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Abstract. Given m; nX 2, we prove that, for suf¢ciently large y, the sum 1n þ � � � þ yn is not
a product of m consecutive integers. We also prove that for m 6¼ n we have
1m þ � � � þ xm 6¼ 1n þ � � � þ yn, provided x; y are suf¢ciently large. Among other auxiliary facts,
we show that Bernoulli polynomials of odd index are indecomposable, and those of even index
are ‘almost’ indecomposable, a result of independent interest.
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1. Introduction

In this paper, we study the Diophantine equations RmðxÞ ¼ SnðyÞ and SmðxÞ ¼ SnðyÞ,
where

RmðxÞ ¼ xðx þ 1Þ � � � ðx þ m � 1Þ; SmðxÞ ¼ 1m þ 2m þ � � � þ ðx � 1Þm:

Various Diophantine equations involving the polynomials RmðxÞ and SmðxÞ have
been extensively investigated. Mention should be made, for instance, of the
celebrated theorem of ErdoD s and Selfridge [13]: for m; nX 2, the equation
yn ¼ RmðxÞ has no solutions in positive integers x; y (that is, a product of several
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consecutive integers is never a perfect power). An incomplete list of the most recent
related works is [3, 8^10, 19, 21, 24], where further references will be found.
In this paper we prove the following two theorems.

THEOREM 1.1. For mX 2, nX 1 and ðm; nÞ 6¼ ð2; 1Þ, the equation RmðxÞ ¼ SnðyÞ has,
at most, ¢nitely many solutions in rational integers x; y.

THEOREM 1.2. For n > mX 1, the equation SmðxÞ ¼ SnðyÞ has, at most, ¢nitely
many solutions in rational integers x; y.

Some particular cases of Theorem 1.2 are established in [9]. We recall also that
Beukers et al. [3] completely solved the ¢niteness problem for the equation
RmðxÞ ¼ RnðyÞ, even in a more general setting.
We deduce Theorems 1.1 and 1.2 from the general ¢niteness criterion for the

Diophantine equation f ðxÞ ¼ gðyÞ, recently established in [5] (see Theorem 5.1
below). Since the proof of Theorem 5.1 is based on the noneffective theorem of
Siegel, Theorems 1.1 and 1.2 are noneffective. In Section 3 we show, using Baker’s
method, that Theorem 1.1 can be made effective when n 2 f1; 3g or m 2 f2; 4g.
In [16], the equation RmðxÞ ¼ SnðyÞ was completely solved in the special cases
ðm; nÞ ¼ ð2; 2Þ; ð2; 5Þ; ð4; 2Þ; ð4; 5Þ.
One of the purposes of this paper is to illustrate how the general criterion from [5]

applies to a concrete equation (see [4, 12] for different examples of this kind).
It is interesting to compare our method with those of [8^10, 13, 19, 21]. Our

method is much less sensitive to the speci¢c form of the equation. For instance,
it extends, with some modi¢cations, to the equations*

ARmðxÞ þ BSnðyÞ ¼ C and ASmðxÞ þ BSnðyÞ ¼ C;

where A, B and C are arbitrary integers with AB 6¼ 0. Moreover, a similar argument
must work for any equation of the form FmðxÞ ¼ GnðyÞ, where fFmg and fGng are
in¢nite families of polynomials depending on the parameters m and n in some ‘good’
way. See [4, 12] for examples.
On the other hand, our method yields only noneffective results and requires m

and n to be ¢xed, while the results obtained by the more elementary methods
are usually effective and sometimes allow variable m and/or n.
Besides the criterion from [5], the proofs of Theorems 1.1 and 1.2 require some

other auxiliary facts. In particular, we completely characterize in Theorem 4.1
the decompositions of Bernoulli polynomials BnðxÞ (that is, all representations of
BnðxÞ as G1 G2ðxÞð Þ, where G1 and G2 are polynomials). This result seems to be
of independent interest.

*At least for mX 3; for m ¼ 2 one would have to overcome some difficulties in generalizing
Lemma 2.2.
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PLAN OF THE PAPER

In Section 2 we collect facts about Bernoulli polynomials to be used in the text. In
Section 3 we show that some special cases of Theorems 1.1 and 1.2 allow effective
treatment. In Section 4 we investigate the decomposition of Bernoulli polynomials.
In Section 5 we recall the ¢niteness criterion from [5] and prove Theorems 1.1
and 1.2. The ¢nal Section 6, written by A. Schinzel, describes an alternative approach
to the decomposition of Bernoulli-type polynomials.

2. Bernoulli Polynomials

In this section we summarize some properties of the polynomials SnðxÞ and the
closely related Bernoulli polynomials. We denote by BnðxÞ the nth Bernoulli
polynomial, de¢ned by the generating series tetx=ðet � 1Þ ¼

P1

n¼0 BnðxÞtn=n!, and
by Bn ¼ Bnð0Þ the nth Bernoulli number.
The following properties of Bernoulli numbers and polynomials will be often used

in the text, sometimes without special reference.

BnðxÞ ¼
Xn

i¼0

n
i

� �
Bixn�i ¼ xn �

n
2
xn�1 þ

nðn � 1Þ
12

xn�2 þ � � � ; ð1Þ

B0
nþ1ðxÞ ¼ ðn þ 1ÞBnðxÞ; ð2Þ

SnðxÞ ¼ Bnþ1ðxÞ � Bnþ1ð Þ=ðn þ 1Þ; ð3Þ

BnðxÞ ¼ ð�1ÞnBnð1� xÞ; ð4Þ

f ðx þ 1Þ � f ðxÞ ¼ nxn�1()f ðxÞ ¼ BnðxÞ þ const; ð5Þ

B3 ¼ B5 ¼ B7 ¼ . . . ¼ 0: ð6Þ

Recall also the von Staudt theorem

L2n ¼
Y

ðp�1Þj2n;p prime

p; ð7Þ

where Ln is the denominator of Bn. In particular, Ln is a square-free integer, divisible
by 6.
For the proofs of (1)^(7) see, for instance, [18, Chapters 1 and 2]. We conclude this

section by two lemmas to be used in the sequel.

