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1. Summary. In §2 a result in measure theory is obtained. The remainder 
of this paper, §3 to §11, contains results in the branch of statistics called non-
parametric theory; these results in part are based on the measure result of §2. 

The measure result concerns a class of probability distributions—those 
distributions having a probability density function on the real line and for 
which a fraction p of the probability is on the negative axis and a fraction 
q = 1 — p is on the positive axis. Corresponding to a sample of n the functional 
form is obtained for a statistic having expectation zero for all distributions in 
the class; such a statistic is referred to as an unbiased estimate of zero. 

In §3 a reasonable definition of location parameter for the continuous dis­
tributions on the real line requires it to be the ^-percentile, that is, the point 
having a total probability p to the left of it. In §4 confidence regions for this 
parameter are characterized, confidence bounds are shown to be based on 
order statistics, and confidence regions with certain optimum properties are 
obtained. In §5 several problems in hypothesis testing on the location parameter 
are considered and most powerful and most powerful unbiased tests are ob­
tained. A bivariate analogue of one of these problems is considered in §6. 

In §7 reasonable definitions are considered for scale and location-scale para­
meters for continuous distributions on the real line. For the scale parameter a 
result of negative nature is obtained in §8 : that similar texts do not exist for 
the hypothesis that specifies a value for the scale parameter. 

In §9 a formulation is given for non-parametric tolerance regions. A particular 
type of these, distribution-free upper tolerance bounds, was treated by Robbins 
in 1944. His condition, obtained under an assumption of continuity, is shown 
to be necessary but not sufficient in the general case; a bound chooses the order 
statistics with fixed but arbitrary probabilities. 

In §10 some results in estimation theory obtained by Lehmann and Scheffé 
are extended to permit wider application in non-parametric theory. Two 
examples of estimation in non-parametric theory are considered in §11. 

2. A measure problem with applications in statistics. Some results will 
be obtained for probability distributions over Rn. First we define some classes 
of measures on the real line R1. Let % be the class of probability measures on 
R1, go be the subclass of distributions absolutely continuous with respect to 
Lebesgue measure, go(£) the subclass of go whose elements have F(fi) — p, 
gi be the class of discrete distributions with probability at a finite number 
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of points, g2 be the class of uniform distributions over a finite number of 
intervals, and g 3 be the class having a probability density of the form 

c(dh . . . , 6n) exp {-x2n - X>iX*}. 

From these distributions we derive measures over Rn, the power product 
measure induced by a measure or distribution on R1. Letting F(xi, . . . , xn) be 
the distribution function obtained from F(x), then 

n 

F(xi *„) = n F(Xi). 
1 

We designate by g/* the class of measures over Rn which is obtained from %i\ 

*? = \f[F{xt)\F{x) 6 5,}. 

To give an outline of some previous results concerning the classes g / \ we 
need the concept of a complete class of measures. Let ne (A) be a probability 
measure over a space ï with a c-algebra of subsets 31; that is, ne satisfies 

(1) ne(A) > 0, A € ». 
(2) M,(X) = 1. 
(3) If ^ f Ç SI and AiC\Aj = <f>(i 5* j ) , then 

/ °° \ 00 

r/^e class of measures [po(A)\o £ 12} w complete if ff(x)dne(x) = 0 /or a// 0 
implies f(x) = 0 almost everywhere {ne(A)}. 

In non-parametric theory applied to distributions over i?w, the order statistics 
play an important role; we define a statistic T{x\, . . . , xn) = (x(i), . . . , #00), 
the ''order statistics," where X<D, . . . , X(n) are the numbers Xi, . . . , xn arranged 
in order of magnitude. Obviously any function of Xi, . . . , xn which can be 
expressed as a function of T(xi, . • • , xn) is a symmetric function. Corresponding 
to any distribution over Rn the statistic T(x\, . . . , xn) will have an induced 
probability distribution. 

In 1946, Halmos (1) showed that the distributions of T(xi, . . . , xn) cor­
responding to %in were complete. Lehmann in (2) proved a similar result for 
g3

w. In (3) the author showed the same for g2
n. The distributions of T(xly 

. . . , xn) corresponding to $o(p) are, however, not complete (unless p = 0, 1); 
we prove here some results for %o(p) which are the natural extensions of the 
concept of completeness. 

A statistic 0(xi, . . . xn) is an unbiased estimate of a real valued function g{F) 
of the distributions F(x) of a class © if 

J 0(*i, . . . , xn) I"! dF(xi) = g(F) 
Rn 

for all distributions F £ ®. 

Using this definition we have the 
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THEOREM 2.1. For the distributions %o(p) a necessary and sufficient condition 
that a function of T(x\, . . . xn) be an unbiased estimate of zero is that it have the 
form 

(2.1) 0(Xi, . . . , * „ ) = £ Ot(Xi)\l/(xh . . . , Xt-i, Xi+U • • • , Xn) 
i 

almost everywhere where iA(#i, . . . xn-i) is an arbitrary bounded measurable sym­
metric function, and 

(2.2) a(x) = - q = - (1 - p) if x < 0, 

= + p if x > 0. 

Note: The theorem gives the form of a function #(JCI, . . . , xn) satisfying 

(2.3) f 0(*i, ...1xn)Y[dF{xi) ^ 0 

for all F(x) Ç So(£)- If we relax our requirement of absolute continuity and 
consider the class $(p) of all distributions on R1 having F(0) = p = F(0 — 0), 
then the only change is that (2.1) is required to hold everywhere. The proof is 
obtained by trivial changes in the lemmas. 

Proof. We first note that <t>(xi, . . . , xn) is bounded almost everywhere. 
Otherwise there would exist a sequence of numbers ci, c2, . . . approaching oo 
and sets Si, 5 2 , . . . 

St = {(xi, . . . ,xn) I |0(xi, . . . , s») | > c«} 

such that each has positive Lebesgue measure. For any such set it is possible 
to obtain a rectangular set which is more than \, say, filled (Lebesgue) with 
points of S^ On the basis of the sequence of rectangular sets it is possible to 
define a density function for which £{|</>|} would not exist. The Theorem 
assumes that all expectations exist equal to zero; hence a contradiction. 

The proof proper then obtains from the following three lemmas. 

LEMMA 2.1. If <t>(xi> . . . , xn) is a symmetric unbiased estimate of zero for 
$o(p), then almost everywhere (zi, . . . zny yu . . . , yn) Ç ]— oo , Q[n x ]0, oo [n 

(2.4) £ £ pn-rq<K*u • • • , Xn) = 0, 
r—0 x*=zn~TyT 

where the summation with subscript x = zn~Ty7 is taken over the (n
r) terms obtained 

by replacing r x's with y's and n — r x's with z's. 

Proof. In (3) a complete sufficient statistic was given for a sample of n 
from an arbitrary bivariate distribution over ]— °°, 0[ X ]0, oo [. Letting (zi, yx), 
. • • , (z», yn) be the sample elements, the statistic is {(zi, yi)y . . . , (zny yn)}. 
Then if <£(zi, y\, . . . , zny yn) is an unbiased estimate of zero for these dis­
tributions the symmetrized form of <j>y 

<t>(zu yly . . . , zny yn) = ~ r £ *(*i»» y*i» • • • » **», ?*.) 
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where the summation is over all permutations (ii, . . . , in) of (1, . . . n), will 
be zero almost everywhere. 

