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Mathematics Subject Classifications (2000). Primary: 11D41; Secondary: 11B68, 11B65, 11J86.

Key words. Diophantine equations, Bernoulli polynomials, power sums, products of consecu-
tive integers, indecomposable polynomials.

1. Introduction

In this paper, we study the Diophantine equations R,,(x) = S,(y) and S,,,(x) = S,(»),
where

R,x)=x(x+1)---(x+m—1), Su(x)=1"4+2"+ ...+ (x— 1"

Various Diophantine equations involving the polynomials R,,(x) and S,,(x) have
been extensively investigated. Mention should be made, for instance, of the
celebrated theorem of Erdds and Selfridge [13]: for m,n > 2, the equation
V" = R,,(x) has no solutions in positive integers x, y (that is, a product of several
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consecutive integers is never a perfect power). An incomplete list of the most recent
related works is [3, 8-10, 19, 21, 24], where further references will be found.
In this paper we prove the following two theorems.

THEOREM 1.1. Form = 2,n = 1 and (m, n) # (2, 1), the equation R,,,(x) = S,(y) has,
at most, finitely many solutions in rational integers x, y.

THEOREM 1.2. For n > m = 1, the equation S,,(x) = S,(y) has, at most, finitely
many solutions in rational integers Xx, y.

Some particular cases of Theorem 1.2 are established in [9]. We recall also that
Beukers et al. [3] completely solved the finiteness problem for the equation
R,(x) = R,(y), even in a more general setting.

We deduce Theorems 1.1 and 1.2 from the general finiteness criterion for the
Diophantine equation f(x) = g(y), recently established in [5] (see Theorem 5.1
below). Since the proof of Theorem 5.1 is based on the noneffective theorem of
Siegel, Theorems 1.1 and 1.2 are noneffective. In Section 3 we show, using Baker’s
method, that Theorem 1.1 can be made effective when n € {1,3} or m € {2,4}.
In [16], the equation R,(x) = S,(y) was completely solved in the special cases
(m,n) = (2,2),(2,5),(4,2),4,5).

One of the purposes of this paper is to illustrate how the general criterion from [5]
applies to a concrete equation (see [4, 12] for different examples of this kind).

It is interesting to compare our method with those of [8-10, 13, 19, 21]. Our
method is much less sensitive to the specific form of the equation. For instance,
it extends, with some modifications, to the equations*

ARy(x) + BS,(y) = C and  AS,,(x) + BS,(») = C,

where 4, B and C are arbitrary integers with 4B # 0. Moreover, a similar argument
must work for any equation of the form F,,(x) = G,(y), where {F,,} and {G,} are
infinite families of polynomials depending on the parameters m and n in some ‘good’
way. See [4, 12] for examples.

On the other hand, our method yields only noneffective results and requires m
and n to be fixed, while the results obtained by the more elementary methods
are usually effective and sometimes allow variable m and/or n.

Besides the criterion from [5], the proofs of Theorems 1.1 and 1.2 require some
other auxiliary facts. In particular, we completely characterize in Theorem 4.1
the decompositions of Bernoulli polynomials B,(x) (that is, all representations of
B,(x) as G1(Gy(x)), where G| and G, are polynomials). This result seems to be
of independent interest.

*At least for m > 3; for m = 2 one would have to overcome some difficulties in generalizing
Lemma 2.2.
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PLAN OF THE PAPER

In Section 2 we collect facts about Bernoulli polynomials to be used in the text. In
Section 3 we show that some special cases of Theorems 1.1 and 1.2 allow effective
treatment. In Section 4 we investigate the decomposition of Bernoulli polynomials.
In Section 5 we recall the finiteness criterion from [5] and prove Theorems 1.1
and 1.2. The final Section 6, written by A. Schinzel, describes an alternative approach
to the decomposition of Bernoulli-type polynomials.

2. Bernoulli Polynomials

In this section we summarize some properties of the polynomials S,(x) and the
closely related Bernoulli polynomials. We denote by B,(x) the nth Bernoulli
polynomial, defined by the generating series te™/(e’ — 1) = Y - B,(x)¢"/n!, and
by B, = B,(0) the nth Bernoulli number.

The following properties of Bernoulli numbers and polynomials will be often used
in the text, sometimes without special reference.

