NON-PARAMETRIC THEORY: SCALE AND LOCATION
PARAMETERS

D. A. S. FRASER

1. Summary. In §2 a result in measure theory is obtained. The remainder
of this paper, §3 to §11, contains results in the branch of statistics called non-
parametric theory; these results in part are based on the measure result of §2.

The measure result concerns a class of probability distributions—those
distributions having a probability density function on the real line and for
which a fraction p of the probability is on the negative axis and a fraction
g = 1 — p is on the positive axis. Corresponding to a sample of # the functional
form is obtained for a statistic having expectation zero for all distributions in
the class; such a statistic is referred to as an unbiased estimate of zero.

In §3 a reasonable definition of location parameter for the continuous dis-
tributions on the real line requires it to be the p-percentile, that is, the point
having a total probability p to the left of it. In §4 confidence regions for this
parameter are characterized, confidence bounds are shown to be based on
order statistics, and confidence regions with certain optimum properties are
obtained. In §5 several problems in hypothesis testing on the location parameter
are considered and most powerful and most powerful unbiased tests are ob-
tained. A bivariate analogue of one of these problems is considered in §6.

In §7 reasonable definitions are considered for scale and location-scale para-
meters for continuous distributions on the real line. For the scale parameter a
result of negative nature is obtained in §8: that similar texts do not exist for
the hypothesis that specifies a value for the scale parameter.

In §9 a formulation is given for non-parametric tolerance regions. A particular
type of these, distribution-free upper tolerance bounds, was treated by Robbins
in 1944. His condition, obtained under an assumption of continuity, is shown
to be necessary but not sufficient in the general case; a bound chooses the order
statistics with fixed but arbitrary probabilities.

In §10 some results in estimation theory obtained by Lehmann and Scheffé
are extended to permit wider application in non-parametric theory. Two
examples of estimation in non-parametric theory are considered in §11.

2. A measure problem with applications in statistics. Some results will
be obtained for probability distributions over R". First we define some classes
of measures on the real line R'. Let § be the class of probability measures on
R!, §o be the subclass of distributions absolutely continuous with respect to
Lebesgue measure, {o(p) the subclass of §y whose elements have F(0) = p,
%1 be the class of discrete distributions with probability at a finite number
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of points, . be the class of uniform distributions over a finite number of
intervals, and {3 be the class having a probability density of the form

c(y,...,06,) exp {—x" — 2 0:x').
From these distributions we derive measures over R", the power product
measure induced by a measure or distribution on R!. Letting F(xy, . . ., x,) be

the distribution function obtained from F(x), then

F(xy, ..., x,) = ﬁ F(x,).

We designate by ;" the class of measures over R* which is obtained from {;:

5 = {ﬁ F(x)|F(x) € %’,}

To give an ‘outline of some previous results concerning the classes ., we
need the concept of a complete class of measures. Let us(A4) be a probability
measure over a space X with a s-algebra of subsets 3 ; that is, ue satisfies

(1) pe(4) >0, A€ U

(2) mo(¥) = 1.

B) If A4, ¢ Aand A, N A; = ¢(z # j), then

The class of measures {pg(A)[B € Q} is complete if f f(x)dpe(x) =0 for all 6
implies f(x) = 0 almost everywhere {ug(A4)}.
In non-parametric theory applied to distributions over R*, the order statistics

play an important role; we define a statistic T(x1, . . . , %2) = (X, - « - » Xmw))»
the “order statistics,” where x(y, . . . , X are the numbers x, . . . , x, arranged
in order of magnitude. Obviously any function of x;, . . . , x, which can be
expressed as a function of T'(xy, . . . , x,) is a symmetric function. Corresponding
to any distribution over R” the statistic T°(x;, . . . , x,) will have an induced
probability distribution.

In 1946, Halmos (1) showed that the distributions of T'(x;, . . . , x,) cor-

responding to §* were complete. Lehmann in (2) proved a similar result for
& In (3) the author showed the same for §.". The distributions of T (xi,
., x,) corresponding to §o(p) are, however, not complete (unless p = 0, 1);
we prove here some results for {§,(p) which are the natural extensions of the
concept of completeness.
A statistic ¢(x1, . . . x,) 1S an unbiased estimate of a real valued function g(F)
of the distributions F(x) of a class © +f

J o Tl are) = gm)

for all distributions F € ©.

Using this definition we have the
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THEOREM 2.1.  For the distributions Fo(p) a necessary and sufficient condition

that a function of T'(xy, . . . x,) be an unbiased estimate of zero is that it have the

form

(2.1) (X1, ..., %) = Z a(x)Y(Xe, .oy Ximty Loy« « -y Xn)

almost everywhere where Y(x1, . . . X,—1) 15 an arbitrary bounded measurable sym-

metric function, and

(2.2) ax) = —¢g=— (1 —p) ifx <0,
=+ if x > 0.

Note: The theorem gives the form of a function ¢(xy, . . . , x,) satisfying
(23) | o T are) =0

for all F(x) € Fo(p). If we relax our requirement of absolute continuity and
consider the class §(p) of all distributions on R! having F(0) = p = F(0 — 0),
then the only change is that (2.1) is required to hold everywhere. The proof is
obtained by trivial changes in the lemmas.

Proof. We first note that ¢(x1, . . . , x,) is bounded almost everywhere.
Otherwise there would exist a sequence of numbers ¢, ¢z, . . . approaching
and sets Sy, S, . . .

Si = {(xly---yxn) [ ld’(xlrvxn)l >Ci}

such that each has positive Lebesgue measure. For any such set it is possible
to obtain a rectangular set which is more than %, say, filled (Lebesgue) with
points of .S;. On the basis of the sequence of rectangular sets it is possible to
define a density function for which E{|¢|} would not exist. The Theorem
assumes that all expectations exist equal to zero; hence a contradiction.

The proof proper then obtains from the following three lemmas.

LemMA 2.1. If ¢(x1, . . ., X,) s a symmetric unbiased estimate of zero for
Bo(p), then almost everywhere (21, . . . Zpy Y1, . - -, Yn) € ]— @ , 0[* X |0, = [
(24) X X e x) =0,

r=0 z=2z""ry"

where the summation with subscript x = 2" "y" is taken over the (7) terms obtained
by replacing r x's with y's and n — r x’s with 2's.