Let/(2, y) be an arbitrary probability density function over ]— <», 0[X]0, <» [, 
and/_(z) and/+(y) be respectively the z and y marginal densities. If, outside the 
present range of definition of f~(z), f+(y) on the real line, we give them the 
value zero, then g(x) = pf-(x) + qf+(x) is the density of a distribution be­
longing to goO). 

Now if 0(#i, • • • » xn) is a symmetric unbiased estimate of zero for 3o(/>)» 
then for g (x) defined above we have 

0 = I (t>(xu . . . ,xn)Y[ g(xi)T\dXi 

-1 ("V"¥ r • • • X" £ • • • ! > ' • / ••"• *- *> 
nuiydUf-MU'hiU^ 

1 r+1 1 r+l 

= è ( ! V ~ y f «to. • • •. y» «r+i,..., 8.) ri/(2«, yo n «fcirt <** 
0 V / «/s* 1 1 1 

= f è(*V"V*0yi yr,*rfi,...,*.)n/(»i,y,)n&<ndy,. 
J s » 0 V / 1 1 1 

But from (3) we have that the symmetrized form of the integrand is zero 
almost everywhere. This completes the proof. 

LEMMA 2.2. If for all (zu . . . , zn, ylt . . . , yn) £ ] - œ, 0[n X ]0, « [wf 

(2.5) E <K*i, • • • , Xn) = 0, 
£=2,2/ 

zcz&ere the summation is over all terms obtained by replacing each x by either z 
or y, then 
(2.6) 4>(x1} . . . , xn) = X) a'(tf«)^<(*i, . . . , *<-i, * <+i, • . . , xn) 

where 
a(x) = + 1 ifx > 0, 

= - 1 ifx < 0. 

Proof. The proof is obtained by induction. For n = 1 the lemma is obvious; 
assume it holds for n — 1. From (2.5) we have 

S *(*1» #2, - • • , *n) = S <K21> X2, . . . , Xn) 
x=z,y 

= ~ Jl 4>(yuX2,... , xn) 

= ~ X *(yi» x 2 , . . . , *»). 
Then 

X) [0(Zl, X2, . . . , Xn) + 0(yi, «2, . . . , ^n)] = 0, 

X [*(yi» *2, . . . , a») - *(yi, x2, . . . , x»)] = 0. 
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But by the inductive argument, 

0(21, x2, . . • , xn) + <t>(yi, x2, . . . , xn) 

= a'(x2)\l/2(zu x3, . . . , xn) + a(xd)\pz(zh x2, x4, . . . , xn) + . . . , 

0(^1, X2, . . . , Xn) — 4>(yi, X2, . . . , Xn) 

= a'(x2)^2(3;i, *3, . . • , Xn) + oc'{xz)ypz(yi, x2, x4, . . . , xn) + . . . . 

These two equations together imply (2.6). 
If in addition <j>(xi, . . . , xn) is symmetric, then the ^ functions can be the 

same : 
\pi{Xi, . . . , Xn-i) = ^ (Xi , . . . , Xw_i). 

Also the symmetrized ^ function is uniquely determined. For suppose we have 
two determinations: 

<t>(Xx, . . . , Xn) = X ) « ' (#*) ^ ( # 1 , • • • , Xi-l, Xi+i, . . . , Xn) 

= £ a 'OO ^ (Xi, . . . , X?:_i, Xi+u . . . . *n). 
By subtraction, 

(2.7) 0 = ]T <*'(Xi) £(xi, . . . , Xi-i, xi+i, . . . , x„). 

We now prove by induction that £ is identically zero. For n = 1 f the statement 
is obvious; assume it holds for n — 1. We have 

— a'(a?i) £(#2, . . . , x„) = a'(x2) £(xi, x3, . . . , xn) + • • . 

+ a(xn) £(xi? x2, . . . , xn-i), 

and the left hand side is independent of x\ (xi > 0 or x\ < 0). The assumption 
for n — 1 implies that the right hand side term by term is independent of 
X\ (xi > 0 or xi < 0). Also when Xi changes sign, so does the left side and hence 
the right side term by term. Thus we have 

£(xi, . . . , xn-i) = a'(xi) £ (x2, . . . , xn-i) 

and from symmetry 
n~l * 

£(xb . . . , x„_i) = I l «'(*<) £ • 
1 

Substitution in (2.7) then gives £* = 0, £(xï? . . . , xw) = 0, and therefore the 
uniqueness of ^(#1, . . . , xn-i) in the symmetric case. 

LEMMA 2.3. / / <t>(xi, . . . , xn) is symmetric and satisfies (2.4), then 
<t>(xi, . . . , xn) has the form (2.1). 

Proof. Letting i(xi, . . . , xn) be the number of positive x's and defining 
<//(.xi, . . . , x j by 

,f/ _. \ .n— lUi Xn) i(Xi,...,Xn) , / , M \ 

<f> (Xi, . . . , Xn) = p q 0 (Xi , . . . , Xn) , 

then (2.4) becomes 
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(2.8) £ <t> (*i, • • • . *») = 0-
x=z,y 

This last relation need only hold almost everywhere. However, if we replace 
<£(xi, . . . , xn) by its average over a rectangular cube with sides 8h . . . , 8n centred 
on (xi, . . . , xn), then (2.8) holds everywhere (points distant n^ max 8{ from 
the diagonal planes excepted). Lemma 2.2 then gives 

(2.9) 0'(#i, . . . , xn) = a'(xi) ^i(x2, . . . , Xn) + . . . + a(xn) i^(xi, . . . , tf„-i). 

Since the i '̂s are just linear combinations of values of <£'s, then by the Radon-
Nikodym theorem the above form for <£'(xi, . . . , xn) holds almost everywhere 
as well as on the average as obtained. From the symmetry of <j> we may have 
x[/i = \p independent of i. 

Substituting for 0' in terms of </>, using a{x), and appropriately defining \//t. 
(2.9) becomes (2.1). 

3. Definition of a location parameter. In sampling from a probability 
distribution over the real line the statistician, assuming a non-parametric 
hypothesis, will usually envisage a class of distributions as general as 3?0' 3?o 
is the class of distributions having a density function on the real line. For this 
class of distributions we consider what real parameters can legitimately be 
called location parameters. 

By a real valued parameter for a class of distributions © is meant a real 
number for each F Ç @; that is, a real valued function £(F) defined over ©. 
A reasonable requirement for %(F) to be called a location parameter might be 
given by the 

DEFINITION. %(F) is a location parameter if, for any F,G Ç © for which 
F(x) = G(f(x)) where f(x) is monotone nondecreasing, 

{(G)=/(f(^)). 

The meaning of this definition is more apparent in terms of random variables. 
Let X be a random variable with distribution F(x) ; then Y = f(X) has dis­
tribution G (y). The condition is that the value of the location parameter also 
be transformed by the function/(x). Many location parameters in parametric 
problems satisfy this condition. 

