QUASIGROUPS AND CUBIC CURVES

by 1. M. H. ETHERINGTON
(Received 7th September 1964)

PART 1

1. Introduction

A note on this subject was read to the Edinburgh Mathematical Society
in June 1951. Subsequently I had the benefit of conversations and corres-
pondence with J. G. Brennan and I. R. Porteous, and substantial contributions
from them are incorporated here, more than are acknowledged in detail below.

In Part II it is shown that algebraic structures of a certain type—totally
symmetric entropic quasigroups—arise naturally in the geometry of points on
plane cubic curves, and that many of the properties of these quasigroups,
which are described in Part I, can be interpreted as theorems on cubics. The
proofs of a few facts mentioned in Part I which depend on the use of an abelian
group isotopic to the quasigroup are postponed to Part III. Use of this
abelian group for geometry on a cubic is well known, but the quasigroup has
certain advantages in the simplicity, naturalness and compactness of the
notation which it provides.

It is hardly to be expected that any essentially new properties of cubic
curves would be discovered thus. On the other hand the geometrical inter-
pretation is very suggestive in the study of totally symmetric entropic quasi-
groups, and attention will be mainly directed to algebraical properties which
were in fact thus suggested. Proving them involves a gain in generality, since
it is not the case that every such quasigroup can be interpreted as a set of
points on a cubic.

The reader may find it convenient to read Part 11 alongside Part I.

2. Commutative entropic groupoids

A groupoid is a set of elements closed with respect to multiplication, which
need not be commutative or associative. To avoid multiplicity of brackets
let it be understood that a dot separates factors whose multiplication is to

be delayed; e.g. (ab . cd)e . fg means [{(ab)(cd)}e](f9).
A groupoid is entropic if identically

ab.cd = ac.bd. Q.1)
An immediate consequence of (2.1) is
(ab)? = a*b2. Q.2
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It can be shown inductively from the entropic law (2.1) (17, 11) that if a", a¥
denote particular nonassociative powers of a, then
(@)Y = a"bY, (@)Y = (@M. (2.3) 24)
(2.3) asserts that powers are endomorphisms of the groupoid. For example,
a@*>?*1 denotes a’a® . a, and (2.3) asserts that (@h)?2*! = g?2*1p2'2*1, (2.4)
has been called the palintropic law (10a, 10, 11).
If the groupoid is commutative as well as entropic, then
ab.cd = ac .bd = ad . bc; (2.5)

in fact ab . ¢d is a symmetric function of a, b, ¢, d, being equal to each of the
24 products derived by permuting the letters. We have indeed a sequence of
symmetric functions

() ab, (i) ab.cd, (iii) (ab.cd)(ef.gh), .... (2.6)

3. Totally symmetric quasigroups

A groupoid is a quasigroup if division on either side is always possible and
unique. Thus if any two of a, b, ¢ are given elements of a quasigroup, ab = ¢
determines the third uniquely as an element of the quasigroup. The cancella-
tion properties follow: ab = ac and ba = ca each imply b = ¢. Also the
property of homogeneity: any element c is expressible as a product ab.

A groupoid is totally symmetric (t.s.) and is necessarily a quasigroup if any
relation ab = ¢ between its elements implies all six of the relations derived
by permuting a, b, c. Immediate consequences are the identities

ab = ba @G3.D

ab.b=a, b.ba=a. 3.2)

The two laws (3.2) together imply the commutative law (3.1) thus: )
ab = {(ba) . (ba)a}b = {(ba) . b}b = ba,

and the t.s. property is then also deducible. Thus a t.s. quasigroup can be
defined as a groupoid obeying any two of the three identities (3.1), (3.2).

4. Historical remarks

Murdoch (17, 18) and Bruck (6) called quasigroups with the property (2.1)
abelian and studied their structure and their relation through isotopy to abelian
groups, of which they are a generalisation. But “ abelian ™ is also used by
writers on quasigroups to mean ‘ commutative ”’, and it does not seem an
appropriate word for the property (2.1) generally. The name entropic was
introduced in (10). Other names which have been applied to this property
are bisymmetric (Aczél, 1, 2), alternation (Sholander, 27), symmetric (Frink,
14), medial (Stein, 28).

T.s. quasigroups are included in * quasigroups with the inverse property ™
and were studied in this context by Bruck (6). For other results and literature
on both entropic and t.s. quasigroups considered separately see Stein (28),
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Sade (22). More recent studies relevant to the entropic law are by Minc (16),
Evans (13), Aczél, Belousov and Hosszu (3), Osborn (20).

The identities (3.2) have been called the right and left laws of keis, the
name kei (Japanese, pronounced kay, meaning ‘“ system ’*) having been given
by Takasaki (31) to idempotent self-distributive systems obeying one of these
laws. (The MR abstract of (31) indicates that entropic keis are discussed in
this paper, which I am not able to read.)

5. Totally symmetric entropic quasigroups

Henceforward we shall be concerned with quasigroups which are both
totally symmetric and entropic (t.s.e.q.’s). In a t.s.e.q. all the properties men-
tioned in §§ 2, 3 hold. We begin with some examples.