Proof. In (3) a complete sufficient statistic was given for a sample of =
from an arbitrary bivariate distribution over |— «, 0 X 10, = [. Letting (2, y1),
..., (24, v») be the sample elements, the statistic is {(z1, ¥1), . . ., (20 V) }-
Then if ¢(21, Y1, - - . » 2n, Y») is an unbiased estimate of zero for these dis-
tributions the symmetrized form of ¢,

—_ 1
é(21, Y1, - -« s Zny Yn) = ;}ZP: (20, Yior - -y Z1ar Via)
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where the summation is over all permutations (71, . . ., 7,) of (1, ... n), will
be zero almost everywhere.

Let f(z, ¥) be an arbitrary probability density function over ]| — «,0[X]0, =],
and f_(z) and f; (v) be respectively the z and y marginal densities. If, outside the
present range of definition of f_(z), f+(y) on the real line, we give them the
value zero, then g(x) = pf_(x) + ¢f+(x) is the density of a distribution be-
longing to Fo(p).

Now if ¢(xy, . . ., x,) Is a symmetric unbiased estimate of zero for F,(p),
then for g(x) defined above we have

fqu(xl, o) [T g IT day

n © «© 0 0
Z(’:)qu S R PO I TCT N AP S

[0 1/~ T] av.I] ds
z”: (Z)Pn—TQT fanS(yl, ey Y Brgdy e e ey Zn)I—lIf(ziv yi)I:—L[ dZiIEII dy,

0
= Snz(] (Z)Pn_’rqr‘ﬁ(yly ey Y Bty - ey zn)l—lIf(zi! yi) 1_11 dziI_lI dyi-

But from (3) we have that the symmetrized form of the integrand is zero
almost everywhere. This completes the proof.

0

I

i

LemMmA 2.2. If for all (z1, . . ., 20, Y1, - - ., ¥0) € ]— @, 0[* X ]0, @7,
(2.5) > (X, ..., %) =0,
=29

where the summation is over all terms obtained by replacing each x by either z
or vy, then
(2.6) Xy, ...y Xp) = Z & (X )We(®1, vy Xty Xigay o ey Xn)
where

o (x) =41 ifx >0,

= -1 ifx <0.

Proof. The proof is obtained by induction. For » = 1 the lemma is obvious;
assume it holds for # — 1. From (2.5) we have

> b Key ) = D b (21, X2y « - - ) %Xn)
r=2.¥
= - Z ¢(y11x21-- 'vxn)
= — Z qS(y;k, X2, 00y Xp).

Then .
Z [d)(zlr X2y o0 oy xn) + ¢(y17 X2y« v ,x,.)] = 07
Z [¢(y1, X2y oo oy xn) - d’(y’:r X2y .. ,x,,)] = 0.

Tr=z,¥
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But by the inductive argument,
*
¢(211 X2y o v vy xn) + ¢(3’1, X2y o ooy xn)

= o' (x2)Ya(21, %3, . . ., %) + & (x3)¥3(21, X2, X4, ..., %) + .. .,

*
d’(ylr X2y o vt ,x,,) - ¢(y11 X2y o 0oy xn)
= (X’(QC2)¢2(3’1, X3y oo ,x,,) + a'(x3)¢3(y1, Xo, X4y . . ., x,,) ‘4‘ e e
These two equations together imply (2.6).
If in addition ¢(x1, . . ., x,) is symmetric, then the ¢ functions can be the
same:

Yilxr, . oo, K1) = (01, .00y Xp1).

Also the symmetrized ¢ function is uniquely determined. For suppose we have
two determinations:

o(x1, ..., xy)

i

Z a'(xi) lll(xl, ey Xy X1y - e ,x,,)

*
D @)Y (Xny e, X, Xty e X

By subtraction,
(2‘7) 0= Za,<xi) E(xly'--vxi—lyxi+ly'-~yxn)'

We now prove by induction that £ is identically zero. For n = 1,?’the statement
is obvious; assume it holds for  — 1. We have

- 0(’(301) $(3C2, CEEI) xn) = a,(xz) E(xly X3y o - . ,x,,,) -+ ...
+ a'(xn) E(xl, X2y oo vy x,,_!),

and the left hand side is independent of x; (x; > 0 or x; < 0). The assumption
for # — 1 implies that the right hand side term by term is independent of
x1 (x1 > 0or x; < 0). Also when x; changes sign, so does the left side and hence
the right side term by term. Thus we have
%
£y, o ooy X)) = (1) & (%2, - -, Xpm1)

and from symmetry

n—1 %
Exy, ..., Xm1) = I_II a' (x) &

Substitution in (2.7) then gives £ = 0, £(x;, . . ., x,) = 0, and therefore the
uniqueness of ¥ (x4, . . . , x,_;) in the symmetric case.

LEMMA 2.3, If é(x1, . . ., x,) is symmetric and satisfies (2.4), then
& (x1, . . ., X,) has the form (2.1).

Proof. Letting 7(x1, . . . , x,) be the number of positive x’s and defining
¢/(xly v ey xn) by

d’,(xl, el xn) — Pn——i(a:, ..... Zn) qi(z, ..... Zn) d’(xl; e, xn)y

then (2.4) becomes
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(2.8) > b (..., %) =0.

I=z,Y

This last relation need only hold almost everywhere. However, if we replace
¢ (x1, ..., x,) by its average over a rectangular cube with sides 8y, . . ., 8, centred
on (x1, . .., %), then (2.8) holds everywhere (points distant #* max &, from
the diagonal planes excepted). Lemma 2.2 then gives

(2.9) ¢ (x1,...,%:) = (x1) Pi(we, . - -, %) + ... F " (%) Ynlocr, -+ -y Xn1)-

Since the ¢'s are just linear combinations of values of ¢'s, then by the Radon-
Nikodym theorem the above form for ¢’ (x1, . . . , x,) holds almost everywhere
as well as on the average as obtained. From the symmetry of ¢ we may have
¥; = ¢ independent of 7.

Substituting for ¢’ in terms of ¢, using «a(x), and appropriately defining ¢,
(2.9) becomes (2.1).

3. Definition of a location parameter. In sampling from a probability
distribution over the real line the statistician, assuming a non-parametric
hypothesis, will usually envisage a class of distributions as general as Fo: Fo
is the class of distributions having a density function on the real line. For this.
class of distributions we consider what real parameters can legitimately be
called location parameters.

By a real valued parameter for a class of distributions & is meant a real
number for each F € @; that is, a real valued function ¢(F) defined over .
A reasonable requirement for £(F) to be called a location parameter might be
given by the

DEFINITION. £(F) is @ location parameter if, for any F,G € © for which
F(x) = G(f(x)) where f(x) is monotone nondecreasing,

£(G) = JE(F)).