B,(x) = XO: (’:)Bix’1’i S~ —ng +@x”72+--.; (1)
B, (%) = (n+ 1)By(x); (2
Sn(x) = (Bp41(x) — But1)/(n + 1); 3)
By(x) = (=1)"B,(1 — x); “4)
S +1) = f(x) = n""' <=1 (x) = By(x) + const; (5)
Bi=Bs=B=...=0. (6)

Recall also the von Staudt theorem

Ay = 1_[ P, (7)
(p—1)|2n,p prime

where A, is the denominator of B,,. In particular, A, is a square-free integer, divisible
by 6.

For the proofs of (1)—(7) see, for instance, [18, Chapters 1 and 2]. We conclude this
section by two lemmas to be used in the sequel.

LEMMA 2.1. Let m, r be integers with m > 1. Then the (complex) roots of the poly-

nomial P(x):= Byy(x) — By, +r/2 are of multiplicity at most 2. Also, P(x) has at
least 4 simple roots, unless r =0 and m € {2, 3}.
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Proof. Brillhart [6, Corollary of Theorem 16] proved that the polynomial B,,,_;(x)
has only simple roots. (See [15, Section 3] for a more general result.) Since
P'(x) =2mBy,,_1(x), the polynomial P(x) may have roots of multiplicity at
most 2. This proves the first assertion.

Now we shall prove that P(x) has at least 4 simple roots. When r is even this is a
particular case of Theorem 2 of Gydry, Tijdeman and Voorhoeve [15]. Hence
we may assume that r is odd. We follow the argument of [15] with some changes.

Let 6 be the denominator of P(x), that is, the smallest positive integer such that
0P(x) € Z[x]. Since r is odd,  must be even; write 6 =2d. The von Staudt
theorem (7) implies that d is an odd square-free integer.

By the Gauss lemma, 2dP(x) = Q(x)T(x)*, where Q(x), T(x) € Z[x] are primitive
polynomials* and the roots of Q(x) are exactly the simple roots of P(x). Since
the leading coefficient of 2dP(x) is 2d, which is a square-free integer, the leading
coefficient of 7'(x) must be +1, and the leading coefficient of Q(x) is 2d.

We have to show that deg Q(x) = 4. Thus, assume that deg Q(x) < 4. If
deg O(x) = 0 then Q(x) = 2d, which is impossible because Q(x) is primitive. The only
remaining possibility is deg Q(x) = 2. Since P(x) = P(1 —x), we have Q(x) =
O(1 — x) as well, which implies that Q(x) = 2dx?> — 2dx + ¢, where ¢ € 7. We have
(¢, 2d) = 1 because Q(x) is primitive. We also have T(x) = T(1 — x), which implies
that m — 1 = deg T'(x) is even. Hence, m is odd.

Since the polynomial T(x)* is monic, we have

2dP(x) = dx* = 2dx + ) (X2 +.. )= x*" 2 4 ... (mod 2d),

where ‘.. ." denotes terms of lower degree. Since the coefficient of x*~2 in 2dP(x) is
dm(2m — 1)/3, we have ¢ = dm(2m — 1)/3(mod 2d). Since (¢, 2d) = 1, this is possible
only when either d = 3 and m(2m — 1) is not divisible by 3, ord = 1 and m(2m — 1) is
divisible by 3.

Assume that d = 3 and m(2m — 1) is not divisible by 3. We have 6P(0) = 3r. Also,
using (5), we obtain

6P(—1) = 6P(0) + 12m = 3r + 12m.
On the other hand,
6P(0) = ¢T(0> and 6P(—1)= (124 )T(=1)%
Since (¢, 2d) = (¢, 6) = 1, the number c is not divisible by 3. It follows that both the

integers 3r and 3r 4+ 12m must be divisible by 9. Hence, m is divisible by 3, a con-
tradiction.

*A polynomial with integer coefficients is primitive if the greatest common divisor of its coef-
ficients is 1.
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Thus, d =1 and m(2m — 1)/3 € 7Z. By (6), we have

m—2

2m — 1
2P(x) = 28 — ot 4 22— 1) ”; Jam-2 > at ®)
k=0
with ay, ..., a,—» € 7Z. Assume that |¢| > 1. Since (¢, 2d) = (¢, 2) = 1, the number ¢

has an odd prime divisor p. Denote by ai— @ the reduction mod p. Then
2P(x) = O(x)T(x)* = 2x(x — DT (x)*.

It follows that 0 is a root of 2P(x) of odd multiplicity. However, (8) implies that this
multiplicity cannot be any of 1,3,...,2m —3. We conclude that 0 is a root
of 2P(x) of multiplicity 2m — 1, which means that T(x)* = x**2 and 2P(x) =
2x¥" —2x¥=1 Comparing this with (8), we conclude that 2m = 2(modp) and
m(2m — 1)/3 = 0(mod p), which is impossible. This shows that ¢ = +1.