LEMMA 2.1. Let m; r be integers with m > 1. Then the (complex) roots of the poly-
nomial PðxÞ:¼ B2mðxÞ � B2m þ r=2 are of multiplicity at most 2. Also, PðxÞ has at
least 4 simple roots, unless r ¼ 0 and m 2 f2; 3g.
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Proof. Brillhart [6, Corollary of Theorem 16] proved that the polynomial B2m�1ðxÞ
has only simple roots. (See [15, Section 3] for a more general result.) Since
P0ðxÞ ¼ 2mB2m�1ðxÞ, the polynomial PðxÞ may have roots of multiplicity at
most 2. This proves the ¢rst assertion.
Now we shall prove that PðxÞ has at least 4 simple roots. When r is even this is a

particular case of Theorem 2 of GyoD ry, Tijdeman and Voorhoeve [15]. Hence
we may assume that r is odd. We follow the argument of [15] with some changes.
Let d be the denominator of PðxÞ, that is, the smallest positive integer such that

dPðxÞ 2 Z½x�. Since r is odd, d must be even; write d ¼ 2d. The von Staudt
theorem (7) implies that d is an odd square-free integer.
By the Gauss lemma, 2dPðxÞ ¼ QðxÞT ðxÞ2, where QðxÞ;T ðxÞ 2 Z½x� are primitive

polynomials* and the roots of QðxÞ are exactly the simple roots of PðxÞ. Since
the leading coef¢cient of 2dPðxÞ is 2d, which is a square-free integer, the leading
coef¢cient of T ðxÞ must be �1, and the leading coef¢cient of QðxÞ is 2d.
We have to show that degQðxÞX 4. Thus, assume that degQðxÞ < 4. If

degQðxÞ ¼ 0 thenQðxÞ ¼ 2d, which is impossible becauseQðxÞ is primitive. The only
remaining possibility is degQðxÞ ¼ 2. Since PðxÞ ¼ Pð1� xÞ, we have QðxÞ ¼
Qð1� xÞ as well, which implies that QðxÞ ¼ 2dx2 � 2dx þ c, where c 2 Z. We have
ðc; 2dÞ ¼ 1 because QðxÞ is primitive. We also have T ðxÞ ¼ T ð1� xÞ, which implies
that m � 1 ¼ degT ðxÞ is even. Hence, m is odd.
Since the polynomial T ðxÞ2 is monic, we have

2dPðxÞ ¼ ð2dx2 � 2dx þ cÞðx2m�2 þ . . .Þ � cx2m�2 þ � � � ðmod 2dÞ;

where ‘. . .’ denotes terms of lower degree. Since the coef¢cient of x2m�2 in 2dPðxÞ is
dmð2m � 1Þ=3, we have c � dmð2m � 1Þ=3ðmod 2dÞ. Since ðc; 2dÞ ¼ 1, this is possible
only when either d ¼ 3 andmð2m � 1Þ is not divisible by 3, or d ¼ 1 andmð2m � 1Þ is
divisible by 3.
Assume that d ¼ 3 and mð2m � 1Þ is not divisible by 3. We have 6Pð0Þ ¼ 3r. Also,

using (5), we obtain

6Pð�1Þ ¼ 6Pð0Þ þ 12m ¼ 3r þ 12m:

On the other hand,

6Pð0Þ ¼ cT ð0Þ2 and 6Pð�1Þ ¼ ð12þ cÞT ð�1Þ2:

Since ðc; 2dÞ ¼ ðc; 6Þ ¼ 1, the number c is not divisible by 3. It follows that both the
integers 3r and 3r þ 12m must be divisible by 9. Hence, m is divisible by 3, a con-
tradiction.

*A polynomial with integer coefficients is primitive if the greatest common divisorof its coef-
ficients is 1.
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Thus, d ¼ 1 and mð2m � 1Þ=3 2 Z. By (6), we have

2PðxÞ ¼ 2x2m � 2mx2m�1 þ
mð2m � 1Þ

3
x2m�2 þ

Xm�2

k¼0

akx2k ð8Þ

with a1; . . . ; am�2 2 Z. Assume that jcj > 1. Since ðc; 2dÞ ¼ ðc; 2Þ ¼ 1, the number c
has an odd prime divisor p. Denote by a 7! a the reduction mod p. Then

2PðxÞ ¼ QðxÞT ðxÞ2 ¼ 2xðx � 1ÞT ðxÞ2:

It follows that 0 is a root of 2PðxÞ of odd multiplicity. However, (8) implies that this
multiplicity cannot be any of 1; 3; . . . ; 2m � 3. We conclude that 0 is a root
of 2PðxÞ of multiplicity 2m � 1, which means that T ðxÞ2 ¼ x2m�2 and 2PðxÞ ¼
2x2m � 2x2m�1. Comparing this with (8), we conclude that 2m � 2ðmod pÞ and
mð2m � 1Þ=3 � 0ðmod pÞ, which is impossible. This shows that c ¼ �1.
Assume that c ¼ 1. Then QðxÞ ¼ 2x2 � 2x þ 1, which means that PðxÞ vanishes at

a ¼ ð1þ iÞ=2. Notice that a2k is real (respectively, pure imaginary) when k is even
(respectively, odd). Since m is odd,

