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Abstract

The pointwise order makes the group <4(ft) of order-preserving permutations of a totally-
ordered set ft a lattice-ordered group. We give some criteria for determining the compatible tight
Riesz orders on A (ft) in the case of ft being a totally-ordered field, and then obtain various
adjunctions... one between tight Riesz orders on A(ii) and certain ideals of the fixed point lattice
<t>(ft), and a second between maximal tangents and certain filters of <t>(ft)- We also establish a
correspondence between tight Riesz orders and first-order properties. Finally, we make use of our
results to say what we can in the case of the automorphisms of the real field, and to pose several
open problems.

1. Introduction

We start from a theorem due essentially to Wirth (1973), which states that

a compatible tight Riesz order on a lattice-ordered group (G, < ) is determined

by a subset T of the positive set G* = {x & G:l < x} of G satisfying the

following conditions:

(1) T is a proper dual ideal of G*

(2) T is normal in G

(3) T=TT

(4) 1 < jr." < y for all positive integers n, for all y G T, implies x = 1.

Condition (4) can be replaced by the equivalent condition

(4') A,6Tx = 1.
Any compatible tight Riesz order ^ on G has a strict positive set

T = {xEG:Kx} satisfying (l)-(4), and conversely any such set T is the strict

positive set for a compatible tight Riesz order on G. We sometimes say, by an

abuse of language, that such a set Tis a compatible tight Riesz order on G.

The group A(Cl) of order-preserving permutations of a totally-ordered set

fl is a lattice-ordered group when ordered by IT > 1 if ir(x)Sx in Cl for all

l£fl.

Formerly, E. BOLZ.
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318 G. Davis and E. Loci [2]

Our main problem is to determine the compatible tight Riesz orders on A(il).
Throughout this paper we will assume that ft is a totally-ordered field. The
reasons for this are roughly as follows: the condition (3) for the strict positive
set for a compatible tight Riesz order is generally the most difficult to check but
follows easily if the group is divisible, and we know ,4 (ft) is divisible when fi is
a totally-ordered field. Furthermore most of our results are vaccuous if the set
To = {TT E A(Cl): TT(X) > x for all x E ft} is empty, and if ft is a totally-ordered
field then x—*x + 1 belongs to To.

We are grateful to Colin Fox and Arthur Jones for their assistance, and
especially grateful to the referee for his helpful suggestions, and for providing
an alternative proof of Proposition 14.

2. Maximal tangents

For TT>1 in A (ft) we define Supp(Tr) = {x e f t : n(x)>x}. This is the
complement of the set Fix (77) = {x Efl: TT(JC) = x} of fixed points of n. The

I collection {Supp (77): TT > 1}, ordered by inclusion, is a lattice as the formulae

(7T|) n S u p p (77-2) = S u p p (77, A 772)

Supp (TT,) U Supp (TT2) = Supp (TTI v TT2)

for IT,, v2>\, show.

LEMMA 1. If TT > \ in A(il) then there exist TT,, 7r2Gi4(ft) such that
v = 7T, • 7T2, 7T, > 1 and Supp (TT,) = Supp (TT) (i = 1,2).

This follows since A(il) is divisible.

PROPOSITION 2. For any totally-ordered field ft the lattice-ordered group
A (ft) admits at least four distinct compatible tight Riesz orders. Specifically,

T0 = {TTEA (ft): w(x) > x for all x E ft}

Ta = {v E A +(ft): for some y E ft, TT(JC) > x for all x £ y}
Tf,={irEA +(ft): for some y E ft, TT{X) > x for all x S y}

are strict positive sets for distinct compatible tight Riesz orders on .4 (ft).
PROOF TO. This set is clearly a proper dual ideal of A +(ft) that is normal

in A (ft). The inclusion To- ToQ To is obvious and the reverse inclusion follows
from Lemma 1. Since /4(ft) is divisible condition (4) is equivalent to TT0 = 1 for
any TT0 satisfying \ < TTO< v for all TT E TO. If 1 < TT0 < v for all IT E TO, but
Tr0^ 1 then TTO(X)>X for some xEfl. We define ir,EA(fl) by 77,(2) =
z +!(7To(x)- x) and then TT, E TO but TT,(X) = Hvo(x) + x) < vo(x), which con-
tradicts TTÔ S 77,. Therefore 7ro= I.
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[3] Riesz orders on ordered groups 319

The remaining sets Ta, Tp, Taf) are easily seen to satisfy (l)-(3), and being
larger than To they satisfy (4).

A subset P of A (ft) is a prime subgroup of A (ft) if P is a convex sublattice
subgroup of A (ft) for which TT, A V2 = 1 implies that either TT, G P or TT2 G P.