Assume that ¢ = 1. Then Q(x) = 2x> — 2x + 1, which means that P(x) vanishes at
« = (1 +i)/2. Notice that o?* is real (respectively, pure imaginary) when k is even
(respectively, odd). Since m is odd,

0=3.2"""ReP(x)

= —3m(—1)" V2 - m@2m — 1)(— 1)y
(m=3)/2
+12 ) a2
k=0
=2m*=2 (mod4),

a contradiction.

We are left with ¢ = —1, in which case Q(x) = 2x> — 2x — 1 and P(x) vanishes at
B=(14++3)/2. If m=3 then r/2=Bs— Bs(f) =0, which is impossible,
because r is odd. Finally, for m > 5 the polynomial P(x) = By, (x) — By,(f) has
at least 4 roots of odd multiplicity [15, p.238]. Since the multiplicities do not
exceed 2, these roots are simple. Lemma 2.1 is proved.

LEMMA 2.2. For n =2, the polynomial S,(x)+ 1/4 has at least 3 simple roots.

Proof. For even n this is proved by Kano [17, Section 4]. Now let n be odd and write
n+ 1 = 2m. Then the polynomial S,.(x) + 1/4 = (Byu(x) — By +m/2)/(n + 1) has
at least 4 simple roots by Lemma 2.1.

3. Effective Results for Small m or n

In this section we show that, when either n € {1, 3} or m € {2, 4}, Theorem 1.1 can be
proved effectively; that is, one can write down an explicit upper bound for the sol-
utions (though we do not display an actual expression for such a bound). As
one may expect, we use Baker’s method.
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THEOREM 3.1. When m = 2, all solutions of the equation Ry, (x) = S3(y)inx,y € 7,
satisfy max{|x|, |y|} < c1, where c| is an effectively computable constant depending
only on m. When m = 3, the same is true for the integer solutions of the equation

Rm(x) =35 (y)

THEOREM 3.2. Form € {2,4}andn = 2, all solutions of the equation R,,(x) = S,(y)
in x,y € Z satisfy max{|x|, [y|} < ca2, where ¢, is an effectively computable constant
depending only on n.

The proofs of these theorems rely on the classical result of A. Baker [1].

LEMMA 3.3 ([1]). Let g(x) € Q[x] be a polynomial having at least three simple roots.
Then all solutions of the equation g(x) = y* in x, y € 7 satisfy max{|x|, |y|} < ¢, where
¢ is an effectively computable constant depending only on the coefficients of g. [

Proof of Theorem 3.1. We start with the equation R,,(x) = S3(y). Since S3(y) =
(v(y — 1)/2), it is sufficient to show that the solutions x,z € Z of the equation
22 = R,(x) are effectively bounded in terms of m. If m >3 then the
polynomial R,,(x) has at least three simple roots, and the required assertion follows
from Lemma 3.3. In the case m = 2 we obtain the equation z> = x(x + 1), which
has only two integer solutions (0, 0) and (—1, 0). This can be easily seen, e.g., by
rewriting it as 2x+2z+ 1)2x—-2z+1) = 1.

The equation R,,(x) = Si(p) is a particular case of the equation effectively studied
by Yuan [24]. On can also argue directly as follows. Rewrite the equation as
2y — 1)? = 8R(x) + 1. By Lemma 4 from [9], the polynomial 8R,,(x) + 1 has only
simple roots. Since m > 3, we may apply Lemma 3.3.

Proof of Theorem 3.2. Rewriting the equation R,(x) = S,(y) as (2x —1)* =
4S,(y) + 1, we see that its solutions are effectively bounded by Lemmas 2.2
and 2.3. An effective finiteness theorem for the equation S,(y) = R4(x) =
(x? + 3x + 1)> — 1 was obtained by Brindza [7]. See [15, 23] for more general results.

We also recall the known effective results for the equations Sj(x) = S,(y) and

S3(x) = Su(y).

THEOREM 3.4. For m € {1, 3} and n # m, the solutions x,y € 7 of the equation
Su(x) = S,(y) satisfy max{|x|, |y|} < c¢3, where c3 is an effectively computable con-
stant depending only on n.