0 ¼ 3 � 2m�1RePðaÞ

¼ �3mð�1Þðm�1Þ=2
þ mð2m � 1Þð�1Þðm�1Þ=2

þ

þ 12
Xðm�3Þ=2

k¼0

a2k2m�3�2kð�1Þk

� 2m2 � 2 ðmod 4Þ;

a contradiction.
We are left with c ¼ �1, in which case QðxÞ ¼ 2x2 � 2x � 1 and PðxÞ vanishes at

b ¼ ð1þ
ffiffiffi
3

p
Þ=2. If m ¼ 3 then r=2 ¼ B6 � B6ðbÞ ¼ 0, which is impossible,

because r is odd. Finally, for mX 5 the polynomial PðxÞ ¼ B2mðxÞ � B2mðbÞ has
at least 4 roots of odd multiplicity [15, p. 238]. Since the multiplicities do not
exceed 2, these roots are simple. Lemma 2.1 is proved.

LEMMA 2.2. For nX 2, the polynomial SnðxÞ þ 1=4 has at least 3 simple roots.
Proof.For even n this is proved byKano [17, Section 4]. Now let n be odd and write

n þ 1 ¼ 2m. Then the polynomial Snþ1ðxÞ þ 1=4 ¼ ðB2mðxÞ � B2m þ m=2Þ=ðn þ 1Þ has
at least 4 simple roots by Lemma 2.1.

3. E¡ective Results for Small m or n

In this section we show that, when either n 2 f1; 3g or m 2 f2; 4g, Theorem 1.1 can be
proved effectively; that is, one can write down an explicit upper bound for the sol-
utions (though we do not display an actual expression for such a bound). As
one may expect, we use Baker’s method.

DIOPHANTINE EQUATIONS AND BERNOULLI POLYNOMIALS 177

https://doi.org/10.1023/A:1014972217217 Published online by Cambridge University Press

https://doi.org/10.1023/A:1014972217217


THEOREM 3.1.When mX 2, all solutions of the equation RmðxÞ ¼ S3ðyÞ in x; y 2 Z

satisfy maxfjxj; jyjgW c1, where c1 is an effectively computable constant depending
only on m. When mX 3, the same is true for the integer solutions of the equation
RmðxÞ ¼ S1ðyÞ.

THEOREM 3.2. For m 2 f2; 4g and nX 2, all solutions of the equation RmðxÞ ¼ SnðyÞ
in x; y 2 Z satisfy maxfjxj; jyjg < c2, where c2 is an effectively computable constant
depending only on n.

The proofs of these theorems rely on the classical result of A. Baker [1].

LEMMA 3.3 ([1]). Let gðxÞ 2 Q½x� be a polynomial having at least three simple roots.
Then all solutions of the equation gðxÞ ¼ y2 in x; y 2 Z satisfymaxfjxj; jyjgW c, where
c is an effectively computable constant depending only on the coef¢cients of g. &

Proof of Theorem 3.1. We start with the equation RmðxÞ ¼ S3ðyÞ. Since S3ðyÞ ¼
yðy � 1Þ=2ð Þ

2, it is suf¢cient to show that the solutions x; z 2 Z of the equation
z2 ¼ RmðxÞ are effectively bounded in terms of m. If mX 3 then the
polynomial RmðxÞ has at least three simple roots, and the required assertion follows
from Lemma 3.3. In the case m ¼ 2 we obtain the equation z2 ¼ xðx þ 1Þ, which
has only two integer solutions ð0; 0Þ and ð�1; 0Þ. This can be easily seen, e.g., by
rewriting it as ð2x þ 2z þ 1Þð2x � 2z þ 1Þ ¼ 1.
The equation RmðxÞ ¼ S1ðyÞ is a particular case of the equation effectively studied

by Yuan [24]. On can also argue directly as follows. Rewrite the equation as
ð2y � 1Þ2 ¼ 8RmðxÞ þ 1. By Lemma 4 from [9], the polynomial 8RmðxÞ þ 1 has only
simple roots. Since mX 3, we may apply Lemma 3.3.

Proof of Theorem 3.2. Rewriting the equation R2ðxÞ ¼ SnðyÞ as ð2x � 1Þ2 ¼
4SnðyÞ þ 1, we see that its solutions are effectively bounded by Lemmas 2.2
and 2.3. An effective ¢niteness theorem for the equation SnðyÞ ¼ R4ðxÞ ¼
ðx2 þ 3x þ 1Þ2 � 1 was obtained by Brindza [7]. See [15, 23] for more general results.

We also recall the known effective results for the equations S1ðxÞ ¼ SnðyÞ and
S3ðxÞ ¼ SnðyÞ.

THEOREM 3.4. For m 2 f1; 3g and n 6¼ m, the solutions x; y 2 Z of the equation
SmðxÞ ¼ SnðyÞ satisfy maxfjxj; jyjg < c3, where c3 is an effectively computable con-
stant depending only on n.