As an immediate consequence of this definition, we obtain that %(F) is a 
percentile of the distribution and that there is a number p such that F(£(F)) = p 
(with the obvious modification if F is not continuous). For if we assume that 
© contains a continuous distribution G, then for any F G © there is a mono­
tone non-decreasing function fF(x) such that G(x) = F(fF(x)). The definition 
gives %(F) = fF^(G)). This uniquely determines £(F) and we have 

mn) = FVrMG))) = cm)) = p, 
where p is the constant G(%(G)). 
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Restricting ourselves to percentiles as the reasonable non-parametric location 
parameter, we define the ^-percentile by 

UF) = F-\p). 

This definition is not always unique. For if there is an interval over which 
F(x) is constant at the value p, then the definition gives all the points of that 
interval. However this is not a real drawback. 

4. Confidence regions for the location parameter. From the results 
of Theorem 2.1, it is possible to characterize similar /3 confidence regions for 
the location parameter t-p(F). 

Let S(xi, . . . xn\ R) be a set on the real line for each (xi, . . . , xn\ R) where 
0 < R < 1. Thus S(x\y . . . , xn; R) is a mapping from Rn X [0,1] into the space 
of subsets of R1. We require that the characteristic function, 

$e(xi, . . . , xn; R) = 1 if 0 G S(xh . . . , xn\ R), 

= 0 if 0 iS(xi, . . . ,xn;R), 

should be measurable in (xu . . . , xn; R) for each 0. We say that S(xi, . . . , xn; R) 
is a 13 randomized confidence region for the parameter %P(F) if 

PrF(ïv(F) g S(Xu...,Xn;R))>0 

for all F £ go where (X\, . . . , Xn) is a sample of n from the distribution F and R 
is assumed to be uniformly distributed on [0,1]. Similarly S(xi, . . . xn\ R) is a 
similar /3 randomized confidence region for %P(F) if the inequality with /3 is replaced 
by equality. 

We investigate similar /3 confidence regions. For a confidence region S(xi, 
. . . , xn; R), it is possible to define a characteristic function by eliminating 
the dependence on R: 

4>e(xu . . . , * „ ) = —,S Pri*{0 S S(xtl1 . . . ,xu;R)} 

where the summation is over the n\ permutations (ii, . . . , in) of (1, . . . , n). It 
is easily seen that 4>e is the conditional expectation of $0 given values for X<D, 
. . . , X(n) and that it is symmetric in #1, . . . , xn. 

If 5(xi, . . . , xn; R) is a similar ft confidence region for %P(F) then 

for all F Ç go having £P(F) = 6. Thus we obtain 

EF(4>9(Xu..-,X*) - /3) = 0 

when $P(F) = 0. 
For simplicity consider the case 6 = 0; then the condition on <t> is that 

</>o(xi, . . . , xn) — £ be an unbiased estimate of zero for %o(P)- By Theorem 2.1 
we have 
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<t>o(xu . . . ,xn) — 13 = ^2 a(xi) t(xh • • • i xi-h xi+i, . . . , xn) a.e. 

and similarly 

<t>e(xh . . . , Xn) - p = X ) a(Xi ~ Q) fa(%l> • • • » Xi~U *<+l» • • • » Xn) a . C 

Thus in part we have 

THEOREM 4.1. A necessary and sufficient condition that S(xi, . . . , xn; R) 
be a similar 0 confidence region for £P(F) is that 

(4.1) tofa, . . . ,Xn) - & 

= pfafrwh • • > *<»)) + . . . + £lM*<D» . . . , X(W_D) if 6 < X(D 

= - g^(x (2), . . . , #<n)) - . . . - q\pe(x{i), . . . , X(i-i), X(<+i)f . . . , x(n)) 

+ Pte(x(1), . . . , x( i), x(i+2), . • . , *(»)) + . . . + Pte(x(i), . . . , x(n_i)) 

##(<) < 0 < X ( i+ i) 

= - q\l/e(x(2)y . . . , x(n)) - . . . - qype(x{i), . . . , X(W_D) ifx(n) < 0. 

Proof. The necessity is proved above; the sufficiency follows immediately 
from Theorem 2.1. 

It is interesting to note that for any <j>e{x\, . . . , xn) of the form (4.1) with 
values restricted to [0,1] there exists a confidence region with <t>e(xu . . . , # „ ) 
as characteristic function. Let 

S(xi, . . . , xn; R) = {0 | 0*(*i, . . . , xw) > 2?} ; 

then it is easily seen that S(#i, . . . #n; 2?) is a similar 0 confidence region for 

The above theorem allows us to determine the form of upper confidence 
bounds, and the next theorem shows that such bounds are necessarily a choice 
of the order statistics. 

THEOREM 4.2. If S(xi, . . . , xn\ R) — ] — oo, u(xi, . . . , xn; R)[ is a similar 
confidence region for %P(F), then 

(4.2) û{x\y . . . , xn; R) = — oo with probability po(xi, . . . , xn) 

= X(D with probability pi(xi, . . . , xn) 

— X(n) with probability pn(xi, . . . , xn) 

= + oo with probability £w+i(#i, . . . , xn) 

where û(xu • • • , xn; R) is symmetric and is obtained from 
u(xi,. . . , xn\ R) by incorporating into R the randomization of the n\ permutations 
(ii, . . . , in) of (1, . . . , ri), and where J^ pi = 1, pi > 0, and there is a set of 

functions {PQ(xi, . . . , xn_i), . . . , Pn-\(x\, . . . , xn-i)} such that 
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i-1 

Pi(Xi, . . . , Xn) = ^ -P*(*<D» • • > *(<-l), *(i+D» • • • > *(n)) 
0 

n—i 

+ ^ Z - J ^Pi(^(D» • • • i X(i)> • • • » #(H-y-D> #(i+j+D» • • • » #(n)) 

i - 1 

~" ÇjLt -Pi-l(^(D» • • • > #0-l)> #U+D» * * ' » X(i)» * • • » X(n)), 

and conversely. 

Proof, The randomization inherent in the ordering of the x / s can without 
loss of generality be combined with t ha t provided by the random element R; 
thus we assume t h a t S(xi, . . . , xn\ R) and u(x\, . . . xn; R) are symmetric in the 
x's. 

By examining its definition we see tha t the characteristic function of an 
upper confidence bound, 4>e(xu • • • , xn), is a monotone non-increasing function 
of 0. From Theorem 4.1, 00 (#i, . . . , xn) — f3 = $e(xu • • • , xn) has almost every­
where the form 

(4.3) ^e(xu • . • ,xn) 

= p$e(x(2)y . . . , x (n )) + . . . + pfaixa), . . . , X ( W_D) if 0 < X(D 

= — q\pe(x(2), • • • , x(n)) — . . . — g ^ ( x ( i ) , . . . , x ( i_i), x(i+i), . . . , x (n )) 

+ P^e(x(i), . . . , x ( 0 , x(î-+2), • . . , x(w)) + . . . -f p\[/e(x(i), . . . , Xcn-i)) 

if X<D < 0 < X(i+D 

= ~ q^e(x(2), • • • , x (n )) - . . . - q\pe(x(i), . . . , x(n_i)) if x u ) < 0. 