A group is a quasigroup, entropic if and only if it is abelian, totally sym-
metric if and only if every element other than the identity is of period 2. Hence
follows the result (a refinement of Bruck’s Lemma 10; (6), p. 38):

Example 1. A finite group is a t.s.e.q. if and only if it is the trivial group
or is a direct power of the cyclic group C,. Its order is then 1 or a power of 2.

A t.s.e.q. can be constructed from any abelian group written additively by
choosing a fixed element k£ and defining products by

ab =k—a—b. ¢.DH

Two such multiplication tables for residues mod. 3 are given below for sub-
sequent reference. Example 2 (k = 0) shows a quasigroup in which every
element x is idempotent (i.e. satisfies x* = x); such a quasigroup is called
idempotent. On the other hand Example 3 (k = 1) has no idempotents, but
each element satisfies ((x%)%)? = x.

Example 2. 01 2 Example 3; 0

o

NSO -
[N ]
N O =
- O
O=N | N

N—=O
—_NO

2
1
0

The quasigroup of Example 2 will be denoted Q.
It is shown in § 19 that every t.s.e.q. can be obtained by the construction
(5.1) from a suitable abelian group.}

Notation. 1In the remainder of Part I it is assumed where not always stated
explicitly that small italic letters a, b, ... denote elements of a t.s.e.q. O, except
for m, n, r, s which are positive integers.

1 This is a special case of Bruck’s form (6, Theorems 1, 11, 12) of Murdoch’s result
(18, Theorem 11) that every entropic quasigroup is isotopic to an abelian group. At the
same time it is a special case of Bruck’s construction (6, Theorem 3 and Theorem 7, Corollary 2)
of certain inverse property quasigroups and t.s. quasigroups from groups. (At the end of
the Corollary quoted, (53) would seem to be a misprint for (52).)

Sade (21, No. 72; 22, p. 171) discusses the construction (5.1) and calls quasigroups so
constructed anticyclic.
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6. Symmetries

See (12) for a different treatment of the subject of this Section, leading to
an equivalent but differently expressed general formulation.

Consider a t.s.e.q. Q. We have symmetric functions as in (2.6), and sym-
metric equations such as

() ab=c, (i) ab. cd =ef, (iii) (ab.cd)ef.gh) = ij.kl, ... (6.1)
(symmetric in the sense that they are invariant under any permutation of the
elements involved). For example, (ii) is by the symmetry of its left side
symmetric in a, b, ¢, d; and since by the t.s. law we can exchange cd with ef,
it is symmetric in a, b, e, f and hence in a, b, ¢, d, e, f.

From these symmetries a host of others can be deduced. Thus (ii) can be

rewritten
(ab.cd)e = f 6.2)
which is therefore also a symmetric equation. Consequently the left side
(ab . cd)e 6.3)
is a symmetric function. From this it follows that
(ab . c)d is symmetric in a, b, d; (6.4)

for by a quasigroup property ¢ can be factorised into ¢,c, and the product is
then symmetric in a, b, ¢, ¢,, d.
From the symmetry of (6.3) and (2.6, iii) it follows that the equation

(ab.cd)ef.gh) =i (6.5)

is symmetric in all the nine letters involved; for it is symmetric in a, b, ¢, d,
e, [, g, h, and since it can be written (ab . cd)i = ef . gh it is symmetric in a, b,
¢, d, i

The result (6.4) in the form of the identity

(@b . c)d = (ad . c)b | (6.6)

is a fundamental property of t.s.e.q.’s, being equivalent to the entropic law
in the presence of total symmetry; it could be used in place of entropy in
the definition. The following is an alternative derivation of (6.6) from (2.1),
(.1, 3.2):

(ab.c)d = (ab.c)a.ad) = (ab.a)c.ad) = b(c. ad) == (ad . c)b.
Conversely (6.6) with (3.1), (3.2) implies the entropic law thus (using (6.6)
at the third step):

ab.cd =dc.ab=(b.bd).ab = (b.ab)c.bd = ac.bd.

Let us now generalise these results and sum them up in the following rule,
due essentially to I. R. Porteous. Let a nonassociative product be regarded as
‘“ descended from * its factors, which are thus placed on a * pedigree ”, or
bifurcating root-tree. Examples are given below. Then (A) two factors in a
product may be exchanged if their altitudes in the tree have the same parity;
(B) two factors on opposite sides of an equation may be exchanged if their altitudes

13
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have opposite parities. (Altitudes are counted upwards from the root, which
has zero altitude.)