For m ¼ 1 this is Theorem 1 of [9]. For m ¼ 3 and n 6¼ 1; 3; 5 this is a consequence
of the much more general effective theorem of GyoD ry et al. [15, Theorem 1]. We are
left with the equation S3ðxÞ ¼ S5ðyÞ, that is 3ðx2 � xÞ2 ¼ ð2y2 � 2y � 1Þðy2 � yÞ2.
Putting y2 � y ¼ z, we obtain the equation 3ðx2 � xÞ2 ¼ 2z3 � z2, which de¢nes a
curve of genus 1. Hence, its solutions are effectively bounded by the famous result
of Baker and Coates [2].
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4. Decomposition of Bernoulli Polynomials

A decomposition of a polynomial F ðxÞ 2 C½x� is an equality of the form
F ðxÞ ¼ G1ðG2ðxÞÞ, where G1ðxÞ;G2ðxÞ 2 C½x�; the decomposition is nontrivial if
degG1; degG2 > 1. Two decompositions F ðxÞ ¼ G1ðG2ðxÞÞ and F ðxÞ ¼ H1ðH2ðxÞÞ
are called equivalent if there exists a linear polynomial ‘ðxÞ 2 C½x� such that
G1ðxÞ ¼ H1ð‘ðxÞÞ and H2ðxÞ ¼ ‘ðG2ðxÞÞ. The polynomial F ðxÞ is called decomposable
if it has at least one nontrivial decomposition, and indecomposable otherwise
Let n ¼ 2m be an even positive integer. Since BnðxÞ ¼ Bnð1� xÞ by (4), we have

BnðxÞ ¼ eBBm ðx � 1=2Þ2
� 	

; ð9Þ

where eBBmðxÞ 2 Q½x� is a polynomial of degree m.
The main result of this section is that, besides (9), Bernoulli polynomials admit no

nontrivial decompositions.

THEOREM 4.1. The polynomial BnðxÞ is indecomposable for odd n. If n ¼ 2m is even,
then any nontrivial decomposition of BnðxÞ is equivalent to (9). In particular, the
polynomial eBBmðxÞ is indecomposable for any m.

We need a very simple lemma. Let 4 be the difference operator on the ring of
polynomials C½x�, de¢ned by 4f ðxÞ ¼ f ðx þ 1Þ � f ðxÞ.

LEMMA 4.2. For any f ðxÞ; pðxÞ 2 C½x�, we have 4f j 4ðpðf ÞÞ.
Proof. It is suf¢cient to show that 4f j 4 f k

� 	
for k ¼ 0; 1; 2; . . . This is, however,

obvious, since for any two polynomials g and h, the difference g � h divides gk � hk.

Proof of Theorem 4.1. Let BnðxÞ ¼ G1ðG2ðX ÞÞ be a nontrivial decomposition
of BnðxÞ. By Lemma 4.2 and (5) we have 4G2ðxÞ j 4BnðxÞ ¼ nxn�1. This means that
4G2ðxÞ ¼ kxt with tW n � 1 and k 2 C

�. Again using (5), we obtain G2ðxÞ ¼
lBkðxÞ þ m, where l 2 C

�, m 2 C and k ¼ t þ 1. Thus, the decomposition
BnðxÞ ¼ G1ðG2ðX ÞÞ is equivalent to BnðxÞ ¼ PðBkðxÞÞ, where PðxÞ ¼ G1ðlx þ mÞ. Since
the decomposition is nontrivial, we have 2W k < n.
If k ¼ 2, then our decomposition is equivalent to (9). Now assume that kX 3.

Since both polynomials BnðxÞ and BkðxÞ are monic, so is PðxÞ. Also,
p:¼ degPðxÞX 2 because the decomposition is nontrivial. Comparing the coef-
¢cients of xn�2 in BnðxÞ and PðBkðxÞÞ, we obtain nðn � 1Þ=12 ¼ pkðpk � kÞ=
8þ pkðk � 1Þ=12. Since pk ¼ n, we may rewrite this as 2ðn � 1Þ ¼ 3ðn � kÞ þ
2ðk � 1Þ, which implies k ¼ n, a contradiction. The theorem is proved.
A totally different approach to the decomposition of Bernoulli and related

polynomials is suggested in the appendix by A. Schinzel.
It is not dif¢cult to classify the decompositions of the polynomial RmðxÞ as well.

THEOREM 4.3. The polynomial RmðxÞ is indecomposable if m is odd. If m ¼ 2k is
even then any nontrivial decomposition of RmðxÞ is equivalent to RmðxÞ ¼
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eRRk ðx � ðm � 1Þ=2Þ2
� 	

, where

eRRkðxÞ ¼ ðx � 1=4Þðx � 9=4Þ � � � x � ð2k � 1Þ2=4
� 	

: ð10Þ

In particular, the polynomial eRRkðxÞ is indecomposable for any k.
Proof. If F ðxÞ ¼ G1ðG2ðxÞÞ is a decomposition of a polynomial F ðxÞ 2 C½x� with

degG1 > 1, then there exists l 2 C such that deg gcd F ðxÞ � l;F 0ðxÞð ÞX degG2.
Indeed, if a is a root of G0

1ðxÞ and l ¼ G1ðaÞ then G2ðxÞ � a divides both the
polynomials F ðxÞ � l and F 0ðxÞ.
On the other hand, Beukers, Shorey and Tijdeman [3, Proposition 3.4] proved that

deg gcd RmðxÞ � l;R0
mðxÞ

� 	
W 2 for any l 2 C. Hence for any nontrivial decomp-

osition RmðxÞ ¼ G1ðG2ðxÞÞ we have degG2 ¼ 2. Write G2ðxÞ ¼ aðx � bÞ2 þ g. Then
our decomposition is equivalent to RmðxÞ ¼ P ðx � bÞ2

� 	
with some polynomial

PðxÞ 2 C½x�. Since the roots of RmðxÞ are symmetric with respect to b, we have
b ¼ ðm � 1Þ=2, which completes the proof.

Next, we show that for m; nX 2, the polynomial SnðxÞ cannot be presented
as RmðPðxÞÞ, where PðxÞ is another polynomial. Actually, we obtain a slightly more
general result with PðxÞ ¼ pðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ bx þ g

p
þ d.

