ON THE FIXED POINTS OF SYLOW SUBGROUPS OF TRANSITIVE PERMUTATION GROUPS: CORRIGENDUM

MARCEL HERZOG and CHERYL E. PRAEGER

(Received 30 August 1977)

Abstract

The proof of Theorem 5 in a paper with the same title is incorrect. In this note weaker versions of that theorem are proved.

In Herzog and Praeger (1976) we stated Theorem 5 which is incorrect for $p > 2$. Theorem 1 and Corollaries 2–4 are unaffected, as well as Lemmas 2.1 and 2.2. It follows from Praeger (1978b) and Theorem 1 that Corollary 7 is true.

Using the results of Praeger (1978b) we shall prove the following weaker version of Theorem 5.

THEOREM 5'. Let G be a transitive permutation group on a set Ω of n points, and let P be a Sylow p-subgroup of G for some prime p dividing $|G|$. Suppose that P has t long orbits and f fixed points in Ω, and suppose that $f = tp - 1$. If P has an orbit of length p, then $t = 1$, $n = 2p - 1$ and $G \supseteq A_n$.

Proof. By Praeger (1978a) it follows that all long orbits of P have the same length, namely p. Hence $f = tp - 1 = \frac{1}{2}(n - 1)$, and by Praeger (1978b) $t = 1$, $n = 2p - 1$ and $G \supseteq A_n$.

Finally we shall show that Theorem 5 holds for $p = 2$ and $f > 0$.

THEOREM 5'. Let G be a transitive permutation group on a set Ω of n points, and let S be a nontrivial Sylow 2-subgroup of G. Suppose that S has t long orbits and f fixed points in Ω, and suppose that $f = 2t - i_2(n) > 0$. Then $t = f = i_2(n) = 1$ and G is 2-transitive. If the long S-orbit has length 2, then $n = 3$ and $G \supseteq S_3$. 383
PROOF. If \(n \leq 3 \), then Theorem 5'' clearly holds. Assume, by induction, that the result is true for transitive groups of degree less than \(n \). By Wielandt (1964) 3.7, \(|N(S) : S| \) is divisible by \(f = 2t - i_d(n) \). Since \(|N(S) : S| \) is odd, \(f \) is odd, and hence \(i_d(n) = 1 \).

Let \(\Sigma = \{B_1, \ldots, B_r\} \) be a set of blocks of imprimitivity for \(G \) in \(\Omega \). Since \(f > 0 \) and \(S \) fixes setwise any block containing a point of \(\text{fix}_\Omega S \), it follows that \(\text{fix}_\Sigma S \) is non-empty. Let \(B \in \text{fix}_\Sigma S \) and set \(f_B = |\text{fix}_B S|, f_\Sigma = |\text{fix}_\Sigma S| \). Denote by \(t_B \) and \(t_\Sigma \) the number of long \(S \)-orbits in \(B \) and \(\Sigma \), respectively. Suppose first that \(S \) acts nontrivially on \(B \). Then by Herzog and Praeger (1976) Theorem 1, \(f_B = 2t_B - d \) for some \(d \geq 1 \). Hence by Herzog and Praeger (1976), Lemma 1.2,

\[
2t - 1 = f = f_\Sigma f_B = 2f_\Sigma t_B - f_\Sigma d \leq 2t - f_\Sigma d
\]
as \(f_\Sigma t_B \) is the number of long \(S \)-orbits in \(U(B | B \in \text{fix}_\Sigma S) \). Therefore \(f_\Sigma = d = 1 \) and \(t_B = f_\Sigma t_B = t \), from which we conclude that \(|\Sigma| = 1 \). On the other hand, if \(S \) acts trivially on \(B \), then by Herzog and Praeger (1976), Lemma 1.2 and Theorem 1,

\[
f = |B|f_\Sigma, \quad t = |B|t_\Sigma \quad \text{and} \quad f_\Sigma = 2t_\Sigma - d
\]

for some \(d \geq 1 \). Hence \(2t - 1 = f = 2t - |B|d \) and so \(|B| = 1 \). Thus \(G \) is primitive on \(\Omega \).

Let \(\alpha \in \text{fix}_\Omega S \) and let \(\Gamma_1, \ldots, \Gamma_r, r \geq 1 \), be the orbits of \(G_\alpha \) on \(\Omega \setminus \{\alpha\} \). By Wielandt (1964), 18.4, \(S \) acts nontrivially on each \(\Gamma_i \). Let \(S \) have \(f_i \) fixed points and \(t_i \) long orbits in \(\Gamma_i \) for \(1 \leq i \leq r \). Then by Herzog and Praeger (1976), Theorem 1, \(f_i = 2t_i - d_i \) for some \(d_i \geq 1, 1 \leq i \leq r \), and so

\[
2t - 1 = f = 1 + \sum f_i = 1 + \sum(2t_i - d_i) = 2t + 1 - \sum d_i.
\]

that is, \(\sum d_i = 2 \). If \(r > 1 \), then \(r = 2 \) and \(d_1 = d_2 = 1 \). By induction \(G_\alpha \) is 2-transitive on \(\Gamma_1 \) and \(\Gamma_2 \), a contradiction to Wielandt (1964), 17.7. Hence \(r = 1 \), that is \(G \) is 2-transitive. If \(f > 1 \), then by Wielandt (1964), 3.7 applied to \(G \) and to \(G_\alpha, |N(S) : S| \) is divisible by the even integer \(f(f - 1) \), a contradiction. Hence \(f = 1 \) and so \(t = 1 \). Finally, if \(S \) has an orbit of length 2, then \(n = 3 \) and \(G \cong S_3 \).

References

C. E. Praeger (1978a), 'Sylow subgroups of transitive permutation groups, II' (to appear).

C. E. Praeger (1978b), 'On transitive permutation groups with a subgroup satisfying a certain conjugacy condition' (submitted).