A formal proof could be given on the following lines. We use the homo-
geneous property of a quasigroup (§ 3) and the symmetry of the products
(2.6) to show that factors at the same altitude can be exchanged. For example
(see fig. 4), {(ab . cd)e . fg}h is of the form (xe .fg)h, which can be expanded
into (xe . fg)(h,h, . hsh,) and is therefore symmetric in ab . cd(= x), e, f, g,
and these are its factors at altitude 3. Then (A) is established by repeated
application of (6.4). We deduce (B) on similar lines, using the symmetry of
equations (6.1) to exchange factors on opposite sides. I refrain from giving
this in more detail in view of the fuller treatment already given in (12).

a b a be d

ab=c
a b d ab. cd
b s C
ab cd ab.c
Fig. 4

ab.cd = @b.c)d
{(ab.cd)e. fg}h

Fig. 2 Fig. 3
Fic. 1.—The single element ¢ is represented by the trivial tree consisting of a single vertex
at zero altitude. Here a, b, ¢ are permutable.
Fi1G. 2.—In the equation ab. ed = ef, a, b, ¢, d, e, f are permutable; so are ab, cd, ef; and
ab.cd can be exchanged with e or f.
F1G. 3.—In the product (ab. c)d, the factors a, b, d, are permutable; so is ab with ¢, and ab.c

with d.
FiG. 4.—The product represented is symmetric in all eight letters. Itis in fact identical with
the symmetric function (2.6 iii); for we can interchange 4 with ab.cd, so that

{(ab.cd)e.fgth = (he.fg)ab.cd) = (ab.cd)(ef.gh). 6.7

7. Idempotents

If we have iZ = i, j% = j, i # j, then by (2.2)

()" = %% = .

Also ij is distinct from i and j, e.g. ij = i = i> would imply j = i. Thus the
product of two idempotents is a third idempotent.

It follows that the set of idempotents of Q, if any exist, is closed under
multiplication and forms an idempotent subquasigroup Q,.

0 may have no idempotents, or just one (§ 5, Examples 3, 1). If it has two,
then it has a third as above, and the three idempotents i, j, ij form a subquas1-
group isomorphic to @, (Example 2).

https://doi.org/10.1017/5001309150000897X Published online by Cambridge University Press


https://doi.org/10.1017/S001309150000897X

278 I. M. H. ETHERINGTON

If there is a fourth idempotent k, then we can deduce the existence in Q@ of
nine idempotents

i, J, k, jk, ki, ij, i.jk, j. ki, k.ij. (7.1)
This set is closed under multiplication. We have for example using (2.5)
@)ki) = ii . jk = i.jk, hence (i)(i.jk) = ki; (1.2)

and using (6.6)

i(j.ki)=k(j.il)=k.ij, hence (j.kiYk.i§) =i (1.3)
Thus the nine idempotents form an idempotent t.s.e. sub-q., which is in fact
isomorphic to the direct square 1 Q5 x Q5.

Generally, it is shown in § 21 that an idempotent t.s.e.q. Q, of finite order
nyo>1 is a direct power Q5 x Q5 x.... Hence the number of idempotents in
Q, if finite, is 0, 1 or a power of 3.

Suppose that Q is of finite order n and contains », idempotents. Then of
the n? entries in its complete multiplication table, n, are of the form i = i,
and the rest occur either in threes (a*> = b, ab = a, ba = a) or in sixes (ab = ¢,
etc.). Hence n’—ny = 0 (mod. 3). Assuming that the possible values for
n, are as stated above 0, 1, 3, 9, 27, ..., it follows that

either n = 0 (mod. 3), n,=20,3,9, 27, ..., }

(7.49)
or n#%0(mod.3), ny, = 1.

8a. Associative triples
Although multiplication is nonassociative, it can happen thatax . b = a . xb
for particular elements a, x, b in a t.s.e.q. We have identically
ax.b =ax.b? = ab*.xb, a.xb = aa®.xh.
These are equal if and (by cancellation) only if a> = b%. Thus:
a®> = b> = ax.b = a. xb (x arbitrary);
ax.b=a.xb=a®>=b%ay.b=a.yb (y arbitrary). } @D

8b. Generalisation

The following gives a generalisation and at the same time indicates an
alternatiye proof of (8.1).

Suppose ax.d = bx.c. Then (ax.d)y = (bx . c)y, where y is arbitrary.
By (6.6) this implies (ay.d)x = (by.c)x, and hence ay.d =by.c. So
ax .d = bx . ¢ holds for arbitrary x if it holds for any particular x. Taking
x = ¢, we see that a necessary and sufficient condition for this is ac . d = b,

+ The direct product Px Q of two quasigroups is defined as the set of all couples (p, q)

with p in P, q in Q, with the multiplication rule (p, ¢)(p’, ¢") = (pp’, q9). It is a quasigroup.
The above mentioned isomorphism with Q3 X Q3 is exhibited by the change of notation

N B loo fo1 o2
k ijk jkij—> |ie in i2].
ki k.ij jk i in iz
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or ac = bd. Thus:
ac = bd => ax .d = bx . ¢ (x arbitrary); ®.2)
ax.d =bx.c= ac = bd, ay.d = by . c (y arbitrary). )

8c. Further generalisation

In (8.2) ax.d = bx . c may be written ((ax . d)c)b = x, and the result can

be generalised further as follows. Suppose that
(- (*A2m)2m-1)82m—2---)8y = X. (8.3)

In the tree for the product on the left the factor a, appears at altitude r. Hence
by rule (B) of § 6, x on the right (at zero altitude) can be exchanged with
Q3,1 on the left. By (3.2) the two factors x then cancel each other, or both
can be replaced by y’s. Thus (8.3) holds for arbitrary x if it holds for any
particular x; and a necessary and sufficient condition for this is that the product
on the left with x and a,,,—, omitted should equal a,,, _,.