THEOREM 4.4. There exist no polynomial pðxÞ 2 C½x� and no a; b; g; d 2 C such that

SnðxÞ ¼ Rm pðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ bx þ g

p
þ d

� �
: ð11Þ

for some m; nX 2.

For the proof, we need a simple lemma. To formulate it, consider the following
question. Let f ðxÞ; gðxÞ be two polynomials with rational coef¢cients. Assume that
f ðxÞ ¼ gðlx þ mÞ for some l 2 C

� and m 2 C. Is it true that l; m 2 Q?
Simple examples like

ffiffiffi
2

p
x

� 	2
¼ 2x2 show that in general this is false. Lemma 4.5

gives a suf¢cient condition for rationality of l and m, which is rather restrictive,
but suitable for our purposes.
LEMMA 4.5. In the set-up from above, assume that all roots of gðxÞ are rational, and
that f ðxÞ vanishes at b 2 Q, but is not of the form h ðx � bÞd

� 	
, where hðxÞ 2 Q½x� and

d > 1. Then l; m 2 Q.
Proof. Without loss of generality b ¼ 0, so that 0 ¼ f ð0Þ ¼ gðmÞ. Hence m 2 Q. It

follows that f ðlxÞ ¼ gðx � mÞ 2 Q½x�. Write f ðxÞ ¼ anxn þ � � � þ a0. Since both the
polynomials f ðxÞ and f ðlxÞ have rational coef¢cients, we have flk: ak 6¼ 0g � Q.
Also, gcdfk: ak 6¼ 0g ¼ 1, because f ðxÞ is not of the form h xd

� 	
with d > 1. This

implies that l belongs to the multiplicative group generated by the set
flk: ak 6¼ 0g. Hence l 2 Q, as wanted.
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Proof of Theorem 4.4.We start with the following particular case of Theorem 4.4:
for m; nX 2 there exists no polynomial pðxÞ 2 C½x� such that

SnðxÞ ¼ RmðpðxÞÞ: ð12Þ

Assuming the contrary, let pðxÞ be such a polynomial. Theorem 4.1 implies that
deg pðxÞW 2. Assume ¢rst that deg pðxÞ ¼ 1, in which case m ¼ n þ 1, and write
pðxÞ ¼ lx þ m. Since all the roots of RmðxÞ are rational, and SnðxÞ vanishes at 0,
but is not of the form h xd

� 	
with d > 1, Lemma 4.5 implies that l; m 2 Q. Comparing

the leading terms of SnðxÞ and RmðpðxÞÞ, we obtain 1=m ¼ lm. Thus, m ffiffiffiffi
m

p
2 Q, which

is impossible.
Now assume that deg pðxÞ ¼ 2, in which case n þ 1 ¼ 2m. By Theorem 4.1,

the decomposition B2mðxÞ ¼ 2mRmðpðxÞÞ þ B2m is equivalent to B2mðxÞ ¼eBBm ðx � 1=2Þ2
� 	

, which means that there exist l 2 C
� and m 2 C such that

pðxÞ ¼ lðx � 1=2Þ2 þ m and eBBmðxÞ ¼ 2mRmðlx þ mÞ þ B2m.
If m ¼ 2 theneBB2ðxÞ � B4 ¼ ðx � 1=4Þ2 ¼ 4R2ðlx þ mÞ, which is impossible because

the latter polynomial has only simple roots. Thus, mX 3. The polynomialeBBmðxÞ � B2m vanishes at 1=4, but is not of the form* h ðx � 1=4Þd
� 	

with d > 1. Hence
l; m 2 Q by Lemma 4.5. Comparing the leading coef¢cients, we obtain lm

¼ 1=ð2mÞ.
However, m

ffiffiffiffiffiffiffi
2m

p
62 Q for mX 3. This shows that (12) is impossible for pðxÞ 2 C½x�.

Nowwe can prove Theorem 4.4 in its full generality. Thus, suppose that (11) holds.
We may assume that rðxÞ:¼ ax2 þ bx þ g is not a complete square, since otherwise
pðxÞ

ffiffiffiffiffiffiffiffi
rðxÞ

p
þ d is a polynomial, which has already been treated in the ¢rst part of

the proof. Since

Rm pðxÞ
ffiffiffiffiffiffiffiffi
rðxÞ

p
þ d

� �
¼ rðxÞm=2pðxÞm þ rðxÞðm�1Þ=2pðxÞm�1 mdþ mðm � 1Þ=2ð Þ þ � � �

is a polynomial, the number m must be even. Furthermore,

mdþ mðm � 1Þ=2 ¼ 0;

which implies that d ¼ �ðm � 1Þ=2. Consequently

Rm pðxÞ
ffiffiffiffiffiffiffiffi
rðxÞ

p
þ d

� �
¼ Rm pðxÞ

ffiffiffiffiffiffiffiffi
rðxÞ

p
�

m � 1
2

� �
¼ eRRk rðxÞpðxÞ2

� 	
;

where k ¼ m=2 and eRRkðxÞ is de¢ned in (10). Thus, SnðxÞ ¼ eRRk eppðxÞð Þ, whereeppðxÞ ¼ rðxÞpðxÞ2.
If k ¼ 1 then eRRkðxÞ ¼ x � 1=4 and SnðxÞ þ 1=4 ¼ rðxÞpðxÞ2, which contradicts

Lemma 2.2. If kX 2 then, arguing as in the ¢rst part of the proof, one shows that
SnðxÞ ¼ eRRk eppðxÞð Þ is impossible for any polynomial eppðxÞ. The theorem is proved.