For m = 1 this is Theorem 1 of [9]. For m = 3 and n # 1, 3, 5 this is a consequence
of the much more general effective theorem of GyOry et al. [15, Theorem 1]. We are
left with the equation S3(x) = Ss(y), that is 3(x? — x)* = (2)* — 2y — (> — )%
Putting »> — y = z, we obtain the equation 3(x? — x)> = 223 — 22, which defines a
curve of genus 1. Hence, its solutions are effectively bounded by the famous result
of Baker and Coates [2].
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4. Decomposition of Bernoulli Polynomials

A decomposition of a polynomial F(x) e C[x] is an equality of the form
F(x) = G1(Gy2(x)), where Gi(x), G2(x) € C[x]; the decomposition is nontrivial if
deg Gy,deg G, > 1. Two decompositions F(x) = G;(G»(x)) and F(x) = H(H(x))
are called equivalent if there exists a linear polynomial ¢(x) € C[x] such that
Gi(x) = Hi(¢(x)) and Hy(x) = £(G>(x)). The polynomial F(x) is called decomposable
if it has at least one nontrivial decomposition, and indecomposable otherwise

Let n = 2m be an even positive integer. Since B,(x) = B,(1 — x) by (4), we have

B(x) = B((x — 1/2)%), 9)

where Em(x) € Q[x] is a polynomial of degree m.
The main result of this section is that, besides (9), Bernoulli polynomials admit no
nontrivial decompositions.

THEOREM 4.1. The polynomial B,(x) is indecomposable for oddn. If n = 2m is even,
then any nontrivial decomposition of B,(x) is equivalent to (9). In particular, the
polynomial B,,(x) is indecomposable for any m.

We need a very simple lemma. Let A be the difference operator on the ring of
polynomials C[x], defined by Af(x) =f(x + 1) — f(x).

LEMMA 4.2. For any f(x), p(x) € C[x], we have Af | A(p(f)).
Proof. 1t is sufficient to show that Af | A(f*) for k =0, 1,2,... This is, however,
obvious, since for any two polynomials g and 4, the difference g — 4 divides g€ — A¥.

Proof of Theorem 4.1. Let B,(x) = G1(G2(X)) be a nontrivial decomposition
of B,(x). By Lemma 4.2 and (5) we have AG»(x) | AB,(x) = nx"~!. This means that
AGy(x) =kx' with t<n—1 and x € C*. Again using (5), we obtain G,(x) =
ABi(x)+u, where A€ C*, neC and k=1t+1. Thus, the decomposition
B,(x) = G1(G2(X)) is equivalent to B,(x) = P(Bi(x)), where P(x) = G{(/x + p). Since
the decomposition is nontrivial, we have 2 < k < n.

If k =2, then our decomposition is equivalent to (9). Now assume that k > 3.
Since both polynomials B,(x) and Bi(x) are monic, so is P(x). Also,
p:=deg P(x) = 2 because the decomposition is nontrivial. Comparing the coef-
ficients of x"~2 in B,(x) and P(Bi(x)), we obtain n(n —1)/12 = pk(pk — k)/
8 + pk(k — 1)/12. Since pk =n, we may rewrite this as 2(n—1)=3(n—k) +
2(k — 1), which implies k = n, a contradiction. The theorem is proved.

A totally different approach to the decomposition of Bernoulli and related
polynomials is suggested in the appendix by A. Schinzel.

It is not difficult to classify the decompositions of the polynomial R, (x) as well.

THEOREM 4.3. The polynomial R,,(x) is indecomposable if m is odd. If m = 2k is
even then any nontrivial decomposition of R, (x) is equivalent to R, (x)=
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kk((x —(m— 1)/2)2), where
Ri(x) = (x — 1/4)(x —9/4) -+ (x — (2k — 1)2/4). (10)

In particular, the polynomial I~2k(x) is indecomposable for any k.

Proof. If F(x) = G1(Gy(x)) is a decomposition of a polynomial F(x) € C[x] with
deg Gy > 1, then there exists A € C such that deggcd(F(x) — 4, F'(x)) = degG,.
Indeed, if o is a root of Gj(x) and A= Gi(«) then G»(x)— o« divides both the
polynomials F(x) — 4 and F'(x).

On the other hand, Beukers, Shorey and Tijdeman [3, Proposition 3.4] proved that
deg ged(Ryu(x) — 4, R}, (x)) <2 for any 4 € C. Hence for any nontrivial decomp-
osition R, (x) = G1(Ga2(x)) we have deg G, = 2. Write Ga(x) = a(x — f)> + 7. Then
our decomposition is equivalent to R, (x) =P((x— [3)2) with some polynomial
P(x) € C[x]. Since the roots of R, (x) are symmetric with respect to 5, we have
p = (m—1)/2, which completes the proof.