(8.3) can be written in other forms by transferring the factors one at a
time to the right. Case (a) is given by m = 2,4, = a, = @, ay = a; = b.

(§ 8 and its interpretation in § 15 are due to suggestions by J. G. Brennan.)

9. Square roots

By (2.2) the product of two squares is a square. Thus those elements of
Q which are squares form a non-null subquasigroup + Q,, of order say n,.
These n, elements all have in @ the same number s of square roots; and if
the order n of Q is finite

n = ns. 9.1)
For suppose
al=..=at=p, b*=g

where a,, ..., a, are distinct. Then
(a, . agb)* =al.a}b>=p.pg=gq.

With g fixed and « = 1, ..., s, this gives s distinct square roots a, .agh of g.
So ¢ has at least as many square roots as p, and vice versa. n = n,s follows
at once.

[In view of (2.3) there are similar theorems concerning Nth powers and
roots. The same theorems for abelian groups are proved similarly by con-
sidering (a,a; 'b)".]

If s=2 the result (8.1) applies. Consider now the case when an element p
is known to have three distinct square roots a, b, c:

a? =b=c*=p. 9.2)

1 Those elements of Q; which are squares of elements of Q; form a subquasigroup Q»,
and so on. In view of the identity aa2 = a (consequence of (3.2)), this sequence of subquasi-

groups coincides here with the sequence of “ right unit subquasigroups *” which figures in
Murdoch’s analysis (18) of the structure of entropic quasigroups.
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By (8.1) their product is associative:

ab.c=a.bc=b.ac = d((say) 9.3)
and d>=a’h?.c*=pp.p = p.
From (9.3) ab = cd, ac = bd, ad = bc. 9.4)

Also a, b, ¢, d are distinct, e.g. d = a would by (9.4) imply b = c.

Thus if p has three square roots it has four, related as in (9.4).

It may be shown in the same way that if p has a fifth square root e, then
it has three more f, g, h (= ab . e, ac. e, ad . ), making 8 square roots, which
satisfy 7 (= 23—1) sets of relations such as ab = ¢d = ef = gh.

This suggests that s, the number of square roots of any square, is always
if finite 1 or a power of 2. This is proved very easily in the next Section on
the assumption that @ contains an idempotent, and is proved generally in
§ 20. Assuming this it follows from (9.1) that if Q is finite and of odd order,
s = 1, i.e. every element of QO has one and only one square root.

10. Square roots of idempotents
Suppose that Q contains an idempotent 7, and that

A =b0=..=it=]

Since a® = i, b*> = i imply (ab)® = i, the set of square roots of i (including i)
is closed under multiplication and forms a subquasigroup Q; of Q. By (8.1)
Q; is an associative quasigroup, i.e. a group, in which i being idempotent is
the unit element and every other element has period 2. Hence Q, if finite
either consists of  only or is the group C, x C, X ... mentioned in Example 1;
and then s, the number of square roots of i or of any other square in @, is
1 or a power of 2. It follows also that the quasigroups Q;, Q; associated with
different idempotents are isomorphic.
If a, b are square roots of different idempotents, say

@ =i’ =i b =j*=]
then (ab)? = a’b? = ij, so that ab is a square root of a third idempotent if
(cf. § 7). Thus the square roots of idempotents of @, including the idempotents
themselves, form a subquasigroup. It is not difficult to show that this subquasi-
group is isomorphic with the direct product Q,x Q;, where Q, is the
quasigroup of idempotents (which if finite either consists of a single element
i or is a direct power of the quasigroup @, of Example 2), and Q; is the group
of square roots of one idempotent i (which if finite either consists of a single
element i or is as above a direct power C, X C, X ...).

For example, Q3 x @3 X C, X C, is a t.s.e.q. of order 36 containing 9 idem-
potents and 27 other square roots of idempotents.
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Part 11

11. Quasigroups on a cubic curve

Let C denote a non-degenerate plane cubic curve with the double point
if any omitted. Let @, b, ... be points of C. Let multiplication be defined by
the chord and tangent process: ab is the third point in which the chord joining
a and b meets C, coinciding with a or b if the chord is tangent there; a? is the
tangential of a, the point where the tangent at @ meets C again.

Collinearity of a, b, ¢ (points of C) is thus expressed by writing ab = c,
or equally ac = b, etc. With multiplication thus defined the totality of points
of C, or any subset closed under the chord and tangent process, forms a totally
symmetric quasigroup Q. Let it be emphasised that, here and throughout
Part I, Q may be the whole of C or may be some infinite or finite subset closed
under multiplication.

Given four points a, b, ¢, d of C, consider the eight points a, b, ¢, d, ab,
cd, ac, bd. They all lie on C and on each of two degenerate cubics C,, C,
as indicated schematically in fig. 5. Now it is well known that all cubics,

a b ab
C d cd ¢
ac bd
|
"
CZ.
Fig. 5

including degenerate cubics, through eight points have a ninth common point;
hence
ab.cd = ac. bd. (1L.1)

The figure is drawn with the eight points distinct. However if there are
coincidences among them the result (11.1) is either trivial (for example if
a = d or if a = bd), or holds in virtue of some special case of the theorem
quoted (for example if @ = b or @ = ab). The totally symmetric quasigroup ¢
is therefore also entropic.