Consider two values of 0, say 0i, 02 (0i < 02), and 2n values of x, say £i, . . . , 
zn, 3>i, . . . , yn (zi < . . . < zn < 0i < 02 < yi < . . . < yn) and assume tha t any 
<t> using the 0's and x's from these sets is of the form (4.3). (The average over 
any small cube centred over the particular points in Rn will always satisfy 
(4.3).) Writ ing 

</> (Xi, . . . , Xn) = (t>dl(xh . . . , Xn) — 4>dSxU • • • » Xn), 

4> (X2, . . . , Xn) = l ^ f o , • • • , Xn) — ^ . ( # 2 , . . • , Xn) 

we have from the monotonicity of 4>e t h a t #*(xi, . . . , xn) > 0. Then for r z's, 
say Si, . . . , zr, and n — r y's, say 3>r+i, . . . , yni we have 

(4.4) p\P (Zi, , . . , Z r ( ^r+i, . . . , y„-i) + . . . + pyp (Si, . . . , 2r, Jr+2, . . . , Jn) 

- g^ (zh . . . , 0 r _ b y r + i , . . . , yn) - . . . - q\p (s2, . . . , zr, yr+u • • • , yn) > 0. 

Thus , for any set of w numbers chosen from zi, . . . , zw, 3>i, . . . , y» we write down 
the w values of the \//* function by deleting successively one of the n numbers . 
T o each of these we a t tach the coefficient + p or — q according as the deleted 
number is a y or a z. From the hypotheses it follows t h a t the algebraic sum 
is always nonnegative. Thus there are (2") inequalities and (n-i) *A* values. 
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We proceed to show that the <£* values are all zero. Consider (n2i) vectors 
each with (2«) coordinates. For each set of n — 1 numbers chosen from the 
2w, we define a vector with a coordinate corresponding to each set of n numbers 
which can be chosen from the 2n\ the value of this coordinate is zero if the 
n — 1 numbers giving the vector are not included in the n numbers giving the 
coordinate, and is + p, — q if the n — 1 vector numbers are included in the 
n coordinate numbers and if the additional number is a y, z. The inequalities 
(4.4) then say that a linear combination with weights \f/* of these vectors gives 
a vector in or on the boundry of the first orthant. We wish to show that the 
only such combination is a combination with zero coefficients and this of course 
gives the zero vector (zero <£* values). 

We now define a vector which has coordinates c(xi, . . . , xn) all positive and 
is orthogonal to each of the (n-i) vectors defined above. This orthogonality 
condition for the vector corresponding to ( s i , . . . , zr, yT+2, • • • , yn) is 

pc(zu . . . , zr, yr+i, . ... , yn) + . . . + pc(zu . . . , zu ylt yT+2, . . . , yn) 

-qc(zu . . . , sr, 2», 3>r+2, • • • , yn) ~ • • • - qc(zh . . . , Zr+u 3^+2, . . . , yn) = 0. 

Defining c(xi, . . . , xn) by 

«* ^^t-^lJ1^' "V* -). 
the above equation becomes 

P(T + l)(nypY-r - q(n - r)(f ^ ^"VV""-1 = 0, 
which is obviously true. 

Thus each of the (n-i) vectors and hence any linear combination thereof 
will be vectors in the linear subspace perpendicular to the c(xh . . . , xn) vector 
and passing through the origin. Because each coordinate of the c(xi, . . . , xn) 
vector is positive, each vector in the linear subspace must have at least one 
coordinate negative unless all are zero. Thus the only vector in the subspace 
and in the first orthant is the zero vector. This means that the (2„) values of 
<t>*(%h • • • i %n) are zero. 

From </>*(xi, . . . , xn) = 0, we obtain that 

00x(Xl, . . . , # „ ) = 00, (Xi, . . . , Xn) 

so long as all x values lie outside [0i,02]. This equality of the $ functions implies 
by the concluding remarks to Lemma 2.2 that the yp functions are also the same 

^ ( X l , . . . , X n _ i ) = ^ 8 ( X i , . . . , 3Cn-i) 

and hence ^ ( x i , . . . , xn_i) is constant valued as a function of 6 except possibly 
for jumps at the points Xi, . . . , xw_i. Letting Pt stand for the jump at x(o, we 
have 

ï - i 

(4.5) lM#l, • • • , Xn-i) = 2 Pj(xh . . . , Xw_i) if X(i_i) < 6 < X(f). 
j=0 
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For fixed Xi, . . . , xn, û(xi, . . . , xn\ R) is a real valued random variable; it 
has distribution function 

Pr«{tZ(*i, . . . ,*»; 22) > 0} = PrB{0 G S(*i, . . . ,xn;R)} = </>0(xi, . . . , xn). 

Thus from (4.5) and (4.3), we obtain (4.2). The converse follows from (4.3) 
and the definitions of the functions involved. This completes the proof. 

It might seem at first sight that a result similar to that above would apply 
to confidence intervals, viz., that they would be the interval between two 
order statistics chosen randomly. We give two examples of confidences intervals 
for which the bounds are not both order statistics. 

Example 1. Let /3 = .25, p = .5, and n — 2. Let/(xi,x2) be any real valued 
function such that X(D < / ( X I , X 2 ) < X(2). Then a .25 similar confidence interval 
for the median is 

S(xi,x2',R) = [x(i),f(xi,x2)] ii R < . 5 , 

= \f(xi, x2), x(2)] if R > .5 . 

Example 2. Let p — i, p — | , and n = 2. Then a i similar confidence 
interval for the p-percentile is 

S(xu x2;R) = [X(D, X(2)] if X(2) < 0, 

= [X(D, 0] if X(D < 0 < X(2), 

= [0, X(2)] if 0 < X(i). 

These are easily checked. A high confidence level can be obtained for either 
example by taking a larger value of n. 

The theorems above supply us with some indication of the form of similar 
confidence regions for the location parameter %P(F). It is perhaps natural then 
to look for confidence regions possessing certain optimum properties. The 
following properties which one might require of confidence regions were intro­
duced by Wald. However, since there is almost a complete analogy between 
confidence region theory and hypothesis testing theory we shall use the names 
which are standard for tests. We have the following definitions: 

DEFINITION 4.1. The power function of a confidence region for £P(F) is 

(4.6) P,(fi) = PrP(0 i S(Xu . . . ,Xn;R)) = £ , ( 1 - 0 , ( 1 , , . . . , * „ ) ) • 

DEFINITION 4.2. S(xi, . . . x„; R) is an unbiased confidence region for £„(F) if 

(4.7) P,(0) > Pr(S,(F)) 

for all distributions F Ç %0. 

The following theorems give us confidence regions for £P(F) with optimum 
properties. 

THEOREM 4.3. A most powerful (one-sided) similar confidence region for 
%p(F) is ] — oo, u(xh . . . , xn; R)[ where 
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(4.8) u(xi1 . . . , xn; R) = xa) with probability 1 — a 

= #(i+i) with probability a. 

This confidence region has maximum power for 6 > %P(F) among all similar con­
fidence regions. 

Proof. Similar confidence regions must have PF(£P(F)) = 1 - / 3 . For 
B = 0 and £P(F) = 0, we obtain 

E , ( 0 o ( * i , . . . , X n ) ) = p. 