*Indeed, assume that eBBmðxÞ � B2m ¼ h ðx � 1=4Þd
� 	

with d > 1. Since eBBmðxÞ is indecompo-
sable, the only possibility is eBBmðxÞ � B2m ¼ ðx � 1=4Þm, in which case B2mðxÞ � B2m ¼

x2 � x
� 	m

. But B2mðxÞ � B2m cannot have roots of multiplicity mX 3 by Lemma 2.1.
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5. Proof of Theorems 1.1 and 1.2

5.1. STANDARD PAIRS AND THE CRITERION

In this subsection we recall the ¢niteness criterion from [5]. To do this, we need to
de¢ne ¢ve kinds of ‘standard pairs’ of polynomials. In what follows a and b are
nonzero rational numbers, m, n and q are positive integers, r is a nonnegative integer
and vðxÞ 2 Q½x� is a nonzero polynomial (which may be constant).
A standard pair of the ¢rst kind is xq; axrvðxÞqð Þ or switched, axrvðxÞq; xqð Þ, where

0W r < q, ðr; qÞ ¼ 1 and rþ deg vðxÞ > 0.
A standard pair of the second kind is x2; ðax2 þ bÞvðxÞ2

� 	
(or switched).

Denote by Dmðx; dÞ the mth Dickson polynomial, de¢ned by the functional
equation Dmðz þ d=z; dÞ ¼ zm þ ðd=zÞm or by the explicit formula

Dmðx; dÞ ¼
Xbm=2c
i¼0

dm;ixm�2i with dm;i ¼
m

m� i
m� i

i

� �
ð�dÞi: ð13Þ

A standard pair of the third kind is Dmðx; anÞ; Dnðx; amÞ
� 	

, where gcdðm; nÞ ¼ 1.
A standard pair of the fourth kind is

a�m=2Dmðx; aÞ; �b�n=2Dnðx; bÞ
� 	

;

where gcdðm; nÞ ¼ 2.
A standard pair of the ¢fth kind is ðax2 � 1Þ3; 3x4 � 4x3

� 	
(or switched).

The following theorem is the main result of [5]. It extends and completes the pre-
vious work of Davenport, Lewis, Schinzel and Fried [11, 14, 20].

THEOREM 5.1. Let RðxÞ;SðxÞ 2 Q½x� be nonconstant polynomials such that the
equation RðxÞ ¼ SðyÞ has in¢nitely many solutions in rational integers x; y. Then
R ¼ j � f � k and S ¼ j � g � l, where kðxÞ; lðxÞ;2 Q½x� are linear polynomials,
jðxÞ 2 Q½x�, and f ðxÞ; gðxÞð Þ is a standard pair.

The proof relies, besides other tools, on Siegel classical theorem about integral
points [22]. Since Siegel’s theorem is ineffective, so is Theorems 5.1.

5.2. TWO LEMMAS

We will also need two simple, though somewhat technical lemmas. In the sequel
a1; b1; e1 2 Q

� and a0; b0; e0 2 Q.

LEMMA 5.2. None of the polynomials Rmða1x þ a0Þ and Snðb1x þ b0Þ is of the form
e1xq þ e0 with qX 3.

LEMMA 5.3. The polynomial Snðb1x þ b0Þ is not of the form e1Dnðx; dÞ þ e0, where
Dnðx; dÞ is the Dickson polynomial (13) with n > 4 and d 2 Q

�.
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To prove these lemmas we use explicit expressions for the coef¢cients of the
polynomials

Rmða1x þ a0Þ ¼ rmxm þ rm�1xm�1 þ � � � þ r0

and

Snðb1x þ b0Þ ¼ snþ1xnþ1 þ snxn þ � � � þ s0:

We have

rm ¼ am
1 ; rm�1 ¼

am�1
1

2
mð2a0 þ m � 1Þ; ð14Þ

rm�2 ¼
am�2
1

24
mðm � 1Þð3m2 þ ð12a0 � 7Þm þ 12a20 � 12a0 þ 2Þ; ð15Þ

snþ1 ¼
bnþ1
1

n þ 1
; sn ¼

bn
1

2
ð2b0 � 1Þ; ð16Þ

sn�1 ¼
bn�1
1

12
nð6b20 � 6b0 þ 1Þ; ð17Þ

sn�3 ¼
bn�3
1

720
nðn � 1Þðn � 2Þð30b40 � 60b

3
0 þ 30b

2
0 � 1Þ ð18Þ

Proof of Lemma 5.2. If Rmða1x þ a0Þ ¼ e1xq þ e0 with q ¼ mX 3, then rm�1 ¼

rm�2 ¼ 0. Equality rm�1 ¼ 0 implies that a0 ¼ ð1� mÞ=2. Substituting this into
the equality rm�2 ¼ 0 we obtain m 2 f0;�1g, a contradiction.
(One may also argue as follows. Since Rmða1x þ a0Þ has m distinct real roots, its

derivative should havem � 1 distinct real roots, which is not the case for ðe1xq þ e0Þ
0.)

If Snðb1x þ b0Þ ¼ e1xq þ e0 with q ¼ n þ 1X 3 then sn�1 ¼ 0, which implies
6b20 � 6b0 þ 1 ¼ 0. Hence b0 62 Q, a contradiction.

