

K-1
H*[[smx 1= > D""(pr...p0) |+

p<Y k=1 p1<..<pk
Y<pi<Z

+ O | XA K N (prp)* Yt pX |

p1<..<pk<Z P1<...<PK
Y<pi<Z

wheret has been extended by multiplicativity to all integers. Using (H1), we obtain

HE[Ts(mx |1+3 0 7 DMpr.po) |+

p<Y k=21 p1<..<pk
Y<pi<Z

K

K
+Og Xl5/16+8 e(a+8)YK Z pol + X C Z p—u
p<Z p>Y

That is, factoring back the Euler product,

H:I: l_[ S(p)X + OS(X15/16+£ e(Dl-‘rS)YKzK(l-‘rDl) + X(CYl_u/ Iog Y)K)

p<Z

Finally, using (H1) again to evaluate the product of tlig), we find that (3) is
equal to

H:I: l_[ S(p)X + OS(X15/16+8 e(ot-‘rS)YKzK(l-'rOl) + XyK(l—u) + le—u).

We chooseY = log X/ logloglogX and assum& = o(X®). The remainder
term, divided byX, is dominated by

Xfl/16+sZK(l+a) + (IOg X)K(lfu) + Zlfu
— e(—1/16+a) logX+K (1+a)logZ + eK(l—u) loglog X + e(l—u) IogZ. (4)
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To equalize the first two terms, we set

B (1/16—¢)log X
" (@+DlogZ+ (u—1)loglogX"

We now choose log = A(log X loglogX)¥/?, wherex = (16(c + 1))~Y2. A
simple computation yields

logx \“?

and the result is proven, with= A (u — 1) — &. a

For ‘sensible’E », exponential sum techniques may improve on Lemma 2.1, thus
increasingeo. This is the case for all our subsequent applications, where we could
takeco = (17/3)~Y? ~ 0.420, most of the corresponding estimates being done
in [1]. We nonetheless keep the value given by Theorem 2.3 in the sequel.

3. Applications
3.1. DAVENPORT-HEILBRONN DENSITIES

THEOREM 3.1.Setay = 4, o, = 2 for p odd, and let: be an integer such that
pln impliesp®r|n. Let E, be any set of classes of forms modu)avhose discrim-
inants are congruent to fundamental discriminants modayland letA(E,) be the
set of discriminants of all forms belonging By. For all ¢ < 24712, we have

Z 33A 1 HEX

2 T2
AeAF 4(X) ¢5@ pln
A€A(Ey)

[T 755 +Onc(X LX)

Proof. In the caser = 1, it follows from a remark of Hasse [15, Satz 8] that
the left-hand side counts isomorphism classes of cubic fields having fundamental
discriminants. Now, take foE ,«» the classes modulp®» whose discriminants are
fundamental modulg®», with the additional constraint that they belongAyg if
pln (after this choice, the notatiof, is compatible with the one given before
Lemma 2.1).

By definition, E contains exactly the classes whose discriminant is fundamental
and belong tc&, . Since the discriminant is preserved by the Davenport—Heilbronn
bijection, the number of classes of forms belongingktyields exactly the left-
hand side of the formula.

We now check thak' satisfies the three hypotheses in Theorem 2.3: this is easy
for (H2) sincep|F would imply thatp* A(F), and A would not be fundamental.
The other two are trivially satisfied for any given finite number of primes so,
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excluding the prime|n, we are reduced to the cage= 1, i.e. to the original
computations of Davenport and Heilbronn [11].

They define their local densities with respecptonitive forms. Once translated
into our notations, their Lemma 4 yield¢p) = (1 — p—2)? (recall that we assume
here thatp 1 n). Hence, (H1) is satisfied with = 2.

Proposition 1 in the same paper proves that (H3) is also validmith?. This is
the technical heart of their work, and uses the language of binary quadratic forms,
genera, etc. Datskovski and Wright [7, Sect. 6] have given a more general proof in
terms of class field theory.

Hence, we can apply Theorem 2.3 wittp) = (1 — p=2)?if p {n,and & =
u = 2. We now notice thall (1 — p—2)? = ¢(2)~? and the result follows. 0

Proof of Theoreni.l1. Equality (2) is an easy consequence of Theorem 3.1, and
the classical density of fundamental discriminants. Using again the results of [11],
the hypotheses of Theorem 2.3 are satisfied wiph = (1 — p~—3)(1 — p~2) and
4o = u = 2. Equality (1) follows. 0

The densities in Theorem 1.1 were computed by Davenport and Heilbronn in [11],
without any remainder term for lack of uniformity in the congruence modulus
(corresponding to our Lemma 2.1). A remainder term (f/dog?(X)) was then
obtained by the author in [1]. The sub-exponential convergence rates that we have
proven are surprisingly fast when matched with numerical data. To give an ex-
ample, N (10') = 6, 715 824, 025, which gives an experimental density of
0.0672 for real cubic fields up to 1 to compare with 112;(3) ~ 0.0693. In

the case of complex cubic fields, we fing, (10'Y) = 20, 422 230, 540, hence

an experimental density of.2042, while ¥4¢(3) ~ 0.2080 (see the tables

in [2]). A linear regression on this experimental data, suggests one could take
between @6 and 07 (whereas 24Y2 ~ 0.2). Of course, there is no real reason
to believe that the true speed of convergence is given by a funktigx).

3.2. ON THE MIRROR INEQUALITY

Recall that we denote bfA) the defect in Scholz’s equality. Under the Cohen—
Lenstra model and modulo some reasonable but unproven independence assump-
tions, Dutarte [13] obtained the following conjecture

CONJECTURE 3.2Let P be as in the introduction. For alk > 0, we have
P({CI(A) : 8(A) =0, r3(A) = a}) = 37@+D,

WhenceP ({CI(A) : 8(A) = 0,r3(A) < a}) would tend tof asa — +oo. We
now prove this unconditionally for a twisted density

Proof of Theorem..2. We write
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D G S LS W O

A€Afng(X) AeAémd(SX) AeAg4(X/3)
A 3IA

Using Theorem 3.1, and the density computed in [1, Thm. 1.2], we compute

A 1 H™X
2 422

+ O (X.L:(X)).

AEAmed(X)
3/A

An easy computation then yields

3r3(=34) _ 3r3(d) (H-— HYHX

> 20 + Oc(X.L(X)).

+
AeAgng(X)

Whence, by definition o8 (A), using (2) and the classical density of fundamental
discriminants

1(A)_1

Z oY / Z 33(d) —i—OC(Lc(X)).

AEAfund(X) AeAfund(X)

We conclude by remarking th&3'—%(®) — 1) /2 is the characteristic function of the
property§(A) = 0.
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