Lemma (2.1) gives the restriction 

(4.9) £ qi(x' *•>£-«*• "}Mxlt . . . , * . ) = /3 a.e. 

on 0o(#i, . . . , xn). For a distribution F(x) having F(0) = ? F = 1 — QFl let 
the probability density f(x) = PFf-(x) + (?F/+(#) where /+(#) and f-(x) are 
as defined in Lemma 2.1. Setting 

#f(*0 == I f+(x)dx, F-(x) = I f-(x) dx, 
«/0 «/-or. 

the power function of the confidence region satisfies 

(4.10) 1 -PF(0) = f ^ <2/(x(Ml) «<«-»p/-<(*<«»> *<«•» 

n 

4>o(x(ui), . . . , *(«»)) I I **<• 
1 

Since we are considering the value of 6 = 0, our problem is to maximize the 
power for 0 > £P(F), that is, for £ < PF. A solution to this maximization is 
obtained by minimizing the integrand of (4.10) subject to (4.9) and the restric­
tion that the values of 0o belong to [0,1]. This is a simple binomial distribution 
problem with solution 

0o(*i, . . . , #n) = 0 if i(xi, . . . , # » ) < n — i, 

= a if i(xi, . . . , xn) = n — i, 

= 1 if i(xh . . . , xn) > n — i. 

for some a, i. 
It will be derived as a corollary to Theorem (5.1) that the confidence region (4.8) 

is a most powerful (one-sided) /3 confidence region. 

THEOREM 4.4. A most powerful unbiased confidence region for $iP(F) is 

(4.11) [f(xi, . . . , xn; R), g(xh . . . , xn; R)] = [x(<), X(i+j)] with probability ph 

= [x(i+D, X(i+j)] with probability p2, 

= [x(i),xa+j+i)] with probability />3, 

= [x(i+i),X(i+j+i)]with probability p±, 
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where i, j , pu pi, pz, p\ are chosen to make the interval unbiased with confidence 
level 0. This confidence region has maximum power for 6 ^ %P(F) among unbiased 
similar confidence regions. 

Proof. The proof using Lemma (2.1) follows closely that used in Theorem 
4.3. It is worth noting that there remains one degree of freedom in the choice 
of the p's. 

That the confidence region (4.11) is a most powerful unbiased 0 confidence 
region for %P(F) will be derived as a corollary to Theorem (5.2). 

5. Tests for the location parameter. We obtain most powerful and most 
powerful unbiased tests for some hypotheses concerning the location parameter. 
Consider first a hypothesis completely specifying the location parameter. 

Hypothesis 1: £P(F) = 0, F £ g0; 
Alternative 1: fp(F) > 6, F £ g0. 

For the problem of obtaining a test, we have the following 

THEOREM 5.1. The one-sided sign test applied to (xi — 6, . . . , xn — 6) is 
most powerful for the Hypothesis 1 against the Alternative 1. 

Proof. For simplicity assume 0 = 0 and consider a distribution belonging 
to the Alternative 1. It will have a density function/(x) which can be decom­
posed into/_(x) and/+(x) as in Lemma (2.1) giving 

/(*) = p'Mx) + q'f+(x). 

Following a procedure used by Lehmann in (4), we look for a distribution 
over the parameter space of Hypothesis 1. The obvious choice for such a least 
favourable distribution is to give probability one to the distribution fo(x) = 
pf-{x) + qf+(x). For a sample of n the most powerful test of /o(#) against 
f(x) is given by the test function. 

0(ffi, . . . , * „ ) = ! 

= a 

= 0 

Obviously this is equivalent to 

<t>(xlt . . . , xn) = 1 

= a 

= 0 

More generally the sign test is based on the (xt — 0)'s. 

if IL&o > c, 
UMxt) 

if n /(*<) 
n/o(*o 

if n /(*o < c 
TlMxi) 

if i(xi, . . . , xn) > io, 

if i(x\, . . . , # „ ) = 7-o, 

if i(xu . . . , xn) < io. 
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COROLLARY. The one-sided sign test is most powerful for the Hypothesis 2 
against the Alternative 2. 

Hypothesis 2 : ^ ( F ) Ç 5 J G g0 

Alternative 2: £,(F) G S', F 6 g0. 

5 and 5 ' are sets on i?1 having sup S < inf S'. The test is based on the signs of 
xi — sup 5 , . . . , xn — sup S. 

Proof. Follows easily from Theorem 5.2. 

COROLLARY. The confidence region (4.8) for %P(F) is a most powerful (one­
sided) j8 confidence region. 

Proof. By straightforward analogy from the Theorem. 

THEOREM 5.2. The unbiased two-sided sign test is most powerful unbiased for 

Hypothesis 3: ÇP(F) = 0 
Alternative3: ÇP(F) ^ 0. 

For the proof of this theorem the following lemma is needed. 

LEMMA 5.1. Any unbiased test of Hypothesis 3 against Alternative 3 is a 
test similar over Hypothesis 3. 

Proof. Consider a distribution belonging to Hypothesis 3 and having a 
continuous density function f(x) for which /(0) > 0 and 

/ ( * + €) <G(*) (M < 5 ) 

where G(x) is integrable. The power of an unbiased test <fr(xi, . . . , xn) is 

J <j)(xh . . . , xn) f i f(Xi + e) f i dxu 

and is a continuous function of e. Since we have assumed <t>(xi, . . . , xn) to be 
unbiased of, say, size a, we have 

J 0(*i, . . . , Xn) f i f(*i + c) I ! ^* > « if € r̂  0. 

From the continuity we obtain 

J <̂ (xi, . . . , xn)Y[f(Xi) FI d*< > «Î 

but since f(x) corresponds to a distribution of Hypothesis 3 we have that the 
above expression is less than or equal to a. Therefore 

j <f>(xu..., Xn) n f(%t) n fat = a 
for all distributions belonging to Hypothesis 3 which have a continuous density 
satisfying the bounding condition. Such a class of distributions can replace 
%o(p) in Theorem 2.1 with the results remaining valid. Hence we have con­
ditions on <j){x\, . . . , x^ and obtain that it is a test similar over Hypothesis 3. 
This proves the lemma. This type of argument from unbiasedness to similarity 
was used by Lehmann. 
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Proof of Theorem 5.2. F rom L e m m a 5.1 a n y unbiased tes t is a similar tes t 
and hence by L e m m a 2.1 has the form (2.4). Following the a rgumen t used in 
Theorem 4.4, we obta in a solution tes t function 

4>{x\, . . . , xn) = 1 if xa+j+i) < 0, 

= c' if Xa+j) < 0 < X(i+j+D, 

= 0 if tf(i+i) < 0 < xu+j), 

= c" if x(i) < 0 < x ( i + i ) , 

= l if 0 < X(i)y 

where i, j , cf, c" are chosen to make the test unbiased of size a. Th i s completes 
the proof. 

COROLLARY. The confidence region (4.11) is a most powerful unbiased 0 
confidence region for %P(F). 

Proof. By straightforward analogy from the Theorem. 

THEOREM 5.3. The most powerful unbiased test of Hypothesis 3 against Alterna­
tive 3 is most stringent if p — \. 

A test is most stringent if it minimizes the maximum difference between 
envelope power and power. Thus if <j> (or <//) is a test function of size a for a 
hypothesis H, then </>* also of size a for H is most stringent against the alterna­
tive hypothesis H if 0* minimizes 

sup 
Ft 

as a function of </>. 