For a compatible tight Riesz order T on A (ft), Reilly (1973), (to appear)
shows that if P is a prime subgroup of A (ft) meeting T then P is convex for the
order g denned by T, and the set R(P) of right cosets of P is totally-ordered
for the canonical order induced from g on A (ft), and if P is maximal with
respect to being a convex sublattice subgroup not meeting T then R(P) is
totally-ordered and dense for the canonical order induced from Son A (ft).
The convex sublattice subgroups of A (ft) that are maximal with respect to not
meeting T are prime subgroups and they have been called the maximal
tangents of T by Miller (1973).

A standard Zorn's lemma argument shows that any convex sublattice
subgroup not meeting a compatible tight Riesz order T is contained in a
maximal tangent of T.

We define the fixed-point lattice, <J>(ft), of ft to be the set {Fix (TT): V > 1}
ordered by inclusion. We see that since ft is a totally-ordered field the
fixed-point lattice of ft contains ft: for every x G ft there is a (piecewise linear)
•n G A (ft) with IT > 1 and Fix(Tr) = {x}.

For x G ft the stabilizer subgroup of x is Px = {TT G A (ft): TT(X) = x}. We
can also define stabilizer subgroups of points f of the Dedekind completion ft
of ft: firstly every irEA(ft) can be extended to a TT G A (ft) by #(£) =
SUP{TT(JC):X Gft, x S £}, and then we define P€={7rGA(ft): TT(|) = £}.
McClearly (1969) has shown that the P(, £Gft, are precisely the join-closed
prime subgroups of A (ft). We note that for x G ft, Px is a prime subgroup not
meeting To. However for £ G ft\ft we can have Pe n To ̂  D. This happens, for
instance, when ft is the field of rational numbers (i.e. the prime subfield of any
totally-ordered field) since we can take a strictly increasing sequence {xn: n G N}
and a strictly decreasing sequence {yn: n G N}, both in ft, with sup{xB: n G
N} = V2 = inf {yn: n G N} and then find a piecewise linear v G A (ft) whose
graph contains the points {(xn, xn+l): n G N} and the points {(yn+i, yn): n G N} in
ft x ft. We then have rr(x) > x for all x G ft but ir(V2) = V2.

PROPOSITION 3. For every x Gft, Px is a maximal tangent of To.

PROOF. If Px is not a maximal tangent of To then Px is properly contained
in a maximal tangent M of To. That is, TT0G M\P X for some TTO>\. Let TT be an
element of P, with FJX(TT) = {x}. Then Fix(7r0 v v) = Fix(7r0) n Fix(Tr) = • so

7T G To D M and this contradicts To n Af = • .
We now consider basic adjunctions that relate tight Riesz orders T on

https://doi.org/10.1017/S1446788700018619 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018619


320 G. Davis and E. Loci [4)

A (ft) to certain ideals / of the fixed-point lattice <I>(ft), and maximal tangents of
T to filters of <t»(O) maximal with respect to not meeting /.

We say that a subset T of A(H) satisfying (l)-(3) of the introduction is a
tight Riesz order on A (ft) (as distinct from a compatible tight Riesz order on
A (ft)) and that a lattiie ideal / of 4>(ft) is an A(fl)-invariant ideal if 1/ <I>(ft)
and 7r(£) G / for all £ G / and all IT G A (ft). We use the term adjunction (c.f.
Maclane [3]) instead of the equivalent "dual Galois Correspondence" i.e. an
adjunction f\—g between partially ordered sets P and Q is a pair of order
preserving mappings/: P-* Q, g: Q—• P such that x < g(y) in P iff f(x)< y in
Q and then x G P is an algebra if and only if g °f(x) = x.

THEOREM 4. There is an adjunction f\—g from the set of tight Riesz
orders on A(il) ordered by inclusion, to the set of A (ft) -invariant ideals of
<P(ft), ordered by inclusion, such that the algebras for this adjunction are
just the tight Riesz orders T for which 7r0 G T implies
{vEA +(ft): Supp (TT) = Supp (TT0)} C T.

PROOF. Let T be a tight Riesz order on A (ft). The subset / =
{Fix(Tr): n G T} of 3>(ft) is closed under the formation of finite joins since TT,,
7i-2Gr implies Fix(7r,) U Fix(7r2) = Fix(7r, A TT2)G /. Further, if Fix(7ro)G/
and 77 G A (ft) then 7r(Fix(7r0)) = Fix(7r7ro7r~') G / since T is normal in A(ft).
The ideal generated by I, viz. {Fix(rr): Fix(7r)CFix(7r') for some ir' E T} is
then an A (ft)-invariant ideal of '^(ft) which we denote by f(T). The mapping
T-*f(T) is clearly order-preserving. Conversely, if / is an A (ft)-invariant
ideal of $(ft) we define g(I) = {n G A +(ft): Fix (TT-) G /}. Then, as above, g(I) is
a proper subset of A*(il) closed under the formation of finite meets and is
normal in A (ft). Further, if ir0 G g(I) and IT > ir0 then Fix (TT) C Fix (TT0) G / SO
77 G g(I). That is, g(I) is a tight Riesz order on A (ft). It is then straightforward
to verify that for a tight Riesz order T and an A (ft)-invariant ideal /, f(T)Cl if
and only if TCg(I), so that / is a left-adjoint for g. The algebras for this
adjunction are just the tight Riesz orders T satisfying T=g(/(f)), and since
Fix(Tr) = ft\Supp(7r) for TT > 1, these are just the tight Riesz orders T such
that TTO £ T implies {TT G A +(ft): Supp (TT) = Supp (TT0)} C T.