The meaning of this definition is more apparent in terms of random variables..
Let X be a random variable with distribution F(x); then ¥ = f(X) has dis-
tribution G(y). The condition is that the value of the location parameter also
be transformed by the function f(x). Many location parameters in parametric-
problems satisfy this condition.

As an immediate consequence of this definition, we obtain that £(F) is a
percentile of the distribution and that there is a number p such that F(¢(F)) = p
(with the obvious modification if F is not continuous). For if we assume that
® contains a continuous distribution G, then for any F € & there is a mono-
tone non-decreasing function frz(x) such that G(x) = F(f»(x)). The definition
gives £(F) = fr(£(G)). This uniquely determines £(F) and we have

F(E(F)) = F(fr(((G))) = GE(G)) = p,
where p is the constant G(£(G)).
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Restricting ourselves to percentiles as the reasonable non-parametric location
parameter, we define the p-percentile by

&(F) = F'(p).

This definition is not always unique. For if there is an interval over which
F(x) is constant at the value p, then the definition gives all the points of that
interval. However this is not a real drawback.

4. Confidence regions for the location parameter. From the results
of Theorem 2.1, it is possible to characterize similar 8 confidence regions for
the location parameter £,(F).

Let S(xy, . . . x4; R) be a set on the real line for each (xy, ..., x,; R) where

0 < R < 1. Thus S(xy, . . ., %,; R) is a mapping from R* X [0,1] into the space
of subsets of R'. We require that the characteristic function,

Pg(xy, ..., % R) =1 ifo € S(xy,...,x,; R),

=0 if0 ¢Sy, ...,x.; R),

should be measurable in (xi, .. ., x,; R) for each . We say that S(xy, ..., x,; R)

is a B randomized confidence region for the parameter £,(F) if
PrF(ED(F) E S(Xl» coes )Xn;R)) > B
for all F € o where (X4, . .., X,) 1s a sample of n from the distribution F and R

is assumed to be uniformly distributed on [0,1]. Similarly S(x1, . . . x,; R) 1s a
stmilar 8 randomized confidence region for £,(F) if the inequality with 3 is replaced
by equality.

We investigate similar 8 confidence regions. For a confidence region S(xi,
., %,; R), it is possible to define a characteristic function by eliminating
the dependence on R:

1
oy, ., %) = — 3 Pre{f € S(ra, ..., %4; R)}
where the summation is over the n! permutations (41, . . ., 7,) of (1, ..., n). It
is easily seen that ¢y is the conditional expectation of ®¢ given values for x(1y,
..., Xm and that it is symmetricin xy, . . . , %,
If S(x1, . . ., %a; R) is a similar B confidence region for £,(F) then

Er(¢o(X1, ..., Xn) =8
for all F € §o having §,(F) = 6. Thus we obtain
Ep(¢e(X1, ..., Xn) —8) =0

when &,(F) = 6.

For simplicity consider the case § = 0; then the condition on ¢ is that
¢o(x1, . . ., x,) — B be an unbiased estimate of zero for o (p). By Theorem 2.1
we have
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o(x1, ..., %) — B = Z a(es) Y(x1, ..o, X1, Koty - - - 5 Xn) a.e.
and similarly
do(x1, ..., %) — B = Z ale; — 0) Yoles, .. oy i1, Xigty -+« Xn) a.e.

Thus in part we have

THEOREM 4.1. A necessary and sufficient condition that S(xi, . . . , %n; R)
be a similar B confidence region for £,(F) is that

(4.1) ¢0(x11 ce ey xn) - '3
=pYs(x@, ... Xw) + ... + P, o Xa-D) 76 <xw

I

= q¥e(X@, - -y Xw) — o — q¥(X@), - -y X))y XDy - - s X))
+ ey, . - oy Xty Xty - - - X)) oo F P, - oy X))
ifx <0< Xy

= —q¥e(xe), . .., X)) — - .- — q¥e(x), - - - X)) f Xy < 0.

Proof. The necessity is proved above; the sufficiency follows immediately
from Theorem 2.1.

It is interesting to note that for any ¢e(x1, . . . , x,) of the form (4.1) with
values restricted to [0,1] there exists a confidence region with ¢e(x1, . . . , x,)
as characteristic function. Let

Sy, ..., % R) = {0 polxy, . .., x:) > R};

then it is easily seen that S(x;, . . . x,; R) is a similar 8 confidence region for
& (F).

The above theorem allows us to determine the form of upper confidence
bounds, and the next theorem shows that such bounds are necessarily a choice
of the order statistics.

THEOREM 4.2. IfS(x1, ..., % R) =1 — o, u(xy, . .., % R)[ is a similar
confidence region for £,(F), then
4.2) (X1, ..., % R) = — o with probability po(xy, . . ., %)
= xay with probability p1(xy, . .., %n)

= x4y with probability p,(x1, . .., %)
= + o with probability ppi1(x1, . .., %)

where G(xy, . . . , X; R) is symmetric in x1, . . . , %, and is obtained from
u(x1, ..., % R) by incorporating into R the randomization of the n! permutations
(G, .. .y%) of (1,...,n), and where 3 p, = 1, p; > 0, and there is a set of
functions {Po(x1, . .., %p_1), . .y Poo1(1, . .., %y1)} Such that
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i—1
pilxy, ..., %) = Z Pi(xy, - - vy Xim1), XGpn)s - - -y X))
! n—1i
+ PZIPi(xa)y Ce ey Xy ey XDy XDy - e ey X))
et
- q]zl Pia(Xy v v oy XGo1)y Xt o - o Xy - - -0 X)),

and conversely.

Proof. The randomization inherent in the ordering of the x;'s can without
loss of generality be combined with that provided by the random element R;
thus we assume that S(xy, . . ., x,; R) and u(x;, . . . x,; R) are symmetric in the
x's.

By examining its definition we see that the characteristic function of an
upper confidence bound, ¢¢(xi, . . ., ¥,), is a monotone non-increasing function

of 6. From Theorem 4.1, ¢o(x1, . . ., x,) — B8 = $o(x1, . . ., x,) has almost every-
where the form

(43) EO(xly s rxn)
= p¥e(x, -, Xw) .o+ (W, -, X)) Y.< x

= q¥s(X@, - X)) = e = @WKy e ey X(m1)y XDy - e ey X))
+ ey, - oy Xy X(ars -y X)) oo F PY(E@, .y XeD)
if xay) < 0 < Xy

= —q¥e(X@, .-, Xw) — .. — q¥e(X), . . .y Xa—1)) fxm < 0.