) / s u p £ F ( 0 ' ) - EF(<t>)\ 
B\4>' / 

Proof. Let/i(x) be the density of any distribution belonging to Alternative 
3. Then/i(x) = pf~(x) + g_'f+(x). f2(x) = q'f-(x) + pff+(x) is also the density 
of a distribution belonging to Alternative 3. From symmetry and Theorem 5.1, 
we know that the envelope of the power functions for size a tests of Hypothesis 
3 has the same value for these two distributions. 

For a least favourable distribution over Hypothesis 3 we would choose all 
probability for the distribution having density f(x) = \f-{x) + if+(x); and 
for a distribution over the two alternatives mentioned above we would take 
probabality J for each. A most powerful test for this reduced problem is 

?n/iw + in/«w <t>(xh . . . , xn) = 1 if > K, 

Tin**) 
.f iUfiM + iUjM r 

— C it = A , 

n/(*o 
.f*n/i(*«) + *n/*(*<) .r, 

= 0 it < K. 
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But 

Yif(xt)
 2^h' ^^ 2^^ V ^ ' 

where i = i{x\, . . . , xn). From this it is easily seen that the test is the one 
obtained in the previous theorem. 

This test is similar, it maximizes the minimum power for the two simple 
alternatives (since the power is the same for these two alternatives), and the 
test is independent of the alternatives used in its derivation. By the theorem of 
Hunt and Stein (5), the test is most stringent. 

6. A bivariate problem. A familiar statistical problem is the following. 
Observations are obtained in pairs (xuyi)- The xt and yt values come from the 
same, say plot, and the y value is the result corresponding to some "treatment" 
while the x value corresponds to no treatment. The problem is to find whether 
the y values tend to be larger than the x values. Often the x and y components 
cannot be assumed independent, and perhaps no assumption can be made 
concerning the joint distribution. 

In such a situation one or other of the following formulations might be a 
suitable idealization of the problem. F(x,y) has a density f(x,y) : 

Hypothesis I: { i6(f(»,3i)) - Ç.s(F(x,œ)) = 0, 
Alternative I: {.B(F(»,3i)) - f . B ( ^ , » ) ) > 0. 
Hypothesis II : £.6(G(s)) = 0, 
Alternative II : £.B(G(z)) > 0, 

where G (z) is the distribution function corresponding to y — x. 
It seems to the author that second formulation is more realistic. In any case 

it is the second formulation for which this paper gives an answer. 

THEOREM 6.1. For a sample of n from a distribution F(x,y) having a density, 
the onesided sign test is most powerful for formulation II. 

Proof. Consider an alternative distribution having density fi(x,y) and let 

/i(x, y) = pf-(x, y) + qf+(x, y), 

where /_(#,;y) and f+(x,y) are respectively density functions over the regions 
{(x,y)\y — x < 0}, {(x,y)|y — x > 0}. Obviously p <\. 

The distribution with density /0 (x,y) = i/-(x,y) + |/+(^,y) belongs to the 
Hypothesis. Giving this distribution probability one as a least favourable 
distribution over the Hypothesis, we obtain the test 

0(*i, yt) = i if > c, 
Y\f*(xuyi) 

, T n / i (*<>?*) 
= k it = c, 

TlMxt,yi) 
n •( TIfi(xt>yi) . = 0 it < c. 

TIfo(xi,yi) 
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This is the one-sided sign test mentioned in the statement of the theorem. Since 
it is a similar test, it is a most powerful test of the Hypothesis against the 
particular alternative. However the test does not depend on the alternative 
used in the derivation; hence it is a uniformly most powerful test for 
formulation II. 

The sign test utilizes only the signs of the differences ji — xt. A test based 
on the signs of the differences yt — Xi and on the ranks of the numbers \yi — xi|, 
• • • , \yn — xn\ was proposed by Wilcoxen (9); the procedure for applying the 
test is similar to that for the Wilcoxen (Mann-Whitney) two sample test. 
This sign-rank test is designed to test the more restricted hypothesis : 

Hypothesis I I I : f{x,y) is symmetric about y — x = 0. This hypothesis 
requires that i;.h(G(z)) = 0 and in addition that the distribution is symmetric 
about z = 0. 

For the restricted Hypothesis III, conceivably the Wilcoxen sign-rank test 
(of size a) could be more powerful for certain alternatives than the sign test 
(of size a). 

For the Hypothesis 11 the Wilcoxen sign-rank test does not apply (the size 
determination in (9) presupposes Hypothesis III), and the sign test as was 
shown above is most powerful. 

7. Definition of scale and location-scale parameters. Conditions that 
parameters be scale and location-scale parameters for a class of distributions 
as large as §o could be formulated along the lines followed for the location 
parameters in §3. The result however would be the definitions: 

DEFINITION (7.1). The scale parameter is ri(F) = %Pa(F) — %Pl(F). 

DEFINITION (7.2). The location-scale parameter is (£Pl(F), £P9(F)). 

8. Confidence regions and tests for the scale parameter. It is not difficult 
to find confidence intervals for the scale parameter; they may be derived from 
the order statistics. No attempt is made to get a best confidence interval, 
but rather a result of negative nature is obtained; the nonexistence of similar 
confidence regions. 

THEOREM 8.1. Similar & (0^0,1) confidence regions do not exist for r}(F) 
(other than degenerate regions). 

To prove this theorem we need an analogue of Theorem 2.1 for distributions 
having two percentiles fixed. 

THEOREM 8.2. For the class of distributions 

%ul = { I ! nxt)\F(x) e So, iPl(F) = a, {,.(/?) = b\ 

a symmetric unbiased estimate of zero has the form 

(8 .1) 0 ( * i , . . . , Xn) = X ) a(Xi) tafau • • • , # i - l i Xi+l> • • • » %n) 
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where 

P(x) = + p2 if x > b, 

= - (1 ~ P2) if x < b, 

a{x) = + pi if x > a, 

= — (1 — pi) if x < a, 

and ypa and x/zi, are bounded and symmetric. 

Proof. Although the proof of this theorem can be given quite similarly to 
that of Theorem 2.1, we outline another form, the steps of which can be used 
in the proof of Theorem 8.1. 

If fi(x), . . . , fn(x) are arbitrary bounded measurable functions, we define 
<t>(fu • • • ,/n) by 

0(/l, - . . ,/n) = J <t>(xh . . . ,Xn)Ylfi(Xi)Tl dxi 

Since < £ ( / , . . . , / ) = 0 if/ £ 3a&, it follows by the method of proof in (3) that 
* ( / i , . . . , / « ) = 0 if a l l / , 6 ga6. 

Defining a ( / ) , 0(/) in the manner used for 0(/ i , . . . , / n ) , we have <£(/i, 
. . . , / „ ) = 0 if a(/ i) = /3(/i) = . . . = P(fn) = 0 where the / ' s may be linear 
combinations of elements of go- If /o" and /0* have a(fQ

a) 9* 0, 0(/oa) = 0 
and a(f<f) = 0, /3(/0") ^ 0, then 

0 ( ^ / 2 , . . - , / » ) 77^T ^ ( / o a , / 2 , • • • , / n ) — "^?7^\ * ( / o »/2» • • • , / n ) 
«I/O ) P(jO J 

will be zero if a(/2) = /5(/2) = • • • = £(/n) = 0. This obtains from a simple 
analysis of linear functions over a vector space. Proceeding in this manner, the 
expression (8.1) is obtained fairly easily. 