We say that a tight Riesz order T on A (ft) is algebraic if T is an algebra
for the adjunction of Theorem 4.

COROLLARY 5. Every algebraic tight Riesz order on A (ft) is a compatible
tight Riesz order.

PROOF. The algebraic tight Riesz orders on ,4 (ft) are in one-one order-
preserving correspondence with the A (ft)- invariant ideals of 4>(ft). The
smallest such ideal is {•} and the corresponding tight Riesz order is To which is
compatible, so all other algebraic tight Riesz orders are compatible.
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COROLLARY 6. Every maximal tight Riesz order on A (ft) is algebraic and
therefore a compatible tight Riesz order.

THEOREM 7. // T is an algebraic tight Riesz order on A (ft) there is an
adjunction fT \—gT from the set of convex-sublattice subgroups of A(il) not
meeting T, ordered by inclusion, to the set of filters of <t>(Cl) not meeting f(T),
ordered by inclusion, such that the algebras for this adjunction are just the
convex sublattice subgroups G of A (ft) not meeting T for which TT0 £ G D
A +(ft) implies {n £ A +(ft): Supp (TT) = Supp (TT0)} C G.

PROOF. Let T be an algebraic tight Riesz order and G a convex sublattice
subgroup of A(il) not meeting T. The subset F = {Fix(Tr): TT £ G C\ A*(VL)} is
then closed under the formation of finite meets. If Fix(TT)E. F H f(T) where
IT EG then Fix(7r)C Fix(Tr') for some TT'ET, so that Fix(7r) =
Fix (TT) fl Fix (TT1) = Fix (TT V TT-') which gives n £ T n G since T is algebraic
and IT v TT' £ T, a contradiction. Thus the filter fT(G) of <I>(ft) generated by F
does not meet f(T). Conversely if F is a filter of <J>(ft) not meeting f(T) then
H = {TT £ A +(ft): Fix (IT) £ F} is a convex sublattice of A +(ft) not meeting T.
Further, H is a subsemigroup of A+(il) since Fix(7r, • TT2) D Fix(7r,) n Fix(7r2)
for all 77,, TT2EA+(fl). The subgroup gT(F) of A(ft) generated by H is
therefore a convex sublattice subgroup of A(fl) not meeting T. For convex
sublattice subgroups H,, H2 of A(£l) we have H,CH2 if and only if
H, n A +(ft) C H2 n A +(ft). This allows us to see, as in Theorem 4, that
fT(G) C F if and only if G Cg r (F ) when G is a convex sublattice subgroup of
A(il) not meeting T and F is a filter of <$>(il) not meeting /(T). The statement
about the algebras for this adjunction follows readily.

We say that a tight Riesz order T is prime if n,, TT2EA*(£1) and
TT, v TT2 £ T implies that either TT, £ T or TT2 £ T If T is an algebraic tight Riesz
order then T is prime if and only if f{T) is a prime ideal of the distributive
lattice <t>(il).

PROPOSITION 8. // T is a maximal, and hence algebraic, tight Riesz order
on A(£l) then T has a unique maximal tangent M exactly when T is prime. In
this case M is normal in A(Q) so that A(Q)IM is a totally-ordered group.

PROOF. If T is prime then f(T) is a prime A(H)-invariant ideal of <J>(ft) so
that <f>(ft)\/(T) is the unique filter maximal with respect to not meeting f(T).
Further $>(Q.)\f(T), as the complement of f(T), is A (ft)- invariant, so the
maximal tangent M corresponding to 4>(ft)\/(T) is the unique maximal tangent
of T and M is normal in A (ft). Conversely, if T is not prime then f(T) is not
prime in 4>(ft) so there are at least two filters maximal with respect to not
meeting /(T), and thus T has at least two maximal tangents.
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3. Compactifications

We furnish ft with the order topology which has the sets

(-™,a) = {x Gil:x<a)

(a,b) = {x Gfl:a<x<b}

(a,oo) = {x eft: a < x}

as a join-base for the open sets. This turns ft into a completely regular
topological space. A compactification of ft is as usual, a compact Hausdorff
space K in which ft is topologically embedded and dense. We say that a
compactification K of ft is an automorphic compactification if every n £
v4(ft) has an extension to a homeomorphism if of K.