Consider two values of 6, say 61, 0; (8; < 82), and 2% values of x, say zy, . . .,
iy Y1y o v ey Y0 (21 < .. <2, <01 <0<y <...<y,) and assume that any
¢ using the #’s and x's from these sets is of the form (4.3). (The average over

any small cube centred over the particular points in R* will always satisfy
(4.3).) Writing

¢*(x1, cey X)) = Go, (X1, .., X)) — Bo, (X1, . ey Xn),
Vi@ m) = e @ E) — e (6 )
we have from the monotonicity of ¢¢ that ¢*(x1, . . ., x,) > 0. Then for r 2's,
say 21, ..., 3, and # — 7 ¥'s, say Y41, - - . , Yny We have
(4.4) P G o 2 Yrits oy Yuet) F e DY Gl ey B Vrrns e ey V)
- q‘ﬁ*(zl, ey By Yrtly e e ey M) — e — q¢*(22, ey 2 Vi1, - ey Ye) 2> 0.
Thus, for any set of # numbers chosen from 2y, . . ., 2, ¥1, . . . , ¥» we write down

the # values of the y* function by deleting successively one of the » numbers.
To each of these we attach the coefficient + p or — ¢ according as the deleted
number is a y or a 2. From the hypotheses it follows that the algebraic sum
is always nonnegative. Thus there are (*7) inequalities and (,7*;) ¥* values.
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We proceed to show that the ¢* values are all zero. Consider (,;) vectors
each with (%) coordinates. For each set of # — 1 numbers chosen from the
2n, we define a vector with a coordinate corresponding to each set of # numbers
which can be chosen from the 2n; the value of this coordinate is zero if the
n — 1 numbers giving the vector are not included in the » numbers giving the
coordinate, and is + p, — ¢ if the # — 1 vector numbers are included in the
n coordinate numbers and if the additional number is a y, 2. The inequalities
(4.4) then say that a linear combination with weights ¢* of these vectors gives
a vector in or on the boundry of the first orthant. We wish to show that the
only such combination is a combination with zero coefficients and this of course
gives the zero vector (zero ¢* values).

We now define a vector which has coordinates c¢(xy, . . . , x,) all positive and
is orthogonal to each of the (,™*;) vectors defined above. This orthogonality
condition for the vector corresponding to (21, . .., 2 Yri2y « - -, V) 1S
PC(ZU ey By yr+ly CEEIRY ;yn) + LRI + Pc(zlv o0y 8y ylv yr+2y LI vyn)

—qgCc(B1, e ooy By By Vrdty oo ey V) — o oo — QC(21, - o oy Bty Vrk2y o - oy Yu) = O.
Defining ¢(xy, . . ., x,) by

the above equation becomes

-1 -1
pr + l)(’:) P’ —q(n - r)(, v 1) p" T =0,

which is obviously true.

Thus each of the (,**;) vectors and hence any linear combination thereof
will be vectors in the linear subspace perpendicular to the ¢(xy, . . ., x,) vector
and passing through the origin. Because each coordinate of the ¢(xy, . . . , x,)
vector is positive, each vector in the linear subspace must have at least one
coordinate negative unless all are zero. Thus the only vector in the subspace
and in the first orthant is the zero vector. This means that the (%) values of
¢*(x1, . . ., x,) are zero.

From ¢*(xi, . . . , x,) = 0, we obtain that

Eo;(xly LI vxn) = 50,(301, . e ,x,,)

so long as all x values lie outside [61,0:]. This equality of the ¢ functions implies
by the concluding remarks to Lemma 2.2 that the ¢ functions are also the same

Yo, (®1, oy Xnm1) = Yo, (X1, . . ., K1)
and hence ¢(x1, . . . , x,—1) is constant valued as a function of 6 except possibly
for jumps at the points x4, . . . , x,—1. Letting P, stand for the jump at x(;, we
have
i—1
(4.5) Yo(x1, . .., Xpo1) = Z()Pj(xl, e, Xn1) if Xy <0 < xey.
=
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For fixed %1, . . ., x5, @(x1, . . ., %.; R) is a real valued random variable; it
has distribution function

Pre{a(xy, ..., % R) > 0} = Prp{ € S(x1,...,%;R)} = (1, ..., %n).

Thus from (4.5) and (4.3), we obtain (4.2). The converse follows from (4.3)
and the definitions of the functions involved. This completes the proof.

It might seem at first sight that a result similar to that above would apply
to confidence intervals, viz., that they would be the interval between two
order statistics chosen randomly. We give two examples of confidences intervals
for which the bounds are not both order statistics.

Example 1. Let 8 = .25, p = .5, and n = 2. Let f(x1,x2) be any real valued

function such that x1y < f(x1,%2) < %¢2. Then a .25 similar confidence interval
for the median is

S(x1, x93 R) = [x1), f(x1, %2)] ifR< .5,
= [f(x1, %2), x(»] ifR>.5.

3 and n = 2. Then a } similar confidence

Example 2. Let g =3, p =
interval for the p-percentile is

S(x1, %25 R) = [xq), %] if x <0,
= [x(l)) 0] if X(1) < 0< X(2)y
= [O, x(2)] if 0 < X@).

These are easily checked. A high confidence level can be obtained for either
example by taking a larger value of #n.

The theorems above supply us with some indication of the form of similar
confidence regions for the location parameter £,(F). It is perhaps natural then
to look for confidence regions possessing certain optimum properties. The
following properties which one might require of confidence regions were intro-
duced by Wald. However, since there is almost a complete analogy between
confidence region theory and hypothesis testing theory we shall use the names
which are standard for tests. We have the following definitions:

DErFINITION 4.1. The power function of a confidence region for £,(F) is
(4.6) Pr(0) = Prr(0 ¢ S(X1,...,X0;R)) = Ex(1 — ¢o(Xy, ..., X,)).
DEFINITION 4.2.  S(x1, . . . x,; R) s an unbiased confidence region for &,(F) if
(4.7) Pr(0) > Pr(£(F))
for all distributions F € §,.

The following theorems give us confidence regions for £,(F) with optimum
properties.