Proof of Lemma 5.3. If Snðb1x þ b0Þ ¼ e1Dnðx; dÞ þ e0 with n ¼ n þ 1 > 4 then

snþ1 ¼ ek; ð19Þ

sn ¼ 0; ð20Þ

sn�1 ¼ �e1nd; ð21Þ

sn�3 ¼ e1ðn� 3Þnd2=2: ð22Þ

Relations (19) and (20) imply that b0 ¼ 1=2 and ek ¼ bn1=n. Substituting this, together
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with n ¼ n� 1, into (21) and (22), we obtain, respectively,

�bn�21 ðn� 1Þ=24 ¼ �bn1d; ð23Þ

7bn�41 ðn� 1Þðn� 2Þðn� 3Þ=5760 ¼ bn1d
2
ðn� 3Þ=2: ð24Þ

After extracting b1 from (23) and substituting it into (24), we obtain 7ðn� 2Þðn� 3Þ ¼
5ðn� 1Þðn� 3Þ, which implies n 2 f3; 9=2g, a contradiction.

5.3. PROOF OF THEOREM 1.1

IfRmðxÞ ¼ SnðyÞ has in¢nitely many solutions, then, by Theorem 5.1,Rmða1x þ a0Þ ¼
jðf ðxÞÞ and Snðb1x þ b0Þ ¼ jðgðxÞÞ, where ðf ; gÞ is a standard pair, a0, a1, b0, b1 are
rational numbers with a1b1 6¼ 0 and jðxÞ is a polynomial with rational coef¢cients.
Assume ¢rst of all that degj > 1. Then deg f ; deg gW 2 by Theorems 4.1 and 4.3.

We have SnðxÞ ¼ jðg1ðxÞÞ, where g1ðxÞ ¼ g b�11 ðx � b0Þ
� 	

.
If deg f ¼ 1 then, after modifying a1 and a1, we may assume that

Rmða1x þ a0Þ ¼ jðxÞ. We obtain SnðxÞ ¼ Rmða1g1ðxÞ þ a0Þ, which contradicts
Theorem 4.4.
If deg f ¼ 2 then, after modifying a1 and a1, we may assume that Rmða1x þ a0Þ ¼

jðx2 þ aÞ with a 2 C. We obtain

SnðxÞ ¼ Rmða1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1ðxÞ � a

p
þ a0Þ:

This again contradicts Theorem 4.4 because deg g1ðxÞW 2.
Thus, degjðxÞ ¼ 1, and we have

Rmða1x þ a0Þ ¼ e1f ðxÞ þ e0; Snðb1x þ b0Þ ¼ e1gðxÞ þ e0;

where e1 2 Q
� and e0 2 Q. In particular, deg f ¼ mX 2 and deg g ¼ n þ 1X 2. In

view of Theorems 3.1 and 3.2, we may assume that

none of the polynomials f ; g is of degree 2 or 4. ð25Þ

In particular, the standard pair ðf ; gÞ cannot be of the second or ¢fth kind.
If it is of the ¢rst kind then one of the polynomials Rmða1x þ a0Þ or Snðb1x þ b0Þ is

of the form e1xq þ e0, where qX 3 by (25). This is, however, impossible by
Lemma 5.2.
If ðf ; gÞ is a standard pair of the fourth kind, then Snðb1x þ b0Þ ¼ e1Dnðx; dÞ þ e0,

where n ¼ n þ 1 and d 2 Q�. Since n is even we have n > 4 by (25), which contradicts
Lemma 5.3.
Thus, ðf ; gÞ is a standard pair of the third kind We must have n ¼ 2, because the

cases n 2 f1; 3g and n > 3 are impossible by (25) and Lemma 5.3, respectively. Thus,
for some a 2 Q

� we have

Rmða1x þ a0Þ ¼ e1Dmðx; a3Þ þ e0;

S2ðb1x þ b0Þ ¼ e1D3ðx; amÞ þ e0:
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In the sequel, we use the notation of Subsection 5.2 and relations (14^18). Since
rm�1 ¼ s2 ¼ 0, we have a0 ¼ ð1� mÞ=2 and b0 ¼ 1=2. Further,

s3 ¼ b31=3 ¼ e1; ð26Þ

s1 ¼ �b1=24 ¼ �3e1am; ð27Þ

rm ¼ am
1 ¼ e1; ð28Þ

rm�2 ¼ �am�2
1 mðm � 1Þðm þ 1Þ=24 ¼ �e1ma3: ð29Þ

Now (26) and (27) imply that am ¼ b�21 =24, while (28) and (29) imply that
a3 ¼ a�21 ðm2 � 1Þ=24. Also, am

1 ¼ e1 ¼ b31=3. Hence

b�61 =243 ¼ a3m ¼ a�2m1 ððm2 � 1Þ=24Þm ¼ 9b�61 ððm2 � 1Þ=24Þm:

Thus, ð35 � 29Þ1=m 2 Q, which is impossible. The theorem is proved. &

5.4. PROOF OF THEOREM 1.2

We again wish to come to a contradiction, assuming that Smða1x þ a0Þ ¼ jð f ðxÞÞ and
Snðb1x þ b0Þ ¼ jðgðxÞÞ, where ðf ; gÞ is a standard pair, a0; a1; b0; b1 are rational
numbers with a1b1 6¼ 0 and jðxÞ is a polynomial with rational coef¢cients.
If k:¼ degj > 1, then deg f ; deg gW 2 by Theorem 4.1. Since m < n, we have

deg f ¼ 1 and deg g ¼ 2. In particular, m þ 1 ¼ k and n þ 1 ¼ 2k.
Let a, b and ek be the leading coef¢cients of f , g and j, respectively. Comparing the

leading coef¢cients of Smða1x þ a0Þ and jðf ðxÞÞ, we obtain ak
1=k ¼ ekak. Similarly,

b2k1 =ð2kÞ ¼ ekb
2k. It follows that aa�11 b21b

�2� 	k
¼ 2, which is impossible because

21=k 62 Q.
Thus, degjðxÞ ¼ 1, and we have

Smða1x þ a0Þ ¼ e1f ðxÞ þ e0; Snðb1x þ b0Þ ¼ e1gðxÞ þ e0;