Since a totally-ordered set with its order topology is compact if and only if
it is lattice-complete we see that ft always has an automorphic compactification
namely, the lattice completion ft of ft.

In this section we exhibit an automorphic compactification K of ft for
which there is a group of homeomorphisms F of K such that the maximal
tangents for the algebraic tight Riesz order To on A(Cl) are in one-one
correspondence with the subgroups F of F that fix a given point of K. The basic
idea goes back to Stone (1937), and we proceed in analogy with Gillman and
Jerison's procedure (1960) for exhibiting the Stone-Cech compactification of a
completely regular space.

For a given topological space K we denote the group of homeomorphisms
of K by F, and if F* is a subgroup of F, x is a point of K, we denote by F? the
subgroup of F* consisting of those a G F* that fix x. That is, F* =
{o-er*:<r(x) = x}.

We need a preliminary result:

LEMMA 9. Let J£ be a distributive lattice with minimal element 0 and
let & be a maximal filter of S£. If a v b e 9 then either a E 9 or
be 9.

PROOF. Suppose that ag. 9, b£2F. If CAX/0 for all 1 6 ? then
9 U {c} is contained in a filter containing 9 so that c £ ? . Thus a AX = 0 = b Ay
for some x, y E 9, and then (a v b) A (X A y) = (a A X A y) v (b A X A y) = 0, so
that avbfcty.

THEOREM 10. There is an automorphic compactification K of ft and a
subgroup F* of the group of homeomorphisms of K for which

(1) the maximal tangents for Ta are in one-one correspondence with the
points of K
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(2) F* is isomorphic with ,4 (ft)
(3) // M( is the maximal tangent for To corresponding to £ G K then V% is

isomorphic with the normalizer of Me, and ryM( is a totally-ordered group.

PROOF. We already know, by Theorem 7, that the maximal tangents for To

are in one-one correspondence with the maximal filters of the fixed-point lattice
<t>(fi) of ft. We denote by K the set of maximal filters of <J>(ft). We can furnish
K with a topology by taking the sets %(TT) = {f G K: Fix(7r)£ £}, 7rG,4+(ft),
as basic open sets since, by Lemma 9, ^(TT-,) D <%(7r2) = %(TT, A TT2).

ft is topologically embedded in K: for x Gft we denote by ij(x) all those
Fix (IT) G $(ft) with TJ-(X) = x. Then f (x) is plainly a filter of *(ft), and if f is a
filter of <t>(ft) containing £(x) then Fix(7r,) n Fix(7r2) ^ D for any Fix(7r,) £ £
and Fix(7T2)Gf(jc). In particular, if Fix(7r2) = {x} we have xGFix(7r,) so
Fix(7r,) G g(x). That is, fj(x) is a maximal filter of <t>(ft), and the mapping
x—»£(x) is plainly one-one. If °U(n), ir G. A*(tt), is a basic open subset of
K then %(TT) Dft = {x Gft: Fix(7r)£ |(x)} = {x Gft: v(x)> x} = Supp(Tr),
which is an open subset of ft. Conversely, if 0 is an open subset of ft then 0 is a
union of sets (-°°, a), (b,c), (d,°°) which can be taken to be maximal in 0, so
we can define a piecewise linear irGA*(fi) with Supp(7r) = 0, and then

ft is dense in K: we take £ G K, and an open neighbourhood °U(n) of £ We
have to see that %(TT) n ft / D. If %(TT) does not meet ft then Supp(Tr) = • so
Fix (TT) = ft G £ and this contradicts Fix (TT) £ | .

K is Hausdorff: let £„ ^2 be maximal filters of $(ft). If Fix(7r,) G f2\f then we
can find Fix(77-2)G£, satisfying Fix(7r,) n Fix(7r2) = D, for otherwise
£i U{Fix(7Ti)} is contained in a filter larger than the maximal filter £,. Since
ft is normal as a topological space (Gillman and Jerison (1960), p. 53) we
can find disjoint open sets O, DFix(iri), O 2 3 Fix(7T2). Then there exist TT[,
77-^GA+(ft) with Fix(Tr;) = ft\O,, Fix(tr'2) = ft\O2. Since Fix(77-; A TT'2) =
Fix(77-,)UFix(7r2) = ft, we have %(ir',) D %(TT2) = D. Further we have
Fix (TT-;) £ £2 since Fix(7r',) n Fix(7T,) = D, and Fix(7T2)££, since
Fix(7T2) D Fix(7r2) = D. Thus, <%(7r'i), %(TT2) are disjoint neighbourhoods of £2,
,̂ respectively.