An important such special case is (2.2):

(ab)* = a®b?, (11.2)

which is the theorem concerning the satellite of a line: the tangentials @, b%,
(ab)? of three collinear points a, b, ab are collinear. A generalisation of this
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theorem is given by (2.3). The mapping a—a" represents a chord and tangent
construction leading from a point @ of C to a * generalised tangential ” g,
and (2.3) asserts that such a construction maps three collinear points a, b, ab
on three collinear points a®, b", (ab)¥. (2.4) asserts that any two such con-
structions commute.

12, Interpretation of the symmetric properties (cf. § 6)

The identity (ab . c)d = (ad . ¢)b of (6.6) has the same geometric content
as the entropic law (11.1), as may be seen by relabelling fig. 5 thus:

a, b, ab, ¢, d cd, ac, bd
— a, ab, b, ad, ¢, ad.c, d, ab.c.

The symmetry of the relation (6.1, ii) ab . cd = ef in the six points a, b, ¢,
d, e, f is explained as follows. It asserts in the first place that the points ab,
cd, ef lie on a line L. Consider the conic S through five of the six points.
Then the nine points

a b, ¢, d, e f, ab, cd, ef

lie on the cubic C and also on the degenerate cubic which consists of the three

lines
(a, b, ab), (c,d, cd), (e, f,ef);

and eight of these points lie on the degenerate cubic (S, L). It follows that S
passes through the remaining point. Thus the equation

ab.cd = ef (12.1)

asserts that a, b, c, d, e, f are the six points of intersection of C with a conic.

Further, (12.1) and the symmetry involved indicate that the 15 points such
as ab are collinear in threes (such as ab, cd, ef ) on 15 lines such as L, one line
corresponding to each syntheme (or way of separating a, b, c, d, e, f into three
pairs); and the 15 lines concur in threes [such as (ab, cd, ef), (ab, ce, df),
(ab, cf, de)] in the 15 points. The figure is well known.

The symmetric equation (ab . cd)e = f says the same as ab. cd = ef, and
hence the symmetric function (ab . cd)e denotes the sixth point in which the
conic (a, b, ¢, d, e) meets C. By its structure (ab. cd)e prescribes a linear
construction for this sixth point; in fact because of the symmetry it affords
5x3 = 15 such constructions.

Suppose a, b, ¢, d in (12.1) kept fixed while e, f vary. We conclude: If a
variable conic S be drawn through four fixed points a, b, ¢, d of C, then the
chord joining the two remaining intersections of S with C passes through a
fixed point, namely ab . cd. This point is called (24, p. 134) the coresidual
of a, b, ¢, d and interprets the symmetric function ab . ¢d. Since

ab.cd = ac.bd = ad. b,
we have three linear constructions for it.
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As in (2.6, iii), (ab . cd)(ef . gh) denotes a ninth point symmetrically deter-
mined by the eight points a, b, ¢, d, e, f, g, h; and as in (6.5) all nine points
are symmetrically related. The interpretation can be found by means of the
theory of residuation (24, pp. 136-140). The four points ab, cd, ef, gh form a
set residual on C to the eight given points; hence ab. cd, ef . gh form a set
coresidual to the eight points; and finally (ab . cd)(ef . gh) is a single point
residual to the eight points. It must therefore coincide with the ninth point
in which any cubic through the eight points cuts C.

Equation (6.5) therefore asserts that a, b, ¢, d, e, f, g, h, i are the nine points
of intersection of C with some other cubic. (6.7) gives another expression
for the ninth associated point.

It may be shown similarly that (6.1, iii):

(ab . cd)(ef .gh) = ij . ki (12.2)

is the condition that the 12 points involved should be the complete intersection
of C with a quartic. (The argument uses first the fact that this equation is
the condition for a conic to pass through the six points ab, cd, ef, gh, ij, ki, and
hence for the sets {ab, cd, ef, gh} and {ij, kI} to be residual to each other.)

13. Flexes (cf. § 7)

An idempotent of Q is a flex of the curve. In § 7 we have shown in effect
that if there are two flexes then there is a third collinear with them. If there
is a fourth flex, then there are nine flexes lying by threes on twelve lines, namely
the six lines which are apparent in the notation (7.1) and six more which follow
from equations such as (7.2), (7.3).

If there is a tenth flex, we can show similarly that there are 27 lying on
117 lines, and so on. Actually this does not occur on a cubic: the total number
of flexes on a cubic is in fact 1, 3 or 9 according as the cubic is cuspidal, nodal
or nonsingular.

The last paragraph of § 7 gives information about the possible number
n, of flexes in a finite set of 7 points of C, closed with respect to the chord
and tangent process.

14. Some theorems

A sextactic point of C is by definition a point a at which some (non-
degenerate) conic has 6-point contact. By (12.1) a is such a point if and only
if a?a* = a® (a* # a), that is if a* (and not a) is a flex. Hence the sextactic
points of C are the points of contact of tangents from flexes (excluding the
flexes themselves).