where e1 2 Q
� and e0 2 Q. In particular, deg f ¼ m þ 1 and deg g ¼ n þ 1. In view of

the theorems, we may assume that none ofm and n is equal to 1 or 3. This implies that
nX 4 and that the standard pair ð f ; gÞ cannot be of the second or ¢fth kind.
If it is of the ¢rst kind then one of the polynomials Smða1x þ a0Þ or Snðb1x þ b0Þ is

of the form e1xq þ e0, where qX 3. This is impossible by Lemma 5.2.
If ðf ; gÞ is a standard pair of the third or fourth kind, then Snðb1x þ b0Þ ¼

e1Dnðx; dÞ þ e0, where n ¼ n þ 1 > 4 and d 2 Q
�. This contradicts Lemma 5.3.

The theorem is proved. &

6. Arithmetical Approach to Decomposition of Bernoulli Polynomials
(by A. Schinzel)

In this appendix we use an arithmetical method to prove the following theorem.
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THEOREM 6.1. The Bernoulli polynomial BnðxÞ cannot be presented as rPðQðxÞÞ,
where r is a rational number, PðxÞ 2 Z½x� ia a monic polynomial of degree greater
than 1, and QðxÞ 2 Q½x�. When n 6¼ 2; 4, the same holds for the polynomial
FnðxÞ:¼ BnðxÞ � Bn.

Notice that F2ðxÞ ¼ PðQðxÞÞ where PðxÞ ¼ x2 � x and QðxÞ ¼ x and F4ðxÞ ¼
PðQðxÞÞ where PðxÞ ¼ x2 and QðxÞ ¼ x2 � x.

COROLLARY 6.2. The polynomial BnðxÞ cannot be presented as RmðQðxÞÞ, where
mX 2 and QðxÞ 2 Q½x�. The same is true for FnðxÞ when n 6¼ 2, and for SnðxÞ when
n 6¼ 1.

Proof. In view of Theorem 6.1, it remains to show that neither F4ðxÞ ¼ ðx2 � xÞ2

nor S3ðxÞ ¼ ððx2 � xÞ=2Þ2 can be of the form R2ðQðxÞÞ or R4ðQðxÞÞ. Since
R2ðxÞ ¼ ðx � 1=2Þ2 � 1=4 and R4ðxÞ ¼ ðx2 þ 3x þ 1Þ2 � 1, the contrary would, in
any case, imply an equality of the form ðT ðxÞ � UðxÞÞðT ðxÞ þ UðxÞÞ ¼ 1 for certain
nonconstant polynomials T ðxÞ and UðxÞ, which is impossible.
For the proof of Theorem 6.1 we need an auxiliary result.

LEMMA 6.3. If FnðxÞ 2 Z½x�; then n 2 f1; 2; 4g.
Proof. Assume that

FnðxÞ 2 Z½x� and n > 1: ð30Þ

Since B1 ¼ �1=2, we have

n � 0mod 2: ð31Þ

By the von Staudt theorem (7) we have 6jLk for any even k. Hence (30) implies that

6 j
n
k

� �
ð32Þ

for all positive even k < n. However, if n ¼
Pr

i¼1 2
ai , where a1 > a2 > � � � > ar > 0

and r > 1, then k ¼
Pr�1

i¼1 2
ai is even, 0 < k < n and by virtue of Lucas’ theorem,

n
k

� 	
is odd. Hence, conditions (31) and (32) imply n ¼ 2a. Similarly, assume that

n ¼
Ps

i¼1 ei3
bi , where s > 1, b1 > b2 > � � � > bs X 0 and ei 2 f1; 2g If for at least

one j we have ej ¼ 2, then k ¼
P

i 6¼j ei3
bi is even and, again by Lucas’ theorem,

n
k

� 	
6� 0mod 3. Also, if s > 2 and for at least two subscripts j1; j2 we have

ej1 ¼ ej2 , then k ¼
P

i 6¼j1;j2 ei3
bi is even, 0 < k < n and n

k

� 	
6� 0mod 3. Hence (31)

and (32) imply n ¼ 2a ¼ 3b1 þ 3b2 with b1X b2. It follows that b2 ¼ 0 and either
a ¼ 1, b1 ¼ 0 or a ¼ 2, b1 ¼ 1, which gives n ¼ 2 or n ¼ 4.

Proof of Theorem 6.1. Let PðxÞ and QðxÞ be as assumed, and let d be the
denominator of the polynomial QðxÞ, that is the smallest positive integer d such
that dQðxÞ 2 Z½x�. By the Gauss Lemma, the denominator of QðxÞm, where
m ¼ degP, is dm. Since the polynomial PðxÞ is monic and has integer coef¢cients,
the denominator of PðQðxÞÞ is dm as well.

186 YU. F. BILU ET AL.

https://doi.org/10.1023/A:1014972217217 Published online by Cambridge University Press

https://doi.org/10.1023/A:1014972217217


Further, comparing the leading coef¢cient of BnðxÞ (or FnðxÞ) with that of
rPðQðxÞÞ, we obtain 1 ¼ rqm, or r ¼ q�m, where q is the leading coef¢cient
of QðxÞ. This implies that the denominator of rPðQðxÞÞ is a perfect mth power in Z.
On the other hand, by the von Staudt theorem (7) and Lemma 6.3, the

denominator of BnðxÞ is a square free integer greater that 1, and the same is true
for the denominator of FnðxÞ when n 6¼ 2; 4. In particular, it cannot be a perfect
mth power for mX 2. The theorem is proved.
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