Proof of Theorem 8.1. Letting S(xh . . . , xn\ R) be a confidence region for 
rj(F)> we define a corresponding characteristic function. 

cj>v(xu . . . , * „ ) = ^ j 2 Pr*{i? G Sfri*, . . . txiH;R)}, 

where the summation is over the n\ permutations. If 5 is a similar confidence 
region, then 

EF{4>,(X1,...,XH)} =p 

for all distributions belonging to $XoxQ+r,> Thus 

0,(xi, . . . , xn) — f3 = <t)v (xh . . . , xn) 

is an unbiased estimate of zero for F Ç %Xox0+n for all x0. Letting aXo(x)y PXo(x) 
be as defined in Theorem 8.2 with a = x0 and & = Xo + 77, then 

</> ( A / 2 , . . • , / n ) * ° / ^ « \ ^ (/oa»/2» • • • , / n ) — l w 7 ^ \ * (/° >/2> ' * ' »/») 

is equal to zero whenever 
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<U/2) = /U/2) = . . . = /U/„) = 0. 
If in addition f2, . . . , fn, /oa, /o^ are functions equal to zero in the intervals 
[a0, do + e], [a0 + 77, a0 + 77 + e], then by taking / to be nonzero only in [a0, 
a0 + ^e] or in [a0 + r? + èe> #0 + *? + e] and by changing x0 from a0 to a0 + Je 
to a0 + e, the second and third terms are changed successively in sign without 
altering the value of the expression as a whole. Hence <£*(/oa, ^2, • . . , fn) and 
* * ( M / 2 , . . . ,/n) are equal to zero if aa(/2) = j8a(/2) = . . . = &(/») = 0 and 
if these functions are zero in (a, a + e] and [a + 77, a + 77 + e]. 

Proceeding in this manner we obtain finally that if /o (1), . • . , /o ( n ) are equal 
to 1 respectively on the disjoint intervals Ii} . . . , In and are zero elsewhere, then 

J n j .* (xi> • • • '*») n <**< = o 
and </>*(%i, . . . , xn) = 0 almost everywhere. 

Thus we obtain ^ = f3. This means that given the order statistics X (D, 
. . . , X(n) the probability is /3 that S(xi, . . . , xn; R) covers any arbitrary positive 
real number. Such a confidence region is essentially equivalent to 

S(xh ...,xn;R) = ]0, oo[ iiR<P, 

= <t> ifR>p, 

which we refer to as a degenerate confidence interval. This completes the proof. 

By analogy we have 

THEOREM 8.3. For the hypothesis 77(F) = 770, similar tests other than <t>(xi, 
. . . , x^ = a do not exist. 

9. Distribution-free upper tolerance bounds. A distribution-free upper 
tolerance bound is a particular type of distribution-free or non-parametric 
tolerance region. We first define this latter concept. Let Sf §1 be a measurable 
space, that is, ^ i s an arbitrary space and 31 is a class of subsets A of Sf which 
form a c-algebra, and let {Pe(A)\d Ç 12} be a class of probability measures 
over the space 

A tolerance region for the class of measures {Pe(A)\d Ç 12} is a function A(xi, 
. . . , xn) which maps ^n into the class 21 and for which the distribution of Pe(A (xi, 
. . . , xn)) induced by the product probability measure Pen over ^n is independent 
of 6 6 12. 

Weaker forms of this definition have been used in particular problems. 
For a distribution-free upper tolerance bound we need Sf = R\ {Pd(A)\d £ 12} 
= go, and A (xi, . . . , xn) = ] — » , f(xi, . . . , xn)[. 

In 1944 Robbins (6) considered the problem of finding the most general 
distribution-free upper tolerance bounds. He proved that, subject to continuity 
restrictions on the function/(xi, . . . , xn), 

n 

I I Ufa, . . . , Xn) - Xf] = 0. 
1 
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Here we remove the continuity restrictions and envisage randomized bounds 
f(xu . . . , xn; R) where R is a random variable with a uniform distribution on 
[0,1]. Our result is in effect that / (xi , . . . , xn\ R) chooses the order statistics 
with fixed probabilities. 

The problem of the most general bound can be given quite interestingly as 
a measure problem. In (7) it was shown that any continuous distribution over 
Rl can be obtained from the uniform distribution over [0,1] by a monotone 
strictly increasing mapping of [0,1] into R1, and conversely. Let such a mapping 
be g(u), corresponding to the distribution function G(x). Then essentially g(u) = 
G~l(u) where G~l is the inverse function of G(x). Also let © be the class of all 
continuous distribution functions G(x). Then to find the distribution-free 
upper tolerance bounds is to find functions f(xi, . . . , xn; R) for which the 
Lebesgue measure of 

{ (tti, . . . , tt», Un+ù\G(J(G-l{Ui), • • • , G~l{un) ; Un+l)) < », 
(«i, . . . , un+1) e (o,ir+M 

is independent of G(x) £ ©, for all v Ç [0,1]. 

THEOREM 9.1. A necessary and sufficient condition that f(xi, . . . , xn\ R) be a 
distribution-free upper tolerance limit is that fix u, . . . , xin; R) chosen with prob­
ability 1/nl for fixed #(D, . . . , x<n) should be equivalent to x^, . . . , X(n>, chosen 
with fixed but arbitrary probabilities pu . . . , pn respectively where ^pi = 1 
(almost everywhere ®). 

Proof. Let H(v) be the distribution function of 

PG(] ~ » , / (X i , • • • ,Xn;R)[) = G(f(Xl9 . . . ,Xn;R)) 

when the Xi, . . . , Xn have the distribution function G(x) 6 ®. Then 

H(v) = Pr<?{G(f(Xi, . . . ,Xn ; i?)) < v] 

= P r ^ X i , . . . , ^ ; ! ? ) <G~1(z;)} 

= Pr0{f(Xlf...,Xn;R) <UG)}. 

Thus/(xi, . . . , xn\ R) is a similar 1 — -fiT(fl) confidence bound for £C(G). Letting 
0e(xi,.. . , xn) be the characteristic function of the region ] — oo ,/(xi, . . . , xn\ R) [, 
Lemma 2.1 gives conditions on </>0 which for 6 = 0 are 

L ^ i ( " " ' (1 - v)«" *•'*.(*i, • • • , x») = 1 - H{v) 
x=z,y 

where the zt < 0 and the yt > 0. Not only must this hold almost everywhere 
Oi, • • • , *»; yi, • • • , yn) 6 ] ~ °°, 0[n X ]0, « [w, but it must hold for all v. The 
above equation determines the form of the right hand side 

1 -H(v) = Z C / - J ( 1 -v)\ 

and this in turn implies 

<£o(Xi, • • • , Xn) — Ci(Xl m) 
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almost everywhere. Similarly we obtain 

4>e(xu • • . , xn) = Ci(Xl-e x»-e)-

Setting 
t 

Ci = X) Pi 

and assuming/(xi, . . . , xn] R) to be symmetric in the #'s, we obtain 

f(xiy . . . , xn; R) = +00 with probability po, 

= X(n) with probability pu 

— X(D with probability pni 

n 

— — oo with probability 1 — ^ pi. 
o 

Then with the obvious modification if/(#i, . . . , #n; R) is not symmetric, the 
theorem is proved. 