Next, we show that for m,n > 2, the polynomial S,(x) cannot be presented
as R,,(P(x)), where P(x) is another polynomial. Actually, we obtain a slightly more

general result with P(x) = p(x)/ax? + fx + 7 + 0.

THEOREM 4.4. There exist no polynomial p(x) € Clx]andno o, 8,7, 6 € Csuch that
Sp(x) = Ry, (p(x)\/ocx2 +Bx+y+ 5). (11)

for some m,n = 2.

For the proof, we need a simple lemma. To formulate it, consider the following
question. Let f(x), g(x) be two polynomials with rational coefficients. Assume that
f(x) = g(Ax + ) for some 2 € C* and u € C. Is it true that A, u € Q?

Simple examples like (ﬁx)zz 2x? show that in general this is false. Lemma 4.5
gives a sufficient condition for rationality of A and pu, which is rather restrictive,
but suitable for our purposes.

LEMMA 4.5. In the set-up from above, assume that all roots of g(x) are rational, and
that f(x) vanishes at f € Q, but is not of the form h((x - ﬂ)d), where h(x) € Q[x] and
d> 1. Then ), ue Q.

Proof. Without loss of generality f = 0, so that 0 = f(0) = g(u). Hence p € Q. It
follows that f(ix) = g(x — ) € Q[x]. Write f(x) = a,x" + --- 4+ a9. Since both the
polynomials f(x) and f(4x) have rational coefficients, we have (% ay #0} Cc Q.
Also, ged{k:ar # 0} = 1, because f(x) is not of the form h(x?) with d > 1. This
implies that A belongs to the multiplicative group generated by the set
{},k: ar # 0}. Hence 4 € Q, as wanted.

https://doi.org/10.1023/A:1014972217217 Published online by Cambridge University Press


https://doi.org/10.1023/A:1014972217217

DIOPHANTINE EQUATIONS AND BERNOULLI POLYNOMIALS 181

Proof of Theorem 4.4. We start with the following particular case of Theorem 4.4:
for m, n = 2 there exists no polynomial p(x) € C[x] such that

Sn(x) = Rm(p(x))- (12)

Assuming the contrary, let p(x) be such a polynomial. Theorem 4.1 implies that
degp(x) < 2. Assume first that degp(x) = 1, in which case m =n+ 1, and write
p(x) = Ax + p. Since all the roots of R, (x) are rational, and S,(x) vanishes at 0,
but is not of the form /(x?) with d > 1, Lemma 4.5 implies that 2, u € Q. Comparing
the leading terms of S,(x) and R, (p(x)), we obtain 1/m = A". Thus, %/m € QQ, which
is impossible.

Now assume that degp(x) =2, in which case n+ 1 =2m. By Theorem 4.1,
the decomposition By, (x) = 2mR,,(p(x)) + By, is equivalent to By, (x) =
En,((x —1/2)%), which means that there exist 1€ C* and pe C such that
p(x) = A(x — 1/2)* + 1 and B,(x) = 2mR,,(ix + 1) + Bop.

If m = 2 then §2(x) — By = (x — 1/4)* = 4R, (J.x + p), which is impossible because
the latter polynomial has only simple roots. Thus, m > 3. The polynomial
B,u(x) — B, vanishes at 1/4, but is not of the form* h((x — 1/4)") with d > 1. Hence
A, u € Q by Lemma 4.5. Comparing the leading coefficients, we obtain 1" = 1/(2m).
However, %/2m ¢ Q for m > 3. This shows that (12) is impossible for p(x) € C[x].

Now we can prove Theorem 4.4 in its full generality. Thus, suppose that (11) holds.
We may assume that r(x): = ax? 4+ fx + y is not a complete square, since otherwise
p(x)\/;()?) + ¢ is a polynomial, which has already been treated in the first part of
the proof. Since

R, (p(x)\/@ + 5)
= r()"p(x)" + r ()" ()" (md + m(m —1)/2) + -
is a polynomial, the number m must be even. Furthermore,
md+m(m—1)/2 =0,

which implies that 6 = —(m — 1)/2. Consequently

m@wﬁm+®=m@mNMPﬂ§5=hmmmﬁ

where k=m/2 and Ri(x) is defined in (10). Thus, S,(x)= Rc(P(x)), where
F) = rop(x?.

If k=1 then Ry(x)=x—1/4 and S,(x)+ 1/4 = r(x)p(x)*, which contradicts
Lemma 2.2. If k > 2 then, arguing as in the first part of the proof, one shows that
Su(x) = INQk(ﬁ(x)) is impossible for any polynomial p(x). The theorem is proved.

