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The As.-calculus does not preserve strong
normalisation
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LRI, Université Paris Sud, F-91405 Orsay, CEDEX, France

Abstract

Kamareddine, F., & Rios (1997) conjecture that the As.-calculus preserves the strong normal-
isation of the A-calculus. We prove here that this conjecture is false.

Capsule Review

Calculi with explicit substitutions are important in formal representations of abstract ma-
chines, and exploring the addition of metavariables to typed lambda-calculi. They remain
however quite mysterious. After a lot of attempts to find a proof of strong normalisation for
suitable typed version of these calculi, Mellies (1995) found a surprising counter-example:
though all terms normalise, there are terms on which special reduction strategies are looping.
A natural question is if such counter-example depends crucially on the current formulation
of such calculi, or if, by suitable reformulations, we can get a strongly normalising system.
The following note shows that it is not so easy to avoid the problem: a natural attempt of
designing a strongly normalising calculus is shown to contain a looping term, similar to the
one found by Mellies.

1 Introduction

The main challenge with calculi of explicit substitutions is to find a calculus which
has both confluence on terms with metavariables and the Preservation of Strong Nor-
malisation (PSN). The Mellies counter-example (Mellies, 1995) shows that reduction
systems with full composition do not have the PSN property. This counter-example
is valid in any system with full composition either with De Bruijn indices or named
variables (Bloo, 1995).

New systems that use restricted composition have been proposed since then. s, is
one of them. In this calculus, the composition rule ((¢a), cf. section 2) is constrained
(via a condition on the indices), and thus avoids the Melli€s counter-example.

We show that the PSN of s, (conjectured by Kamareddine, F., & Rios, 1997) is
false. We give a simply typed A-term and an infinite derivation of this term in As,.
The proof looks like the one of Mellies.

Zantema has proved that the (o¢) rule terminates, but this is not enough to
recover the PSN. To have a restricted (o) rule seams to be the crucial point to keep
strong normalisation, but this example shows that the statement ‘update functions
do not matter for termination issues’ (in Bloo and Geuvers, 1995) is not valid when
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(B) (Ga)b — ac'b
(07) (Ga)o'h  —  iacb)
(ca) (a; a)a’b  —  (a;0'b) (a26'b)
n—1 if n>i
(on) noe'h —> ohb if n=i
n if n<i
(p4) pi(la)  — APy, Q)
(pa) plara)  — (¢ ar) () a)
on) o [ati—t if a>k
on P n if n<k
(00) (ac'b)oic —  (ac/t'c)a'(bo/~* ) if i<
(61) (pla)e’b — @i la if k<j<k+i
(op2) (pia)a’b  —  @j(ac’*'b) if k+i<j
(p0o) pilac’b)  — (9 1,@)0’(@}y,_;b) if j<k+1
(@) pilpla)  —  @l(Pi_;a) if 14j<k
() Pilpla) — o™ a it I<k<lI+j

Fig. 1. Rules of the As,.

dealing with (even constrained) composition. Actually, in 1s,, interaction between
substitutions (o) and updating functions (¢) may generate infinite sequences of
p-reduction. Therefore, much care must be taken when dealing with updating; and
if we want to use named variables to do explicit substitutions, we have to say how
the renaming is done without only using a Barendregt convention.

2 The As.-calculus
The terms of the As,-calculus are
Ase =N | As,As, | AAs, | As.o'As, | qof{Ase where i>1, k>0.

We recall here the set of rules of the As.-calculus in figure 1.

3 The As.-calculus is not PSN

Theorem 3.1
The term t = A((A((A((42)3))2))a) where a = (A((22)2))1 (cf. figure 2) is f strongly
normalisable, but not As, strongly normalisable.

Remark 1
The term ¢ is typable in A_,.
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Fig. 2. The term t.

t = A(A(A((42)3))2))a)
- A((A(22)3))2)a' a)
L A((2)3)6"2)0a)
=5 A(((42)5'2)(30"2))0 ' a)
s A(M2672))(36'2))0a)
=5 M(M20%2)5'a)((362)" a))
2 AH(26%2)0%a))(30'2)5 )
= A(MQ2a*2)a*a))uy)
L M(2e2)%a)5 up)
= A(@2)o*a)e'uo)
B (@320 a)o' uy)
s M(@32)a (93a))a o)
= A(@2)0u0)o (@3a)s up)

> (pja)a'u

Fig. 3. Proof of 3.2(i).

Notation 1
If b is a subterm of a, we write @ > b. a > b means that there is a term ¢ with
a—"cand ¢ > b.

Lemma 3.2 .
up = 30'2)0a

We define:

{ i1 = ((912)a' (¢
(i) t > (pga)auo
(i) (p§a)a'un > (@§un)o 'ty for n=0
(111) (go(z)uo)alun > (go(z)a)alun for n>=1
(iV) (@Gum)a un > (Q§um—1)0 'ty for n,m =1

(2)1))0114,, if n=0

Proof
The two first points of the lemma are proved in figures 3 and 4 (at each step, the
redex which is reduced is underligned):

https://doi.org/10.1017/50956796800003695 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800003695

324 B. Guillaume

(p5a)o'u, (@3((M(22)2) D))o,
(@322 (@51))a uy
)2)
)

(U122 (@51))a uy

(20%(931))0% )0 11
(@3(@31)) 0% t) o thy 1
(q)(z)(((p(z)l)o-] un))o-[ Upt1

(AP @@ D)o u,
(U2,

s (A2 @)D,

L (G2(012)5 (931)o u,

(20 (@A) (922 (@3 D))o,

s (2 @RD)(932)5 (@3 1) u,
s (20X(931)o ) (922)0 (931))0 u)
s Qo@D (932)5 (@31)a" )
= e o (@31))0% ) it

Q
<
N

®o
= (@3 1))a (PFun))o

s (@H@31))0 1) (93T thy 1)
> (QD%L[”)GIM,H_I

Fig. 4. Proof of 3.2(ii).

The third part is proved by (for n > 1):

(pguo)a'uy = (95((30'2)a'a))a'u,
= (¢130"2))0" (pFa))o"u,
= (¢136"2))0%u)o " (9Fa) uy)
> (pga)euy
The last assertion of the lemma is proved by the derivation (for n,m > 1):

(QD%Mm)O'lun = ((p(z)((((p%2)ol(qoél))alum 1))611"11
> (@}(912)0 ! (981)a" (@Fun—1))0 "t

a

(@3 ((912)0 (031)))0 U)o (PFm—1)0 " uy)
- ((P(z)um—l)o-lun

O

Lemma 3.3

For all n >0, (p3a)o'u, > (pia)o' 1.

Proof

(p3a)au, > (pFun)o'u,1 (Lemma 3.2(ii)).

(@§un)o thnsr > (Qftn—1)0 tingr > -+ > (@fu0)o ' ttys1 (Lemma 3.2(iv)).
(p3u0)a uns1 > (pfa)otu,r (Lemma 3.2(iii)). [

Proof of Theorem 3.1 ¢ > (p3a)o'uy (by lemma 3.2.i) and the lemma 3.3 gives an
infinite As, derivation of ((poa)oluo.
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