K is compact: we let {/C\1/(7r»):AGA} be a non-empty collection of non-
empty basic-closed subsets of K with the finite intersection property. We see
that Fix(7rA)CK\%(7rA), and if K\%(7r) is a basic closed set containing
Fix(7rA) then Fix(Tr) = X\%(TT-) Dft D Fix(77\), so that K\<%(7T\)C K\<U(TT).

https://doi.org/10.1017/S1446788700018619 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018619


324 G. Davis and E. Loci [8]

That is, Fix (TTA) = A:\%(TTA) SO we see that {Fix(77A):A EA} has the finite
intersection property:

(77-Al) = Fix ( v vx) = K\°U ( v w*,)

= K\ y %(TTA()= n

Then, {Fix(77A): A G A} is contained in a maximal filter f and so
£G n{K\<%(77-A): A GA}. That is, K is compact.

K is an automorphic compactification: for 77 G A (ft), f £ K , we define
7r(^) = {7r(Fix(7r')):Fix(7r')G^} = {Fix(77-7r'7r"'):Fix(7r')G^}. Since 77 is a
permutation we see that TT(|) is a maximal filter of <J>(ft). Further, # is then a
bijection of K with inverse TT~'. If %(7r,) is a basic open set of K then
7r%(7r,) = %(7r7rii7~') so that 77 is an open mapping, as is #" ' , and therefore a
homeomorphism of K. Finally, if restricted to ft is 77 since

= {TT (Fix (TT')): TT'(JC) = x} = {Fix (TTTT'TT"'): tr'(x) = x)

= {Fix(*•"): 7r"7r(x) = TT(X)} = f (*•(*)).

We now observe that since n, n2 = n, n2, F* = {TT: TT G A (ft)} is a group of
homeomorphisms of K isomorphic to A (ft). When we give T* the identification
order i.e. a > I in F* if and only if <r |n > I in A (ft), where a |n is the restriction
of cr to ft, we obtain a lattice ordered group with cr v T = cr |n v T |n.
Then the mapping TT —» TT is an isomorphism of lattice-ordered groups from

to F*. Recall that for each point £ G K we have the following subgroup,
= {a- G F*: o-(f) = £}. If o-, T G F? and Fix(ir) G £ then with TT, = a |n, and
= T | n we have

(TTI v TT2) Fix (TT) = Fix ({TT, V TT2) TT (TT, V 7r2)~')

= Fix((i7i77-7r7' A TT,TTTT2~X) V (TT2TT TT^' A 77277772*))

= (FiX (TTI 77 77-7') U Fix(77i77 772'))

Pi ( F i x (7727T7771) U F i x (77277772"'))

D Fix(77i77 777') D '

so a- v T ( | ) C £ and thus cr v T G F^. That is, F^ is a lattice subgroup of F*. The
maximal tangent corresponding to the maximal filter £ is M( =
{77 G A (ft): Fix (77) G | } = {77 G A (ft): £ G Fix (TT)} and <r = ^ i , GJJMf and
only if {Fix (TT 77'77"1): Fix (TT) G^} = {Fix (77): 77 G^}. That is, tr = 77 | n G Ft il
and only if TT is in the normalizer of M(. Thus F"£ is isomorphic with a lattice
subgroup which is the normalizer of Me in A (ft) so that, by an abuse oi
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notation, M( is a normal prime subgroup of F^ and r?/M{ is a totally ordered
group.

REMARK. If £ = £(x) for some x G ft then M{(1) = Px =
{ir E. A(fl): ir(x) = x} is easily seen to be its own normalizer and therefore
r*JM( = (0) in this case.

We can now adopt a similar procedure for an arbitrary algebraic tight
Riesz order T on ,4 (ft). Specifically, we denote by K(T) the set of filters of the
fixed-point lattice <t>(ft) that are maximal with respect to not meeting the
A (ft)-invariant ideal f(T) of A (ft) corresponding to T. The following remark
then says that these filters are prime, so we can take the sets 6U(v) =
{£ G K(T): Fix(7r)£ £}C K(T) as a join-base for the open sets for a topology
on K(T).

REMARK. AS a more general form of Lemma 9 we have the following
which is the dual of a well-known result of Stone.

Let 5£ be a distributive lattice and J C if a proper ideal of if. If 9 is a filter
of if maximal with respect to not meeting / then a v I i G f implies a £ f o r
be&.

We regard the algebraic tight Riesz orders as forming a lattice of subsets of
A(fl) by conveniently regarding A+(Cl) as an algebraic tight Riesz orden This
lattice of algebraic tight Riesz orders on A (ft) is lattice-isomorphic with the
lattice 5" of A (ft)-invariant ideals of <J>(ft).

THEOREM 11. For each algebraic tight Riesz order T of A (ft), K(T) is a
compact Hausdorff space, and T—* K(T) is the object function of a con-
travariant functor from Sf into the category of compact Hausdorff spaces and
continuous maps.