If two points a, b of C are collinear with a flex (i.e. if ab is a flex), then -
there is a conic which osculates C at @ and at b, and conversely. For these
two properties are different ways of interpreting the same condition ab . ab = ab.

Similarly using (12.2) and interpreting in two ways the condition

(ab . cd)(ab . cd) = ab . cd, : B
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we have the theorem: There exists a quartic which osculates C at each of
four given points of C if and only if the coresidual of the four points is a flex.
Since the condition can also be written a?b?. c*d? = ab . cd, the coresidual
of the tangentials of the four points is the same flex.

The following are generalisations of the theorem concerning the satellite
of a line. By repeated application of (11.2),

ab . cd = ef=a’b® . c*d* = e*f 2.
Thus if six points of C lie on a conic, so do their tangentials. A similar result
applies to points of intersection of C with another cubic, with a quartic, ....
Again (cf. end of § 11) all these results can be extended by considering a mapping
x—x" in place of x—x2.

Glancing again at equation (12.2) we see that, in addition to the cubic C
and the quartic, there are various lines, conics and other cubics in the figure.
For the equation asserts that the three coresiduals ab . cd, ef . gh, ij . kI lie on
a line, and also that the six points ab, cd, ef, gh, ij, kl lie on a conic. Indeed
because of the symmetry of the equation in the 12 points, we can see
121/(41)33! = 5775 such lines on which the '2C, = 495 coresiduals of tetrads
lie in threes, and 12!/2%6! = 10395 such conics on which the '2C, = 66
residuals of pairs lie in sizes. There are also *2C, = 495 cubics other than C,
as for example through the 9 points a, b, ¢, d, e, f, g, h, ij . ki.

15. Inscribed polygons. Tangents from a point of the curve (cf. §§ 8, 9)

In § 9, also in § 8(a), we are in effect considering tangents to C from a point
on it, or tangents meeting on the curve.
(8.1) is the theorem of Steiner quadrilaterals (fig. 6). If the tangents at a

2_ 4% a

a=b P r'

Fig. 6

and b meet on C, then an infinity of quadrilaterals can be inscribed in C with
their sides passing alternately through a and b. Conversely this is the case
if one such quadrilateral can be drawn.
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The generalisations (8.2), (8.3) express similar known theorems referring
to quadrilaterals or 2m-gons inscribed in C with sides passing in order through
4 or 2m fixed points of C (24, pp. 337-338; 29).

Returning to fig. 6, note that a*(= p) and ab form another pair of points
whose tangentials coincide, for by (2.2) a> = b* = p implies (ab)? = p>.

If as in (9.2) three tangents can be drawn from p to C, we have shown in
§ 9 that there is a fourth, and that the four points of contact a, b, ¢, d form a
quadrangle whose diagonal points (9.4) lie on C. Since ab . cd = p? the four
points lie on a conic which touches C at p; and since (ab)* = (ac)? = (ad)* = p?
the three diagonal points and p form another set of four points whose tan-
gentials coincide, and form another such quadrangle. (The words * quad-
rangle >’ and ““ another > assume no three of q, b, ¢, d collinear, p not a flex.)

Continuing as in § 9, if there is a fifth tangent from p to C, then we can
prove that there are 8 such tangents; from their 8 points of contact can be
picked in general 14 quadrangles whose 42 diagonal points coincide in sixes
on C, giving 7 new points on C which along with p form another set of 8 points
whose tangentials coincide; and so on.

Actually this does not occur on a cubic: the number of tangents from a
point of the curve (including if the point is a flex the tangent there) is in fact
1, 2 or 4 according as the curve is cuspidal, nodal or nonsingular.

Consider now the first paragraph of § 9. It should be remembered that
the quasigroup @ which we are discussing is not necessarily the whole curve C,
but may consist of any finite or infinite set of its points closed with respect to
the chord and tangent process. We see that in any such set Q of n points,
those n, points which are tangentials of points of the set form a non-null
subset Q, closed with respect to the chord and tangent process, and are each
the tangential of the same number s of points of Q. sis 1,2 or 4; and if n
is finite n = n,s.

16. Sextactic points (cf. § 10)

See the first theorem of § 14. According as C is cuspidal, nodal or non-
singular, the number of flexes of C is 1, 3 or 9 while the number of tangents
from each flex (excluding flex tangents) is s—1 = 0, 1 or 3. Hence the number
of s.p.’s (sextactic points) of Cis 0, 3 or 27. (The number in a quasigroup Q
on Cmay be0, 1, 3, 9 or 27.)