*Indeed, assume that Em(x) — By = h((x - 1/4)d) with d > 1. Since E,,(x) is indecompo-

sable, the only possibility is B,,(x) — By, = (x — 1/4)", in which case By, (x) — By, =
(x2 — x)m. But Byu(x) — By, cannot have roots of multiplicity m > 3 by Lemma 2.1.
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5. Proof of Theorems 1.1 and 1.2

5.1. STANDARD PAIRS AND THE CRITERION

In this subsection we recall the finiteness criterion from [5]. To do this, we need to
define five kinds of ‘standard pairs’ of polynomials. In what follows « and f are
nonzero rational numbers, u, v and g are positive integers, p is a nonnegative integer
and v(x) € Q[x] is a nonzero polynomial (which may be constant).

A standard pair of the first kind is (x?, ax?v(x)?) or switched, (ax?v(x)?, x9), where
0<p<gq, (p,g9=1and p+degv(x)> 0.

A standard pair of the second kind is (x*, (ax? + p)»(x)*) (or switched).

Denote by D,(x,d) the puth Dickson polynomial, defined by the functional
equation D,(z + 6/z, 0) =z 4+ (6/z)" or by the explicit formula

Le/2] 5 ) u o (u—i .
D,(x,0) = ; dyix" with  d,; :u—i( ; >(—5). (13)

A standard pair of the third kind is (Dﬂ(x, o), D,(x, oc”)), where ged(u, v) = 1.
A standard pair of the fourth kind is

(27 2Dy(x, ), —=B2Dy(x, B),
where ged(u, v) = 2.
A standard pair of the fifth kind is ((ocx2 — 1) 3x% — 4x3) (or switched).
The following theorem is the main result of [5]. It extends and completes the pre-
vious work of Davenport, Lewis, Schinzel and Fried [11, 14, 20].

THEOREM 5.1. Let R(x), S(x) € Q[x] be nonconstant polynomials such that the
equation R(x) = S(y) has infinitely many solutions in rational integers x,y. Then
R=¢ofox and S=@ogol, where k(x), A(x), € Q[x] are linear polynomials,
o(x) € Q[x], and (f(x), g(x)) is a standard pair.

The proof relies, besides other tools, on Siegel classical theorem about integral

points [22]. Since Siegel’s theorem is ineffective, so is Theorems 5.1.

5.2. TWO LEMMAS

We will also need two simple, though somewhat technical lemmas. In the sequel
ai, by, ey € Q" and ay, by, ey € Q.

LEMMA 5.2. None of the polynomials R,,(a\x + ay) and S,(bx + by) is of the form
ex? 4+ ey with g = 3.

LEMMA 5.3. The polynomial S,(b1x + by) is not of the form e D,(x, ) + ey, where
D,(x, d) is the Dickson polynomial (13) with v > 4 and § € Q.
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To prove these lemmas we use explicit expressions for the coefficients of the

polynomials

Ry(arx + ag) = rpgX™ + 1" ' Xpo1 + -+ 10
and

Su(b1x + bo) = sy 1 X"+ 5,X" + - + 50

We have

am—l
'm :aan’ I'm—1 :le(2a0+m_ 1)’

m—2

Pz = L m(m — D)3 + (12a0 — Tym + 12a% — 12a9 + 2),

24

n+1
b]

Spt1 =

by
pa Sn =~ (2bo — 1),

n—1

Sp_1 = biz n(6b% — 6by + 1),

n—3

Sn3 b n(n — 1)(n — 2)(30b3 — 60b] + 30b5 — 1)

=720

(14)

(15)

(16)

(17)

(18)

Proof of Lemma 5.2. If R, (a1x+ ap) = e;x? + ey with ¢ =m = 3, then r,_| =
rm—2 = 0. Equality r,_; =0 implies that ay = (1 —m)/2. Substituting this into

the equality r,,_» = 0 we obtain m € {0, 1}, a contradiction.

(One may also argue as follows. Since R, (a;x + ap) has m distinct real roots, its
derivative should have m — 1 distinct real roots, which is not the case for (e;x? + ep)".)
If S,(byx+by)=ex?+e¢y with g=n+1>=3 then s, =0, which implies

6b(2) — 6by +1 =0. Hence by ¢ O, a contradiction.

Proof of Lemma 5.3. If S, (bix + by) = e Dy(x, 0) + ey with v=n+1 > 4 then

Sntl = €,
Sl’l = 09
Sp—1 = —e1vo,

Sp_3 = e1(v — 3)vd?/2.