PROOF. The proof that K(T) is compact Hausdorff is as in Theorem 10.
Suppose that Tt, T2 are algebraic tight Riesz orders and T, C T2. If M is a
maximal tangent for T2 then, since the prime subgroups lying above a prime
subgroup are totally-ordered by inclusion, there is a unique maximal tangent
M' for T, containing M. This provides us with a map, which we denote by m,
from K(T2) into K(T,). Given a basic open subset %,(TT) =
{£ G K(T,): Fix (v) £ £} we have to see that 5" = {£ G K(T2): m(£) G %,(TT)} is
open in K(T2), and we do this by seeing that K(T2)\5f is compact. Let
{K(T2)\112(TTX) n K(T2)\y: A G A} be a collection of basic closed subsets of
K(r2)\5^ with the finite intersection property, where ^Uiiir) =
{£ G K(T2): Fix(7r) £ $} for IT 6A(fl). Then for each finite subset {A,, • • •, An}
of A we have Sf U °U2(n,t) U • • • U ^(ir^)/ K(T2). If Fix(Tr) n Fix(7rXl) D • • • D
Fix(7rAJG/(Ti), for some finite subset {Ai,- -,AB} of A, then <%I(7r)U
%,(7rA,) U • • • U%,(7rO = K(T,). We know, by assumption, that there is a
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£ £ K(T2) such that £ £ Sf and f £ ^ ( T ^ M I = 1, • • • ,« ) . Then m($) £ <%,(7r) SO

that m ( f ) £ %i(7rAl) for some i, which implies £ £ ^CTTA,) - a contradiction.
Thus, for every finite subset {Ai,--,An} of A, Fix(Tr) D Fix(-7rA,) n • • • n
Fix(7r A J^/ (Ti) . Similarly, for every finite subset {A,,•• -,An} of A, Fix(7rA,)n

• nF ix (7T A J^ / ( r 2 ) . Hence, there is a £ E K(T2) containing all Fix(-7rA):A £
A, and a | ' £ K(T,) containing £ and Fix (TT). Then m ($) = £' so we have f £ 5̂
and f £ %2(77-A) for all A E A. That is, K(T2)\y is compact. This gives us an
extension of T—>K(T) to arrows and provides us with a (contravariant)
functor.

We denote by F(T) the group of homeomorphisms of K(T).

PROPOSITION 12. For each algebraic tight Riesz order T of A(il) there is a
homomorphism 8T: A(ft)—>T(T) for which Ker(8T) is a normal sublattice
subgroup of A(Ci,). Further if we denote Im (8T) by F* then, for each £E
K(T),r*( = {ae F*: o-(f) = £} is the image under 8T of the normalizer of the
maximal tangent for T corresponding to £

PROOF. We define 8T by 8T(K)(0 = n • £ = {ir(F): F E £}. Because/(T)
is an A (H)-invariant ideal of <J>(O) we see, as in Theorem 10, that for each
TTE A(£l),8T(IT) is a homeomorphism of K(T). Further, 8T: i4(fl)-»r(T) is
clearly a homomorphism, and calculations we have already seen in Theorem 11
show that Ker (8T) = {v E A(il): v £ C f for all £ E K(T)} is a sublattice of
/i(H), and that the last statement of the proposition is valid.

4. Groups acting on lattices

We say that a group G acts on a lattice L if there is a map (g,x)—>gx;Gx
L —> L satisfying

(1) g(x v y) = (gx) v (gy)
(2) g(x Ay) = (gx)A(gy)
(3) (gh)x=g(hx)
(4) lx = x.

We say, in addition, that G acts properly on L if gx = x, for all x £ L, implies
g = 1. In other words, G acts properly on L precisely when G is isomorphic
with a subgroup of the group of lattice automorphisms of L.

A subset 5 of L is G-invariant if x £ 5, g £ G implies gx £ S. An element
x £ L is G-invariant if the singleton set {x} is G-invariant. The class of
G-invariant ideals containing a given G-invariant ideal / is inductive, so there
is a maximal G-invariant ideal containing /.

For the remainder of this section we will assume that L is distributive.

PROPOSITION 13. Let M be a maximal (proper) G-invariant ideal of L. If
a&M, b&M then there is a g EG for which a A g bg M.
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PROOF. Suppose that aAgbGM for all g G G. Let N =
{x E L: x § y v gb for some y G M, g E G}. Then N is clearly a G-invariant
ideal which properly contains M, since b E.N, and is properly contained in L,
since a&N. This is a contradiction.

A dual result is valid for G-invariant filters of L. We say that a G-invariant
ideal / of L is G-prime if it satisfies the conclusion of the proposition, that is, if
a A gb & I for all g E G, implies a G / or b G /.

A standard argument now gives the following result.