We can now interpret § 10. On C, assumed non-cuspidal, associated with
each flex i we have a four-group C, x C, consisting of i and three collinear
s.p.s a, b, ¢. If a, b are two s.p.’s associated with the same flex i, then ab is
the third; if with different flexes, a with i and b with j, then ab is either the
collinear flex ij or one of its associated s.p.’s, and aj is one of those associated
with ij. The t.s.e.q. of order 36 mentioned at the end of § 10 can be interpreted
as consisting of the 9 flexes and 27 s.p.’s of a nonsingular cubic. (The figure
<an be analysed further, as was done by Hesse (15), correcting a misstatement
by Steiner (29).)
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17. Involute of a class cubic

Instead of building our algebra on collinearity of points on a cubic we could
use concurrency of tangents to a curve of class 3, or of normals to its involute;
or equally we could take the feet of these normals as the elements of our
quasigroup. Thus for points a, b, ... of a parabola, since its evolute is of class 3,
we may define ab to be the point conormal with @ and b, i.e. such that the
normals at a, b, ab are concurrent. With this operation the points of the
parabola form a t.s.e.q. The totally symmetric property is obvious, and the
entropic property can be verified immediately by using the parametric repre-
sentation x = At*, y = 24t (t,, = —t,— ).

Consider what corresponds to the theorem about the satellite of a line.
If a is any point on the curve, a® denotes the foot of the one other normal
which can be drawn from the centre of curvature at a. The identity (ab)* = a®b®
thus asserts that if the normals at three points of the curve are concurrent,
then so are the other normals which can be drawn from their three centres of
curvature. The second point of concurrence might be called the satellite of
the first. This result is valid for any curve whose evolute is of class 3.

18. Triple systems and finite geometries

A triple system on n elements (30; 19, preferably 2nd edition; 9) is a
selection of triples of distinct elements such that every pair of distinct elements
occurs in precisely one of the triples. Such a system exists for

n(>1) = 1or3(mod. 6) = 3,7,9, 13, 15, 19, ...

and is unique to within isomorphism for n = 3, 7, 9 only.

A Joop is a quasigroup containing an identity element 1.

Bruck observed in (7) and (8, p. 58) respectively that there is a one-one
correspondence between triple systems on n elements and (i) idempotent t.s.
quasigroups of order n, (ii) t.s. loops of order n+1. In each case triples (a, b, ¢)
correspond to sets of equations ab = ¢, etc. In (i) we have also equations of
type a*> = a. In (ii) we have an extra element 1 and equations of type 1> = 1,
la=al =a,a®>=1.

There is also a connection between certain triple systems and finite geo-
metries having 3 points on a line, as explained in (9, pp. 425-426). Of course
only triple systems of special type will correspond in the above ways to entropic
quasigroups. It happens that these are just the triple systems which can be
identified with finite geometries.

(i) The idempotent t.s.e.q. Q5 x 05 X ... (r factors, r=1) of § 7, 13 corres-
ponds to a triple system on 3" elements. It may be identified with the finite
geometry EG(r, 3) (9, pp. 329, 426).

(ii) The abelian group, or entropic loop, C, X C, X... (r factors, r>1) of
§§ 10, 16 corresponds to a triple system on 2"—1 elements. The elements other
than 1 may be identified with the points of the finite geometry PG(r—1, 2)
(9, pp. 323, 425).
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In both cases any equation ab = ¢ with a, b, ¢ distinct (# 1 in case ii)
means that the points g, b, ¢ are collinear.

Entropic quasigroups whose elements are points, with a, b, ab collinear,
are also a feature of a type of finite geometry introduced by Sade (23, p. 109).
His configuration contains #> points on nN lines, with n points on each line,
N lines through each point, N depending on n. When n = 3, N = 4; the
configuration is then that of the 9 flexes of a nonsingular cubic. It is only in
this case that the quasigroup involved is totally symmetric and that ab is the
unique point collinear with @ and b.

Part I

19. The isotopic abelian group
Given a t.s.e.q. Q written multiplicatively, we can associate with it an
abelian group G, defined on the same set of elements and for convenience
written additively, as follows.
Choose a fixed element o of Q and define
a+b=ab.o. (19.1)
Then the postulates for an abelian group are satisfied, for by (6.4) we have
(a+b)+c = (ab. o)c. o (symmetric in @, b, ¢) = a+(b+¢);  (19.2)
a+b = b+a;
a+to = ao.o = a, so that o is the zero of G;
a+ao® = (a.ao*)o = 0’0 = o, so that —a = ao®.
To express the quasigroup operation in terms of the group operation,
put ¢ = ab in (19.2). The middle term then reduces to 0. Thus
ab = o*—a—b. (19.3)
This confirms the statement in § 5 that every t.s.e.q. @ can be constructed
from a suitable additively written abelian group by a formula of the form
ab = k—a—b. (19.9)
Given Q, the element o is at our choice, and k = 0? can be any element which
is a square in Q.
It follows from (19.1), or equally from (19.3), that Q and G are isotopic,t
and we shall call G rhe isotopic abelian group to Q, implying that it is unique
to within isomorphism.}

+ Two groupoids defined on the same set of elements are by definition (4, 6) isotopic if
their operations ab, a°b are related by a®b=(aUbV)W where U, V, W indicate one-one reversible
mappings of the set onto itself. This is an equivalence relation, and any isotope of a quasi-
group is a quasigroup. As remarked in the footnote to § 5 the results of this Section
are specialisations of theorems of Murdoch (18) and Bruck (6); cf. also Toyoda (32).