THEOREM 4.3. A most powerful (one-sided) similar confidence region for
NV is ] — o, u(xy, ..., x5 R)[ where
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(4.8) u(xy, ..., % R) = xp with probability 1 — «
= X(i+1) with probability o.
This confidence region has maximum power for 6 > £,(F) among all similar con-
fidence regions.
Proof. Similar confidence regions must have Pr(¢,(F)) =1 — 8. For
6 = 0 and £,(F) = 0, we obtain
Er(¢po(Xy, ..., X0)) =8

Lemma (2.1) gives the restriction

(4.9) Z gl I E ) e X)) = B a.e.

on ¢¢(x1, ..., x,). For a distribution F(x) having F(0) = Pr =1 — Qp, let
the probability density f(x) = Pgf_(x) + Qrf+(x) where fi(x) and f_(x) are
as defined in Lemma 2.1. Setting

R = [ s, Fe = 1
the power function of the confidence region satisfies

(4_10) 1 — PF(O) — E Qpi(x(u,) ..... z(un))Pani(z(u,) ..... z(un))

[0,1)? 2=G~-—*, G+~
do(x(u1), . .. ,x(un))rll du,.

Since we are considering the value of § = 0, our problem is to maximize the
power for 0 > £,(F), that is, for p < Pp. A solution to this maximization is
obtained by minimizing the integrand of (4.10) subject to (4.9) and the restric-
tion that the values of ¢, belong to [0,1]. This is a simple binomial distribution
problem with solution

do(x1, ..., %) =0 ifi(xy,...,x,) <m— 1,
= if1(xy,...,%,) =n—1,
=1 f2(xy, ..., %) >n—1.

for some ¢, 1.
It will be derived as a corollary to Theorem (5.1) that the confidence region (4.8)
1s a most powerful (one-sided) B confidence region.

THEOREM 4.4. A most powerful unbiased confidence region for &,(F) is
(4.11) [f(x1, ..., %0 R), g(x1, .. ., %03 R)] = [x(s), X(s+p] with probability p,,
= [%(i+1), X(it5) With probability p,,
= [%(4), X(i+s+1] With probability ps,

= [%(1410,% (44 540 Jwith probability ps,
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where 1, j, p1, P2, Ps, Ps are chosen to make the interval unbiased with confidence
level B. This confidence region has maximum power for § = &£,(F) among unbiased
similar confidence regions.

Proof. The proof using Lemma (2.1) follows closely that used in Theorem
4.3. It is worth noting that there remains one degree of freedom in the choice
of the p’s.

That the confidence region (4.11) is a most powerful unbiased B confidence
region for £,(F) will be derived as a corollary to Theorem (5.2).

5. Tests for the location parameter. We obtain most powerful and most
powerful unbiased tests for some hypotheses concerning the location parameter.
Consider first a hypothesis completely specifying the location parameter.

Hypothesis 1: £,(F) = 08, F € Fo;
Alternative 1: £,(F) > 0, F € To.

For the problem of obtaining a test, we have the following

TeEOREM 5.1. The one-sided sign test applied to (xy — 6, . . ., x, — 8) is
most powerful for the Hypothesis 1 against the Alternative 1.

Proof. For simplicity assume 6 = 0 and consider a distribution belonging
to the Alternative 1. It will have a density function f(x) which can be decom-
posed into f_(x) and f4(x) as in Lemma (2.1) giving

J@) = $-() + g ).

Following a procedure used by Lehmann in (4), we look for a distribution
over the parameter space of Hypothesis 1. The obvious choice for such a least
favourable distribution is to give probability one to the distribution fo(x) =
pf—(x) 4+ gf+(x). For a sample of #n the most powerful test of fy(x) against
f(x) is given by the test function.

O(x1, ..., %) =1 if BUWIED] > ¢,
I folxd)
. i e
Hfo(xl)
—0 i LL7Go

Hfo(xi)

Obviously this is equivalent to

olxy, .o, xy) =1 i 2(xy, ..., x) > 10,
= if 1(xy, ..., %,) = 10,
=0 if 2(xy, ..., %) < do.

More generally the sign test is based on the (x; — 8)’s.
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COROLLARY. The one-sided sign test is most powerful for the Hypothesis 2
against the Alternative 2.

Hypothesis 2: £,(F) € S, F € §o
Alternative 2: £,(F) € S', F € §.

S and S’ are sets on R! having sup S < inf §’. The test is based on the signs of
x; —supS,...,x, —supS.

Proaf. Follows easily from Theorem 5.2.

COROLLARY. The confidence region (4.8) for £,(F) is a most powerful (one-
sided) B confidence region.

Proof. By straightforward analogy from the Theorem.
THEOREM 5.2.  The unbiased two-sided sign test is most powerful unbiased for

Hypothesis 3: £,(F) = 0
Alternative 3: £,(F) # 0.

For the proof of this theorem the following lemma is needed.

L.eMMA 5.1. Any unbiased test of Hypothesis 3 against Alternative 3 s a
test stmilar over Hypothesis 3.

Proof. Consider a distribution belonging to Hypothesis 3 and having a
continuous density function f(x) for which f(0) > 0 and

flx+ e < Glx)(le] <9)

where G (x) is integrable. The power of an unbiased test ¢ (x;, . . . , x,) IS
St e s+ 9T éx,
and 1s a continuous function of ¢. Since we have assumed ¢(xi, . . . , x,) to be
unbiased of, say, size a, we have
qu(xl,...,x,,)nf(x,-+e)de,-,>a if € = 0.

From the continuity we obtain

fd:(xl, - ,xn)Hf(x,-)H dx; > a;

but since f(x) corresponds to a distribution of Hypothesis 3 we have that the
above expression is less than or equal to a. Therefore

f¢(xly cee ,xn)Hf(X,)H dx; = «a

for all distributions belonging to Hypothesis 3 which have a continuous density
satisfying the bounding condition. Such a class of distributions can replace
Fo(p) in Theorem 2.1 with the results remaining valid. Hence we have con-
ditions on ¢(x1, . . ., x,) and obtain that it is a test similar over Hypothesis 3.
This proves the lemma. This type of argument from unbiasedness to similarity
was used by Lehmann.
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Proof of Theorem 5.2. From Lemma 5.1 any unbiased test is a similar test
and hence by Lemma 2.1 has the form (2.4). Following the argument used in
Theorem 4.4, we obtain a solution test function

¢(x1, .o ,x,,) =1 if K < 0,

, .
=c if xury <0 <X,

=0 if xrn <0 < x(ipp,

"

=" if X(9) <0 < x@rn,
= 1 if 0 < X (i),

where 7, 7, ¢/, ¢/’ are chosen to make the test unbiased of size a. This completes
the proof.

COROLLARY. The confidence region (4.11) is a most powerful unbiased B
confidence region for §£,(F).

Proof. By straightforward analogy from the Theorem.