PROPOSITION 14. Let I be a G-invariant ideal of L. If xfcl then any
G-invariant ideal M of L, maximal with respect to containing I but not x, is
G-prime. In particular, every G-invariant ideal of L is an intersection of G-prime
G-invariant ideals.

For a subset S of L we define Orth (S) = { g £ C : a / \ i ) £ S implies a A g

bes}.

PROPOSITION 15. If S is a G-invariant subset of L then Orth (S) is a normal
subgroup of G. If I is a G-invariant ideal of L then I is prime if and only if I is
G-prime and Orth (/) = G.

PROOF. If g G Orth (5), and a A b E S then b A a G S so that b A g a G S.
Then g lb A a = g~\b A ga) G S so g~' G Orth (S). If, in addition, /i E G then
h'la A h~'b = h~\a A b)&S so that a A fcgfr'b = h(h~'a /\gh~'b)GS. Since

Orth (S) is clearly a semigroup we see thatOrth (S) is a normal subgroup of G.
The second statement is clear.

For a G-prime G-invariant ideal I of L the group G/Orth(/) gives us a
group-theoretic measure of the extent to which / fails to be prime. We have a
dual procedure in the case of G-invariant filters F of L, for which we define
Orth°(F) = { g E G : a v b E F implies a v gb G F}.

We now define SpecG(I-) to be the set of G-prime G-invariant ideals of L
furnished with the topology that has the sets K(i) = { /CL: I is a G-prime
G-invariant ideal and x £ / } , x G L, as sub-basic open sets. We see that
{°U{x): x G L] is in fact a join-base for the open sets, for if I G <%(*) n <%(y) then
x £ / , y £ / so that xAgyg.1 for some g G G, and thus /G^(xAgy)C
%(JC) n <%(y). A standard argument now shows that SpecG(L) is a locally-
compact To space which is compact if and only if L has a greatest element.

We remark finally on a partition of the maximal A (il)-invariant filters of
the lattice 2n* where, as usual, fl is a totally-ordered field and where ft* is ft
with the discrete order. The action of A(ft) on 2n* is given by (n, x)~* X ' 7r~'-

PROPOSITION 16. If S' is a maximal A (£l)-invariant filter of 2n* then either
[0, oo) E 9 or ( - oo, 0] G 9 but not both.
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PROOF. Firstly we suppose that <& is an A(D.)-invariant filter and that
[0, oo) n S / • for all S E <$. If x S 0 in fl then [x, °°) D [0, oo) so [x, °°) D S ̂  D for
all 5 £ « If x > 0 we can find n G A(Cl) such that TT(X) = 0 and then
[x,oo)nS = D for some S e « implies D = [-n-(x),oo) n TT(S) = [0,oo) fl TT(S),

which contradicts our assumption since ir(S) E % We see immediately, since &
is maximal, that if [0, °°) E ^ then [x, oo) G ^ for all x G fl, and a similar
conclusion holds for the intervals ( - °o, JC], JC E fl. Thus the cases ( - oo, 0] E 9,
[ 0 , = O ) G ^ are mutually exclusive. Now suppose that ( -oo ,0 ]£^ and
[0, oo) £ &. Then, [0,°o) n F, = • = ( - oo,0] n F2 for some F,, F2 G ̂  so that

• = ([0, oo) n F, ) u ( ( - oo, o] n F2)

= ([0,oo) u F2) n (F, u ( - oo,o]) n (F, u f t ) £ f

which is a contradiction.

5. Tight Riesz orders and first-order properties

In this section we relate tight Riesz orders on A(Cl) to filters on the
discretely ordered set fl and thereby to subsets of fl.

We write fl* for fl with the discrete order (i.e. x g y if and only if x = y).
The lattice 2n* is isomorphic with the lattice of all subsets of fl, and the group
A (fl) acts on the lattice 2°*.

THEOREM 17. There is an adjunction from the set of tight Riesz orders on
A (fl), ordered by inclusion, to the set of A (fl) -invariant filters of 2"*, ordered by
inclusion, such that the algebras for this adjunction are precisely the algebraic
tight Riesz orders.

PROOF. We describe the adjunction: the proof that it is an adjunction and
that the algebras are just the algebraic tight Riesz orders follows as in Theorem
4. If T is a tight Riesz order then {Supp(Tr): IT E T} is an i4(fl)-invariant
filterbase of 2n* since ni (Supp(Tr)) = Supp(7ri7T77-7') for all n ^\, TT,E A(il).
We denote by f(T) the A(Cl)-invariant filter of 2n* generated by {Supp(Tr): IT E
T}. On the other hand, if 9 is an A(£l)-invariant filter of 2n* then g{&) =
{TTE A+(fl):Supp(7r)E^} is a tight Riesz order on j4(fl), and f is a left-
adjoint for g.