(19)

(20)

20

(22)

Relations (19) and (20) imply that by = 1/2 and e, = b} /v. Substituting this, together
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with n =v — 1, into (21) and (22), we obtain, respectively,

—BY (v — 1)/24 = —b}S5, (23)

B4 (v — 1) (v — 2)(v — 3)/5760 = b}5*(v — 3)/2. (24)

After extracting by from (23) and substituting it into (24), we obtain 7(v — 2)(v — 3) =
5(v — 1)(v — 3), which implies v € {3,9/2}, a contradiction.

5.3. PROOF OF THEOREM 1.1

If R,,(x) = S,(y) has infinitely many solutions, then, by Theorem 5.1, R,,,(a;x + ay) =
o(f(x)) and S,(b1x + by) = ¢(g(x)), where (f, g) is a standard pair, ay, a1, by, by are
rational numbers with a;b; # 0 and ¢(x) is a polynomial with rational coefficients.

Assume first of all that deg ¢ > 1. Then degf, degg < 2 by Theorems 4.1 and 4.3.
We have S,(x) = ¢(g1(x)), where g(x) = g(by'(x — bo)).

If degf =1 then, after modifying a; and a;, we may assume that
Ry(a1x + ag) = p(x). We obtain S,(x) = R,(a121(x) + ap), which contradicts
Theorem 4.4.

If degf = 2 then, after modifying a; and a;, we may assume that R,,(a;x + ag) =
o(x> + o) with o € C. We obtain

Sp(x) = Ryp(a1v/g1(x) — a + ay).

This again contradicts Theorem 4.4 because degg;(x) < 2.
Thus, deg ¢(x) = 1, and we have

Ry(a1x + ap) = e1f(x) + eo, Su(b1x + bo) = e1g(x) + e,

where e; € Q" and ¢y € Q. In particular, degf =m >2 and degg=n+1>2. In
view of Theorems 3.1 and 3.2, we may assume that

none of the polynomials f, g is of degree 2 or 4. (25)

In particular, the standard pair (f, g) cannot be of the second or fifth kind.

If it is of the first kind then one of the polynomials R, (a1 x + ao) or S,(b1x + by) is
of the form e;x?+ ¢y, where g >3 by (25). This is, however, impossible by
Lemma 5.2.

If (f, g) is a standard pair of the fourth kind, then S,(b;x + by) = e;.D,(x, ) + ey,
where v=n+ 1 and 6 € Q*. Since v is even we have v > 4 by (25), which contradicts
Lemma 5.3.

Thus, (f, g) is a standard pair of the third kind We must have n = 2, because the
cases n € {1, 3} and n > 3 are impossible by (25) and Lemma 5.3, respectively. Thus,
for some « € Q* we have

Ry(a1x + ag) = e1 D, (x, &) + ep,
Sa(b1x + by) = e D3(x, o) + eo.
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In the sequel, we use the notation of Subsection 5.2 and relations (14-18). Since
Fm—1 = 82 = 0, we have a9y = (1 —m)/2 and by = 1/2. Further,

S3=b%/3:€1, (26)
s1 = —b1/24 = —3eya”, 27)
rm=da =ej, (28)
P2 = —aﬁ”’zm(m —D(m+1)/24 = —eyma’. (29)

Now (26) and (27) imply that o” :bf2/24, while (28) and (29) imply that
o} = a;?(m* — 1)/24. Also, &' = e; = b} /3. Hence

b%/24° = o = a " (m* — 1)/24)" = by °((m* — 1)/24)".
Thus, (3°-2%)!/" € Q, which is impossible. The theorem is proved. O

5.4. PROOF OF THEOREM 1.2

We again wish to come to a contradiction, assuming that S,,(a;x + a9) = ¢(f(x)) and
S, (b1x + by) = ¢(g(x)), where (f,g) is a standard pair, ag, ay, by, by are rational
numbers with a;b; # 0 and ¢(x) is a polynomial with rational coefficients.

If k:=degp > 1, then degf,degg <2 by Theorem 4.1. Since m < n, we have
degf =1 and degg = 2. In particular, m+1 =k and n+ 1 = 2k.