THEOREM 5.3. The most powerful unbiased test of Hypothesis 3 against Alterna-
tive 3 is most stringent if p = L.

A test is most stringent if it minimizes the maximum difference between
envelope power and power. Thus if ¢ (or ¢’) is a test function of size « for a
hypothesis H, then ¢* also of size o for H is most stringent against the alterna-
tive hypothesis H if ¢* minimizes

sup (sup Er(¢') — Er(cb))
Fe A\ ¢
as a function of ¢.

Proof. Let fi(x) be the density of any distribution belonging to Alternative
3. Then fi(x) = p'f-(x) + ¢'f+(x). f2(x) = ¢'f_(x) + p'f+(x) is also the density
of a distribution belonging to Alternative 3. From symmetry and Theorem 5.1,
we know that the envelope of the power functions for size « tests of Hypothesis
3 has the same value for these two distributions.

For a least favourable distribution over Hypothesis 3 we would choose all
probability for the distribution having density f(x) = 3f_(x) + %f+(x); and
for a distribution over the two alternatives mentioned above we would take
probabality % for each. A most powerful test for this reduced problem is

if%I—Ifl(xi) + %Hf2(xt) > K,

(X1, ..., %) =1

|BELED)

- if%nfx(xf)-l—%nfz(xz) - K,
| BRED)

—o AT Ne) +31AG) _
|BFIED)
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But .
s A@) + 311 A6 _ (27 () L o(2) (2
=2\ 1 1) T \% 1/
Hf(xi) 2 2 2 2
where 7 = 7(x1, . . ., x,). From this it is easily seen that the test is the one

obtained in the previous theorem.

This test is similar, it maximizes the minimum power for the two simple
alternatives (since the power is the same for these two alternatives), and the
test is independent of the alternatives used in its derivation. By the theorem of
Hunt and Stein (5), the test is most stringent.

6. A bivariate problem. A familiar statistical problem is the following.
Observations are obtained in pairs (x;¥;). The x; and y, values come from the
same, say plot, and the y value is the result corresponding to some ‘‘treatment’’
while the x value corresponds to no treatment. The problem is to find whether
the y values tend to be larger than the x values. Often the x and ¥ components
cannot be assumed independent, and perhaps no assumption can be made

- concerning the joint distribution.

In such a situation one or other of the following formulations might be a

suitable idealization of the problem. F(x,y) has a density f(x,y):
Hypothesis [: £5(F(,y)) — £5(F(x,»)) =0,
Alternative I: £ 5(F(,y)) — £5(F(x,»)) > 0.
Hypothesis II: £ 5(G(2)) = 0,
Alternative II: £5(G(2)) > 0,

where G(2) is the distribution function corresponding to y — x.

It seems to the author that second formulation is more realistic. In any case
it is the second formulation for which this paper gives an answer.

THEOREM 6.1.  For a sample of n from a distribution F(x,y) having a density,
the one-sided sign test is most powerful for formulation 11.

Proof. Consider an alternative distribution having density fi(x,y) and let

filx, y) = pf-(x, ) + ¢f+(x, 3),
where f_(x,y) and fi(x,y) are respectively density functions over the regions
{(x,y)ly —x < 0}, (x,y)]y — x > 0}. Obviously p <
The distribution w1th density fo(x,y) = 3f_(x,y) + % f.,.(x,y) belongs to the
Hypothesis. Giving this distribution probability one as a least favourable
distribution over the Hypothesis, we obtain the test

d(xs y:) =1 if S ELIERD) > ¢
Hfo(xiyyi)

=k if BRG] =¢,
Hfo(xhy)
=0 _H_._,fl(xill
Hfo(xivyi)
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This is the one-sided sign test mentioned in the statement of the theorem. Since
it is a similar test, it is a most powerful test of the Hypothesis against the
particular alternative. However the test does not depend on the alternative
used in the derivation; hence it is a uniformly most powerful test for
formulation II.

The sign test utilizes only the signs of the differences y; — x,. A test based
on the signs of the differences y; — x; and on the ranks of the numbers |y, — xI!,

., |3 — xa| was proposed by Wilcoxen (9); the procedure for applying the
test is similar to that for the Wilcoxen (Mann-Whitney) two sample test.
This sign-rank test is designed to test the more restricted hypothesis:

Hypothesis III: f(x,y) is symmetric about y — x = 0. This hypothesis
requires that £5(G(2)) = 0 and in addition that the distribution is symmetric
about z = 0.

For the restricted Hypothesis 111, conceivably the Wilcoxen sign-rank test
(of size @) could be more powerful for certain alternatives than the sign test
(of size a).

For the Hypothesis 1] the Wilcoxen sign-rank test does not apply (the size
determination in (9) presupposes Hypothesis III), and the sign test as was
shown above is most powerful.

7. Definition of scale and location-scale parameters. Conditions that
parameters be scale and location-scale parameters for a class of distributions
as large as §§o could be formulated along the lines followed for the location
parameters in §3. The result however would be the definitions:

DEFINITION (7.1). The scale parameter is n(F) = §,,(F) — &, (F).

DEFINITION (7.2). The location-scale parameter s (£,, (F), &, (F)).

8. Confidence regions and tests for the scale parameter. It is not difficult
to find confidence intervals for the scale parameter; they may be derived from
the order statistics. No attempt is made to get a best confidence interval,

but rather a result of negative nature is obtained; the nonexistence of similar
confidence regions.

TueoreM 8.1. Similar B (8#%0,1) confidence regions do not exist for n(F)
(other than degenerate regions).

To prove this theorem we need an analogue of Theorem 2.1 for distributions
having two percentiles fixed.

THEOREM 8.2. For the class of distributions
a =TT F@)|F@) € Bo, &.(F) = a, &.(F) = b}
a symmetric unbiased estimate of zero has the form
(8.1) D1, . oo %) = 2 a(®y) Yal®ny v vy Koty Xigdy o v« 5 Xn)
F D0 B Yo(®n, oy Xty Xy« - vy X)),
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where
B(x) = + p2 if x > b,
= — (1 — p2) if x < b,
alx) = + p1 if x > a,
=—(1-p) if x <a,

and ¢, and ¢, are bounded and symmetric.

Proof. Although the proof of this theorem can be given quite similarly to
that of Theorem 2.1, we outline another form, the steps of which can be used
in the proof of Theorem 8.1.

