On the sharpness of a limiting case of the Sobolev imbedding theorem

J. A. Hempel, G. R. Morris and N. S. Trudinger

A refinement of the Sobolev imbedding theorem, due to Trudinger, is shown to be optimal in a natural sense.

Let Ω be a bounded domain in Euclidean n space, E^n . The Sobolev spaces $W_p^k(\Omega)$, where k is a non-negative integer and $p \geq 1$, consist of those functions in $L_p(\Omega)$ whose distributional derivatives of orders up to and including k are also in $L_p(\Omega)$ and are Banach spaces under the norm

(1)
$$||u||_{k,p} = \sum_{|\alpha| \le k} ||D^{\alpha}u||_{L_{p}(\Omega)}$$

The Sobolev imbedding theorem (for the case k = 1) asserts that if Ω satisfies a cone condition and p < n, the space $W_p^1(\Omega)$ may be continuously imbedded in $L_q(\Omega)$ where q = np/(n-p). If p > n, the functions in $W_p^1(\Omega)$ are continuous (after possible redefinition on a set of measure zero). A refinement, proved by Trudinger in [2], shows that the space $W_n^1(\Omega)$ may be continuously imbedded in the Orlicz space $L_{\phi}(\Omega)$ with defining N function

(2)
$$\phi(t) = e^{|t|^{\frac{n}{n-1}}} - 1$$

Received 10 August 1970.

369

The purpose of this note is to show that this result is optimal in the sense that the space $L_{+}(\Omega)$ above cannot be replaced by any smaller

Orlicz space. We let $W_p^{o_k}(\Omega) \subset W_p^k(\Omega)$ denote the closure of $C_0^{\infty}(\Omega)$ in $W_p^k(\Omega)$. The reader is referred to [2] for any other relevant definitions and notation.

THEOREM 1. The space $W_n^{\circ_1}(\Omega)$ may not be continuously imbedded in any Orlicz space $L_{\psi}(\Omega)$ whose defining function ψ increases strictly more rapidly than the function ϕ given by (2).

We remark here that ψ increases strictly more rapidly than ϕ if for every $\alpha > 0$, $\psi(\alpha\lambda)/\phi(\lambda) \to \infty$ as $\lambda \to \infty$. This happens if and only if $L_{\psi}(\Omega) \stackrel{\leftarrow}{\neq} L_{\phi}(\Omega)$. Theorem 1 is a consequence of the following two lemmas:

LEMMA 1. Let ϕ and ψ be N functions, with ψ increasing strictly more rapidly than ϕ , and suppose that there exists a continuous imbedding of a normed, linear space X into $L_{\eta_{i}}(\Omega)$. Then

$$J(u) = \int_{\Omega} \phi(u) dx \text{ is bounded on bounded subsets of } X.$$

Proof. We may identify X and its image $L_{\psi}(\Omega)$ under the imbedding map. Since this mapping is continuous, there is a constant $K \ge 0$ so that $||u||_{\psi} \le K ||u||_X$ for all u in X, where $||u||_{\psi}$ denotes the Luxemburg norm of u, that is

(3)
$$||u||_{\psi} = \inf\{k > 0; \int_{\Omega} \psi(\frac{u}{k}) dx \leq 1\}$$

Since ψ increases strictly more rapidly than ϕ , there exists a non-decreasing function of $\lambda \ge 0$, $N(\lambda)$, satisfying

(4)
$$\phi(t) \leq \psi\left(\frac{t}{K\lambda}\right) \quad \text{for} \quad t \geq N(\lambda) \; .$$

Hence, for any u in X and $\lambda = ||u||_{X}$,

370

(5)
$$\int_{\Omega} \phi(u) dx \leq \int_{\Omega} \phi(N(\lambda)) dx + \int_{\Omega} \psi\left(\frac{u}{\lambda K}\right) dx$$
$$\leq \phi(N(\lambda)) |\Omega| + 1 .$$

The lemma is thus proved. //

LEMMA 2. Let A = A(A) denote the set of Lipschitz continuous functions on the interval [0, 1], vanishing at x = 1 and satisfying

$$\int_{0}^{1} x^{n-1} |u'|^{n} dx \leq A \quad \text{Then } J(u) = \int_{0}^{1} x^{n-1} e^{|u|^{\frac{n}{n-1}}} dx \quad \text{is unbounded on A}$$
when $A \geq n^{n-1}$

Proof. Let ρ satisfy $0 < \rho < 1$ and consider a sequence of piecewise linear functions, $u_k \in A$, k = 1, 2, ..., satisfying $u'_k(x) = a_{kj} > 0$ for $x \in (\rho^j, \rho^{j-1})$, j = 1, 2, ..., k and $u'_k(x) = 0$ for $x \in (0, \rho^k)$. Then

(6)
$$\int_{0}^{1} x^{n-1} |u_{k}'|^{n} dx = \frac{p^{-n}-1}{n} \sum_{j=1}^{k} \rho^{jn} a_{kj}^{n}$$
$$= \frac{\upsilon^{n}-1}{n} \sum_{j=1}^{k} \alpha_{kj}^{n}$$

where $\upsilon = \rho^{-1}$ and $\alpha_{kj} = \rho^j a_{kj}$.