Let o, § and ¢, be the leading coefficients of f, g and ¢, respectively. Comparing the
leading coefficients of S,,(a;x + ag) and ¢(f (x)), we obtain a¥/k = eyo. Similarly,
b3 /(2k) = exp*. 1t follows that (aa;'b?p2) =2, which is impossible because
217k ¢ Q

Thus, deg ¢(x) =1, and we have

Su(arx + ag) = e f(x) + e, Su(b1x + by) = e1g(x) + e,

where e; € Q" and ¢y € Q. In particular, degf = m + 1 and degg = n + 1. In view of
the theorems, we may assume that none of m and n is equal to 1 or 3. This implies that
n > 4 and that the standard pair (f, g) cannot be of the second or fifth kind.

If it is of the first kind then one of the polynomials S,,(a;x + ag) or S, (b1 x + by) is
of the form e x4 4 ¢y, where g > 3. This is impossible by Lemma 5.2.

If (f,g) is a standard pair of the third or fourth kind, then S,(b1x+ by) =
e1D,(x,0) + ey, where v=n+1>4 and 6 € Q*. This contradicts Lemma 5.3.
The theorem is proved. O

6. Arithmetical Approach to Decomposition of Bernoulli Polynomials
(by A. Schinzel)

In this appendix we use an arithmetical method to prove the following theorem.
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THEOREM 6.1. The Bernoulli polynomial B,(x) cannot be presented as r P(Q(x)),
where 1 is a rational number, P(x) € 7[x] ia a monic polynomial of degree greater
than 1, and Q(x) € Q[x]. When n +# 2,4, the same holds for the polynomial
®,(x): = Bu(x) — By

Notice that ®,(x) = P(Q(x)) where P(x) = x> —x and Q(x) =x and ®4(x) =
P(Q(x)) where P(x) = x*> and Q(x) = x*> — x.

COROLLARY 6.2. The polynomial B,(x) cannot be presented as R,,(Q(x)), where
m =2 and Q(x) € Q[x]. The same is true for ®,(x) when n # 2, and for S,(x) when
n#1.

Proof. In view of Theorem 6.1, it remains to show that neither ®4(x) = (x? — x)?
nor S3(x) =((x2—x)/2)> can be of the form R»(Q(x)) or R4(O(x)). Since
Ry(x) = (x—1/2)* = 1/4 and R4(x) = (x2 +3x+ 1)> — 1, the contrary would, in
any case, imply an equality of the form (7 (x) — U(x))(T(x) + U(x)) = 1 for certain
nonconstant polynomials 7'(x) and U(x), which is impossible.

For the proof of Theorem 6.1 we need an auxiliary result.

LEMMA 6.3. If ®,(x) € Z[x], then n € {1, 2,4}.
Proof. Assume that

®,(x) e Z[x] and n > 1. (30)
Since B; = —1/2, we have

n=0mod 2. 3D
By the von Staudt theorem (7) we have 6|A; for any even k. Hence (30) implies that

(2 o

for all positive even k < n. However, if n =Y _._, 2%, where oy > 0p > -+ > o, > 0
and r > 1, then k= Y/~ 2% is even, 0 < k < n and by virtue of Lucas’ theorem,
(}) is odd. Hence, conditions (31) and (32) imply n = 2*. Similarly, assume that
n=>3"_ &3 where s> 1, f; >, >---> B, >0 and ¢ € {1,2} If for at least
one j we have ¢ =2, then k=3 _,; &30 is even and, again by Lucas’ theorem,
(}) #0mod 3. Also, if s>2 and for at least two subscripts j,j» we have
&, =&, then k=), . &3/ is even, 0 <k <n and (}) # 0mod 3. Hence (31)
and (32) imply n = 2* = 3% 4 3% with B, > B,. It follows that f, =0 and either
a=1, 6, =0o0r a=2, ; =1, which gives n =2 or n = 4.

Proof of Theorem 6.1. Let P(x) and Q(x) be as assumed, and let d be the
denominator of the polynomial Q(x), that is the smallest positive integer d such
that dQ(x) € Z[x]. By the Gauss Lemma, the denominator of Q(x)", where
m = deg P, is d"™. Since the polynomial P(x) is monic and has integer coefficients,
the denominator of P(Q(x)) is d” as well.
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Further, comparing the leading coefficient of B,(x) (or ®,(x)) with that of
rP(Q(x)), we obtain 1=rg", or r=¢g ™, where ¢ is the leading coefficient
of O(x). This implies that the denominator of rP(Q(x)) is a perfect mth power in Z.

On the other hand, by the von Staudt theorem (7) and Lemma 6.3, the
denominator of B,(x) is a square free integer greater that 1, and the same is true
for the denominator of ®,(x) when n # 2, 4. In particular, it cannot be a perfect
mth power for m > 2. The theorem is proved.
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