If fi(x), . . ., fau(x) are arbitrary bounded measurable functions, we define

o(f1, ..., fa) by
6o f = f ot w T w0 T dx

Since ¢(f, . . ., f) = 0ilf € Fau, it follows by the method of proof in (3) that
&(f1, -y o) =0ifallf; € Fouo.
Defining a(f), B(f) in the manner used for ¢(fy, ..., f.), we have ¢(fi,
JJa) =0 if a(f1) = B(f1) = ... = B(f.) =0 where the f’s may be linear
combinations of elements of o. If fo* and fof have a(f¢®) # 0, B(f®) =
and a(ff) = 0, B(ff) = 0, then

S S i) = S SUS o £ = 56U Fa 1)
will be zero if a(fs) = B8(f2) = ... = B(fn) = 0. This obtains from a simple

analysis of linear functions over a vector space. Proceeding in this manner, the
expression (8.1) is obtained fairly easily.

Proof of Theorem 8.1. Letting S(xy, . . ., x,; R) be a confidence region for
n(F), we define a corresponding characteristic function.
1
bp(X1, .., X)) = ;L—!Z Pre{n € S(xi,...,xu;R)},

where the summation is over the #n! permutations. If S is a similar confidence
region, then
EF{¢1)(X1) o .. )Xn)} = B
for all distributions belonging to §z,z,+4- LT hus
ES
¢1)(x11"~ 1xn) - B = ¢1} (xly‘-- ,xn)

is an unbiased estimate of zero for F € §,,z.44 for all xo. Letting a,, (x), 8., (x)
be as defined in Theorem 8.2 witha = xyand b = x¢ + 7, then

* _aa:a(f) _ﬁﬁﬁf)_ * .8
] (fvf2r-- fn) (f )¢ (fovf21"' vfn) Bro(fﬂﬂ) ¢ (fO )f2v"'1fn)

is equal to zero whenever
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aro(f2) = BIo(f2) =...= Bzo(fn) = 0.

If in addition fs, . . ., f., fo%, fof are functions equal to zero in the intervals
[ao, a0 + €], [@o + m, ac + 7 + €], then by taking f to be nonzero only in [a,
ao + 3e] orin [ag + 1 + 3¢ a0 + n + €] and by changing x from a, to ay + Le
to ao + ¢, the second and third terms are changed successively in sign without
altering the value of the expression as a whole. Hence ¢*(f¢, fs, . . ., fu) and
&*(fof, fo, . . ., fu) are equal to zero if a,(f2) = B.(f2) = ... = B.(f,) = 0 and
if these functions are zero in (¢, a + e]and [a¢ + 7, a + 7 + €].

Proceeding in this manner we obtain finally that if fo®, . . ., fo™ are equal
to 1 respectively on the disjoint intervals Iy, . . ., I, and are zero elsewhere, then

fn qus*(xl, C, Xy) H dx; =0

and ¢*(xy, . .., x,) = 0 almost everywhere.
Thus we obtain ¢” = 8. This means that given the order statistics xy),
., X the probability is 8 that S(xy, . . ., x,; R) covers any arbitrary positive
real number. Such a confidence region is essentially equivalent to

S(x1, ..., %3 R) =10, ®] if R < B,

= ¢ if R > B,

which we refer to as a degenerate confidence interval. This completes the proof.
By analogy we have

THEOREM 8.3. For the hypothesis n(F) = no, similar tests other than ¢(xy,
., X,) = a do not exist.

9. Distribution-free upper tolerance bounds. A distribution-free upper
tolerance bound is a particular type of distribution-free or non-parametric
tolerance region. We first define this latter concept. Let -7, % be a measurable
space, that is, -/’is an arbitrary space and ¥ is a class of subsets 4 of ¥’ which
form a o-algebra, and let {Pa(A)IB € Q} be a class of probability measures
over the space .

A tolerance region for the class of measures { P (A){O € Q} is a function A (x,,
oo ., x,) which maps S into the class A and for which the distribution of Pe(A (%1,

., %)) induced by the product probability measure Pg" over " is independent
of 6 € Q.

Weaker forms of this definition have been used in particular problems.
For a distribution-free upper tolerance bound we need -# = R}, {Po(A)|0 € Q}
= o, and A(x1, ..., %) =] — o, flxr, ..., %[

In 1944 Robbins (6) considered the problem of finding the most general
distribution-free upper tolerance bounds. He proved that, subject to continuity
restrictions on the function f(xy, . . ., x,),

n

[Ty x) —xd = 0.

1
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Here we remove the continuity restrictions and envisage randomized bounds
fxy, . .., x,; R) where R is a random variable with a uniform distribution on
[0,1]. Our result is in effect that f(xi, . . ., x,; R) chooses the order statistics
with fixed probabilities.

The problem of the most general bound can be given quite interestingly as
a measure problem. In (7) it was shown that any continuous distribution over
R! can be obtained from the uniform distribution over [0,1] by a monotone
strictly increasing mapping of [0,1] into R!, and conversely. Let such a mapping
be g(u), corresponding to the distribution function G(x). Then essentially g(u) =
G~'(u) where G~! is the inverse function of G(x). Also let ® be the class of all
continuous distribution functions G(x). Then to find the distribution-free
upper tolerance bounds is to find functions f(xi, . . . , %,; R) for which the
Lebesgue measure of

{1y« ooy Uy Un)|G(F(GH (1), - . ., G ()3 Un)) < 7,
(ul) coe ey un+1) E (0,1]n+1}
is independent of G(x) € ®, for all v € [0,1].
THEOREM 9.1. A necessary and sufficient condition that f(x1, . . . , %,; R) be a
distribution-free upper tolerance limait is that f(x;,, . . . , X:.; R) chosen with prob-
ability 1/n! for fixed xqy, . . . , Xw) Should be equivalent to xqy, . . . , Xy, chosen

with fixed but arbitrary probabilities py, . . . , pn respectively where Y p, = 1
(almost  everywhere ©).