10. Two theorems in estimation theory. In their 1950 paper (8) Lehmann 
and Scheffé give several theorems for unbiased estimation. One of these defines 
the class of uniformly minimum variance (UMV) unbiased estimates given the 
class of unbiased estimates of zero. For non-parametric application this was 
restricted in that they considered only estimates with finite variance over the 
parameter space. Since there are reasonable non-parametric estimates not 
satisfying this condition, consider an extension of their results. 

Let {Pdx\0 G Œ} be the class of distributions under consideration and let 
T(x) be a sufficient statistic with corresponding distributions {PeT\0 G 12}. 
We now consider the estimation of real valued functions g* (6) which exist over 
the parameter space. 

LEMMA 10.1. Under the assumption that all statistics in vo have finite variance, 
a statistic is a minimum variance (UMV) unbiased estimate of its expected value 
if and only if it belongs to v\ where 

, o = \f(t)\Ee{f(T)} - 0 , ^ Q | , 

vi = \g(t)\E9{g(T)f(T)} = U(0 e 0,/(/) G vo, V a r ^ ( r ) < » ) ; 

Ee{g(T)\ < - (d G 12)}. 

Proof. Since we are concerned with UMV unbiased estimates, the Rao-
Blackwell theorem says that we may restrict attention to estimates based on 
the sufficient statistic. 

Let g(t) be a UMV unbiased estimate of g*(6). If /(/) G v0 then g(t) + X/(/) 
is also unbiased for g*(0) and must have variance at least as large as g(t). 

Var,{g(D + y{T)\ = Var,{g(r)} + 2\E«{g{T)f(T)} + X2 Var,{/(D} 

> Var,{g(T)}. 
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If Vare{g(T)} is finite then the above inequality being true for all positive and 
negative X implies that Ee{g(T)f(T)} = 0, that is g(t) Ç v\. 

Next assume that g(t) Ç vi and let g'(t) be any other unbiased estimate of 
g*(0). Then g' (t) — g(t) is an unbiased estimate of zero, say/(/), and 

Var*{g'(r)} = V a r # U ( D + / ( r ) } 

= Var,{g(r)} if V a r i e r ) } = œ, 

= Var,{g(r)} + Var,{/(r)} if Var , te(r)} < » . 

In either case we have Var0{g'(r)} > Vare{g(r)} which means that g(t) is a 
UMV unbiased estimate of g*(9). This proves the lemma. 

Also for convex loss functions we have the following 

LEMMA 10.2. If a real valued parameter g{6) has a minimum risk unbiased 
estimate, then the estimate is unique almost everywhere {Pex} (assuming the loss 
function is strictly convex and the risk finite). 

Proof. Let We if) be the strictly convex loss function ; then 

aWe(f) + (1 - a) W9(f') > We(af + (1 - a)f) 

if a 6 ]0,1[ and f ?*f'. Suppose /(/) and / ' ( /) are minimum risk unbiased 
estimates of g(d) with 

h(6) = Ee(W6(f)) = E9(W$(f)). 

It follows that af + (1 — a)f is an unbiased estimate of g(6). Since / and / ' 
are minimum risk estimates, then for a 6 ]0,1[ 

Ee{We(af+ (1 - a)/')} > h(6); 

but 

Ee{We(af+ (1 - a)/')} < E,{aTF,(f) + (1 ~ a) We(f)} 

with inequality strict unless 

We(af + (1 ~ a ) / ' ) = aWeif) + (1 - a) T W ) 

almost everywhere which implies f — f almost everywhere. But by combining 
the inequalities we see that they are equalities and hence f — f almost every­
where. This proves the lemma. 

11. Some examples of estimation in non-parametric theory. For a sample 
Xi, . . . , Xn from an unknown distribution assumed to be absolutely continuous, 
the order statistics X(D, . . . , #(») form a complete sufficient statistic. However, 
the Lehmann-Schefïé theorem on minimum variance and minimum risk un­
biased estimation can not be applied immediately in most cases. 

Consider the estimation of Ee(X2). The essential step in the Lehmann-Schefïé 
theorem is in showing that the estimate which depends on #(D, . . . %(n) is unique. 
Let/i(x(i), . . . X(n) and/2(#(i), • • • , #(n)) be two such unbiased estimates; then 
/ i — /2 is an unbiased estimate of zero for those distributions for which Eo(X2) 
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is finite. Both g2 and § 3 consist of such distributions; hence / i = / 2 almost 
everywhere. Thus it is essential to check that the sufficient statistic is complete 
for the distributions for which the parameter in question exists. 

As a second example we consider the problem of obtaining minimum variance 
unbiased estimates of the parameters of the distributions %o(p) (p ^ 0, 1). 
We restrict attention to parameters g (6) which exist at least for a minimal 
class sufficiently large that the class of unbiased estimates of zero contains 
only estimates with finite variance and we apply Lemma 10.1. v0 contains 
statistics/(#(!), . . . , xM) satisfying (2.4). 

A statistic g(x(D> • • • > x(n)) in v\ will satisfy 

E{g(X(l), • • • > %(n))f(Xah • • • > X(n))\ = 0 

whenever Var g < oo. For those statistics having finite variance for the minimal 
class of distributions mentioned above,/(X (D, . . . , x(n)) g(x(i), . . . , x(w)) will 
also satisfy (2.4). Thus for every/(x a ) , . . . , x(n)) satisfying 

E M * * 1 *%)f(Xl,.-.,Xn) = 0 , 
X=ZV\P) 

we have 

x=z,v \P/ 

It follows that g(xi, . . . , Xn) = 0 and hence that there are no nondegenerate 
minimum variance unbiased estimates which have finite variance over the 
minimal class of distributions. 

REFERENCES 

1. P. Halmos, The theory of unbiased estimation, Ann. Math. Stat., 17 (1946), 34-43. 
2. E. L. Lehmann, Notes on the theory of estimation, Lecture notes mimeographed at the 

University of California. 
3. D. A. S. Fraser, Completeness of order statistics, Can. J. Math., 6 (1954), 42-45. 
4. E. L. Lehmann and C. Stein, Most powerful tests of composite hypotheses. I : Normal distri­

butions, Ann. Math. Stat., 15(1948), 495-516. 
.5. E. L. Lehmann and C. Stein, On the theory of some non-parametric hypotheses, Ann. Math. 

Stat. 20 (1949), 28-45. 
6. H. Robbins, On distribution-free tolerance limits in random sampling, Ann. Math. Stat., 

15 (1944), 214-217. 
7. H. Scheffé and J. W. Tukey, Nonparametric estimation. I: Validation of order statistics, 

Ann. Math. Stat., 1(5(1945), 187-192. 
8. E. L. Lehmann and H. Schefïé, Completeness, similar regions, and unbiased estimation, 

Sankhya, 10 (1950), 305-340. 
9. F . Wilcoxen, Individual comparisons by ranking methods, Biometrics, 1 (1945), 80-83. 

University of Toronto 

https://doi.org/10.4153/CJM-1954-007-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1954-007-7