Also for $x \leq \rho^k$, we have

(7)
$$u_{k}(x) = u_{k}(\rho^{k}) = -(\rho^{-1}-1)\sum_{j=1}^{k} \rho^{j}a_{kj}$$
$$= -(\nu-1)\sum_{j=1}^{k} \alpha_{kj}.$$

We now choose α_{kj} so that $\sum \alpha_{kj}$ is maximised subject to the constraint $(\upsilon^n - 1) \sum \alpha_{kj}^n = An$; that is, we choose

$$\alpha_{k1} = \alpha_{k2} = \dots = \alpha_{kk} = \left(\frac{An}{v^{n-1}}\right)^{\frac{1}{n_k} - \frac{1}{n}}$$
, so that

J.A. Hempel, G.R. Morris and N.S. Trudinger

(8)
$$u_k(\rho^k) = -(\upsilon - 1) \left(\frac{An}{\upsilon^{n} - 1}\right)^{\frac{1}{n}} k^{\frac{n-1}{n}}$$

Therefore, by (7) and (8),

372

$$J(u_{k}) \geq \int_{0}^{p^{k}} x^{n-1} e^{|u|^{\frac{n}{n-1}}} dx$$
$$= \frac{1}{n} e^{\beta k}$$

where
$$\beta = \beta(\upsilon) = (\upsilon_{-1})^{n-1} \left(\frac{An}{\upsilon_{-1}^{n-1}}\right)^{1/(n-1)} - n\log\upsilon$$
.

Since $\beta(\upsilon)/(\upsilon-1)$ approaches $A^{n-1} - n > 0$ as $\upsilon \to 1$, it is possible to choose $\upsilon > 1$ to guarantee $\beta > 0$. It then follows that $J(u_L)$ is unbounded. //

We remark here that if in the statement of Lemma 2, we assume $A < n^{n-1}$, then J(u) is bounded on A . For then we have

$$\begin{aligned} |u(x)| &\leq \int_{x}^{1} |u'(t)| dt \\ &\leq \left(\int_{x}^{1} \frac{dt}{t}\right)^{1-\frac{1}{n}} \left(\int_{0}^{1} t^{n-1} |u'(t)|^{n} dt\right)^{\frac{1}{n}} \text{ by Hölder's inequality,} \\ &\leq A^{\frac{1}{n}} \left(\log \frac{1}{x}\right)^{1-\frac{1}{n}} \end{aligned}$$

and consequently

$$J(u) \leq \int_{0}^{1} x^{n-1-A^{n-1}} dx = \left(n-A^{n-1}\right)^{-1}$$

To complete the proof of Theorem 1, we may without loss of generality take Ω as the unit sphere in E^{n} and consider spherically symmetric

functions, u = u(r), only. Then

$$\int_{\Omega} |Du|^{n} dx = w_{n} \int_{0}^{1} r^{n-1} |u_{r}|^{n} dr , \quad \int_{\Omega} e^{|u|^{n-1}} dx = w_{n} \int_{0}^{1} r^{n-1} e^{|u|^{n-1}} dr ,$$

and Theorem 1 consequently follows from Lemmas 1 and 2. As a consequence of Lemma 2, we also have

THEOREM 2. The space $W_n^{o_1}(\Omega)$ may not be compactly imbedded in the Orlicz space $L_{\phi}(\Omega)$ where ϕ is given by (2).

Note that Theorem 1 is also a consequence of Theorem 2. In view of Theorem 2 and Theorem 3 of [2], it would be of interest to study the unique solvability in $W_2^{\circ_1}(\Omega)$ of differential equations such as

$$\Delta u + u e^{u^2} = 0$$

in two dimensions. Hempel [1] has made some progress in this direction.

References

- [1] J.A. Hempel, "Superlinear variational boundary value problems and non-uniqueness", Doctoral thesis, University of New England, 1970.
- [2] N.S. Trudinger, "On imbedding into Orlicz spaces and some applications", J. Math. Mech. 17 (1967), 473-484.

University of New England, Armidale, New South Wales; University of New England, Armidale, New South Wales; University of Queensland, St Lucia, Queensland.