Proof. Let H(v) be the distribution function of
Pe(l] = o, f(Xy ..., Xa; R)) = G(f(Xy, ..., X0 R))
when the X, . . ., X, have the distribution function G(x) € ®. Then

H(@) = Pre{G(f(X1, ..., X, R)) < v}
= Pre{f(Xy, ..., Xs;R) < G7'(v)}
= Pro{f(X1, ..., Xai R) < £(G)}.
Thus f(x1, . . ., %,; R) is a similar 1 — H(v) confidence bound for £,(G). Letting
¢o(x1, . . ., x,) be the characteristic function of the region | — «, f(x1, ..., %,; R)|,

Lemma 2.1 gives conditions on ¢4 which for § = 0 are

Z vn—i(a:, ..... a:,.)(l _ ZJ) (1,000, Zn)¢0(x1’ . ’xn) =1-— H('U)

z=2,¥
where the z; < 0 and the y; > 0. Not only must this hold almost everywhere
(Bl ooy 2 Y1y e ooy Ya) €1 —,0[* X ]0,=[* but it must hold for all ». The

above equation determines the form of the right hand side
1 —H@) =), Ca" (1 —v),
and this in turn implies
Go(X1, + - -y %) = Citrrvnnizn)
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almost everywhere. Similarly we obtain

Go(X1, . . .y Xn) = Cizy—0.....20—0)-
Setting
ci= 2 b
7=0
and assuming f(x1, . . . , %,; R) to be symmetric in the x’s, we obtain

f(x1, ..., %3 R) = 4+ with probability po,
= %X, with probability ¢4,
= x( with probability p,,

= — o with probability 1 — Y, p..
0

Then with the obvious modification if f(xi, . . ., x,; R) is not symmetric, the
theorem is proved.

10. Two theorems in estimation theory. In their 1950 paper (8) Lehmann
and Scheffé give several theorems for unbiased estimation. One of these defines
the class of uniformly minimum variance (UMV) unbiased estimates given the
class of unbiased estimates of zero. For non-parametric application this was
restricted in that they considered only estimates with finite variance over the
parameter space. Since there are reasonable non-parametric estimates not
satisfying this condition, consider an extension of their results.

Let {Pf|o € Q} be the class of distributions under consideration and let
T(x) be a sufficient statistic with corresponding distributions {Pe7|8 € Q}.
We now consider the estimation of real valued functions g*(6) which exist over
the parameter space.

LEMMA 10.1.  Under the assumption that all statistics in vy have finite variance,
a statistic 1s @ minimum variance (UMV) unbiased estimate of its expected value
if and only if it belongs to vy where

vo = {f()|EAf(T)} = 0,0 € a},
V1 = {g([)IEﬂ{g(T)f(T)} = 0(0 e Q,f(/) € Vo, Varog(T) < oo);
Eofg(T)} < = (8 € 2)}.

Proof. Since we are concerned with UMV unbiased estimates, the Rao-
Blackwell theorem says that we may restrict attention to estimates based on
the sufficient statistic. '

Let g(¢) be a UMV unbiased estimate of g*(9). If f({) € »o then g(t) + M (¢)
is also unbiased for g*(6) and must have variance at least as large as g(¢).

Vare{g(T) + M(T)} = Vare{g(T)} + 2MEelg(D)f(T)} + N Varo{f(T)}
> Vare{g(T)}.
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If Vare{g(T)} is finite then the above inequality being true for all positive and
negative A\ implies that Ee¢{g(T)f(T)} = 0, thatis g(f) € »1.

Next assume that g(f) € »1 and let g’(f) be any other unbiased estimate of
g*(9). Then g’ (1) — g(¢) is an unbiased estimate of zero, say f(¢), and

Vare{g'(T)} = Vare{g(T) + f(T)}
= Var,{g(T)} if Vare{g(T)}= o,
= Vare{g(T)} 4 Vare{f(T)} if Vare{g(T)} < =.

In either case we have Vary{g’ (T")} > Vare{g(T)} which means that g(¢) is a
UMYV unbiased estimate of g*(8). This proves the lemma.

Also for convex loss functions we have the following

LEmMMA 10.2. If a real valued parameter g(6) has a minimum risk unbiased
estimate, then the estimate is unique almost everywhere {Pg*} (assuming the loss
function is strictly convex and the risk finite).

Proof. Let Wy(f) be the strictly convex loss function; then
alWs(f) + (1 — a) We(f') > Welef + (1 — a)f")
if @ €10,1[ and f # f’. Suppose f(t) and f'(t) are minimum risk unbiased
estimates of g(f) with
h(0) = Eq(Wi(f)) = Es(Wy(f")).
It follows that of + (1 — @)f’ is an unbiased estimate of g(). Since f and f’
are minimum risk estimates, then for « € 10,1
Eo{Wo(af + (1 — a) f')} > h(6);
but
Eof Wolof + (1 — ) f)} < EofaWo(f) + (1 — ) Wo(f')}
with inequality strict unless
Wilef + 1 — ) f)) = aWs(f) + (1 — a) We(f)
almost everywhere which implies f = f’ almost everywhere. But by combining

the inequalities we see that they are equalities and hence f = f’ almost every-
where. This proves the lemma.

11. Some examples of estimation in non-parametric theory. For a sample
X, ...,X, from an unknown distribution assumed to be absolutely continuous,
the order statistics x(1y, . . . , X form a complete sufficient statistic. However,
the Lehmann-Scheffé theorem on minimum variance and minimum risk un-
biased estimation can not be applied immediately in most cases.

Consider the estimation of E¢(X?). The essential step in the Lehmann-Scheffé
theorem is in showing that the estimate which depends on %, . . . ¢ is unique.
Let fi(xqy, - . . @ and fo(xqw, - - . , Xm) be two such unbiased estimates; then
f1 — f2 is an unbiased estimate of zero for those distributions for which Eq(X?)
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is finite. Both . and §; consist of such distributions; hence f; = f, almost
everywhere. Thus it is essential to check that the sufficient statistic is complete
for the distributions for which the parameter in question exists.

As a second example we consider the problem of obtaining minimum variance
unbiased estimates of the parameters of the distributions Fo(p) (p = 0, 1).
We restrict attention to parameters g(f) which exist at least for a minimal
class sufficiently large that the class of unbiased estimates of zero contains
only estimates with finite variance and we apply Lemma 10.1. », contains

statistics f(x(y, - . . , ¥w) satisfying (2.4).
A statistic g(x(, - - . , Xy) in vy will satisfy
Efgxay, . - oy %mw) fX@, - .oy ¥w)} =0

whenever Var g < . For those statistics having finite variance for the minimal
class of distributions mentioned above, f(xqy, . . . , Xm) gxay, - - -, X)) will
also satisfy (2.4). Thus for every f(xqy, - - . , Xm) satisfying

Z <g> i(Zy,..., zn)f(xly o, xn) — O,

=2,y p
we have

WZy,.n., Zn)
Z(ﬁ) f(xlp...,xn)g(xl,...,xn)=0'

It follows that g(xy, . . ., x,) = 0 and hence that there are no nondegenerate
minimum variance unbiased estimates which have finite variance over the
minimal class of distributions.
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