1 .If a quasigroup.isisotopic. to groups. G, G’, then G and G’ are isotopic, and by a theorem.
of Albert (4, Theorem 2) isotopic groups are isomorphic.
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If Q contains an idempotent and this is chosen as o, so that k = 0% = o
is the zero of G, (19.4) becomes

ab= —a-b. (19.5)

In the geometrical interpretation o is then a flex of C, and (19.1), which can
now also be written a4-b = ao . bo, describes a well-known construction for
defining addition of points on a cubic so as to obtain an abelian group (33,
p- 191).

20. The number of square roots of an element

We can now complete § 9 by showing that s, the number of square roots
in Q of any element k& which has a square root, is always if finite 1 or a power
of 2.

Suppose s>1. Choose o to be a square root of k and form the isotopic
abelian group with zero element o. By (19.4) a*> = k in Q if and only if
2a = oin G. Or changing to the multiplicative terminology for G, the square
roots of k in Q are the square roots of the unit element in G. These form a
subgroup of G in which each element other than the unit element has period 2,
and which must therefore if finite be a direct power of the cyclic group C,.
The result follows.

[Note. 1t is clear from (19.4) that a subgroup of G is a subquasigroup of
@ if and only if k belongs to it. The square roots of k in Q form a subgroup
of G, but form a subquasigroup of Q if and only if k is idempotent in Q.]

In the case when Q, not merely s, is finite, we can give a more precise
statement. From the general theory of abelian groups, G is then a direct
product C,, x C,, X ... x C,,_ of cyclic groups whose orders are powers of primes.
A square root of the unit element of G is a product of square roots of the unit
elements picked one from each factor C,, for which there are two choices
when n; is even, 1 when n; is odd. The number of square roots is therefore
s = 2" where m is the number of even numbers in the set ny, n,, ..., n,.

21. Idempotent t.s.e.q.’s

We can now complete § 7. It will be sufficient to consider the idempotent
subquasigroup, but let us now denote it Q.

Let Q be a finite idempotent t.s.e.q. of order greater than 1. We form the
isotopic abelian group and may assume that (19.5) holds. Since in Q every
element satisfies a?> = a, in G' every clement satisfies —2a = a, or 3a = 0.
(It will be convenient to write (0 now for the zero element.) Hence the finite
abelian group G must be a direct sum of cyclic groups C;, and its order—
the number of idempotents in Q—is a power of 3.

Suppose that there are m direct summands C,, with generators 4, ..., a,,
each satisfying 3a; = 0. Every element a can be written uniquely as @ = Za,q;
with each a; = 0, 1 or 2 (residues mod. 3). By (19.5) the product in Q of two
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such expressions is
ab = (Zaa)Zpia) = X(—a;—B)a;.

This shows that Q is the direct product of m quasigroups in any one of which
elements and products are given by the same formulae with the X’s omitted,
i.e. of m quasigroups isomorphic to Q, (see how Q; was constructed in
Example 2).

[Note. Without giving the proof in detail, Bruck (6, p. 40) stated essentially
this result in the form of a necessary and sufficient condition for an idempotent
t.s. quasigroup to be isotopic to a group.]

22. Conjecture

It is clear that not every t.s.e.q. can be interpreted as a set of points on a
plane cubic curve, or, as we may say, can be placed on a cubic, consistently
with the chord and tangent definition of multiplication. The question arises,
how can we characterise those t.s.e.q.’s which can be so placed? 1 leave this
unsolved but put forward the following conjecture: that a finite or finitely
generated t.s.e.q. can be placed on a nonsingular plane cubic if and only if
the isotopic abelian group is either cyclic or a direct product of zwo cyclic
groups.

23. Generalisation

J. G. Brennan in a letter (14th January 1956) made the following observa-
tions which I quote by permission.

Consider a plane curve C of genus p, and on it a linear series gg,’;. Let a,
b, ... denote sets of p points of C. Two such sets determine a third, consisting
of the p remaining points in the set of the g35 determined by the 2p points of
aub. Then clearly we have a totally symmetric quasigroup Q. That Q is
also entropic follows easily from the theory of linear equivalence of sets of
points on an algebraic curve. (See, e.g., 25.)

The idempotents of Q are those sets of g32 consisting of p triple points.
The number of such sets is 97. Also given any element a of Q, the equation
x% = g has 47 solutions in Q. The last two statements are consequences of
the formula of de Jonquiéres, which gives the number of sets of a linear series
possessing various numbers of points of prescribed multiplicity (26, p. 243).
The second number 4” is the number of sets of a g5, with p double points. For,
fixing p points of g§,’; (i.e. given @), the remaining points vary in a g3, whose
sets with p double points are the x’s.

Another way of looking at this t.s.e.q. is to consider the so-called Variety
of Jacobi, whose points image sets of p points of a curve of genus p (26, p. 281).

NOTE ADDED IN PROOF

~ Following criticism by the referee § 23 has been the subject of further
correspondence with J. G. Brennan. There may exist special sets of p points
E.M.S.—U
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on C, two of which do not determine a unique third set by the above con-
struction. In the terminology of Bruck (8, p. 9) the system in general forms
a halfgroupoid, i.e. a set in which products of some but not all pairs of
elements are defined. In those cases in which the halfgroupoid is in fact a
quasigroup, the remarks of § 23 are valid.
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