We say that a subset F of fl is an ENBH set (for "eventually no big
holes") if TT,(F) n • • • D -rrn(F) / D for every finite subset {TT,, • • -, irn} of A(il),
and we denote the set of all ENBH subsets of fl by S£(fl). Thus, ordered by
inclusion, i?(fl) contains fl, does not contain D, satisfies the property that if
F E if(ft) and G D F then G E i?(fl).
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If F is an ENBH set then {TT(F): n £A(fl)} is a filterbase of 2"* and the
filter generated by this filterbase is an A (ft)-invariant filter containing F.
Conversely if & is an A (ft)-invariant filter of 2n" and F £ & then F is an
ENBH set.

We denote by °W the set of subsets of ft determined in the following way:
W E W if and only if there is a property 9 of the theory of totally-ordered sets,
such that

(1) 9 is preserved under permutations in ft. That is, if S C ft has property
& and if n £ ,4 (ft) then n(S) has property 9.

(2) 9 is preserved under finite unions in ft. That is, if {S,, • ••, Sn} is a finite
collection of subsets of ft such that each S, has property 9 then S, U • • • U Sn

has property 9.
(3) ft does not have property 9.
(4) W does have property 9.
We denote by W* the set of subsets W C ft which are determined by a

first-order property 0" satisfying (2), (3), (4). We regard W and W* as ordered
by inclusion.

THEOREM 18. There is a functor from W into the lattice of algebraic tight
Riesz orders on A(il).

PROOF. If W E W and {-nu • • •, vn} is a finite subset of A(il) then
ir,( W) U • • • U vrn (W) ^ ft so that F = ft\ W is an ENBH set. We denote by
T(W) the algebraic tight Riesz order on A (ft) corresponding to the A(£l)-
invariant filter of 2n* generated by the filterbase {TT(F): TT £ A (ft)}. Thus,
T(W) = {n<EA +(ft): Fix {IT) C TT,( V¥) U • • • U irn (W) for some TT, £ A (ft)}, so
that W ->• T( W) is a functor from 1T into the lattice of algebraic tight Riesz
orders on A (ft).

COROLLARY 19. There is a functor from W* into the lattice of algebraic
tight Riesz orders on A (ft).

We note also that there is a way of obtaining an algebraic tight Riesz order
from the collection of all subsets of ft satisfying a property for which (l)-(3)
holds. In fact let 9 be such a property. Then the set {TT(F): n £ A (ft), F = ft\S
for some S Cft satisfying 9} is an A (ft)- invariant filterbase of 2n*, and we
denote the corresponding algebraic tight Riesz order by T(9).

Then the assignment W—• T(W) gives us an algebraic tight Riesz order for
each subset W of ft satisfying a property <3> for which (l)-(4) holds, whilst the
assignments 9 —» T(0>) gives us an algebraic tight Riesz order for each
property 9 for which (l)-(3) holds. If W is a subset of ft satisfying 9 then
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In fact then, the ENBH sets are only instances or models of the properties.
For this reason, the following section is written in terms of properties and not
specific models.

6. Automorphisms of the real field

In this section we consider some of the previous results and concepts for
ft = R, the unique complete ordered field. One of the first things to note (and
this is true in general) is the symmetry of the lattice of algebraic tight Riesz
orders (recall that we are conveniently regarding A+(fl) as an algebraic tight
Riesz order).

PROPOSITION 20. The lattice STof algebraic tight Riesz orders on A (ft) has
an automorphism of order 2.

PROOF. We denote by v the anti-automorphism x —* - x of ft. If T is an
algebraic tight Riesz order on A(il) then {v(F): F G f(T)} is an A (ft)- invariant
ideal of <£(ft), and we denote the corresponding algebraic tight Riesz order by
T*. Then T^>T* is an automorphism of ST of order 2.

By exhibiting subsets W of R satisfying TT,( W) U • • • U nn( W) / R for all
finite subsets {TT,, • • •, irn} of A(R), we can list algebraic tight Riesz orders

T( W) = {TT <EA+(R): Fix(7r)C TTX(W) U • • • U irn{ W),

for some finite subset {TT,, • • •, irn} of A (R)}

and similarly by listing properties 91 of the theory of totally-ordered sets that
are not satisfied by R, but are preseved, in R, by permutations and finite unions,
we can list algebraic tight Riesz orders

T{9>) = {v GA+(R): Fix (TT) C TT,(S) U • • • U nn(S), for
some finite subset {TT,, • • •, nn} of ^4(ft), and
someS C R satisfying 3>).

We do this, in part, in the following table where we also state whether the
corresponding T{3") are v4(/?)-prime (or prime), and list the normal subgroups
Orth(/(r(0>))) of A(R). Recall that a tight Riesz order T is prime if given
TTUTT2£A

 +(R) such that TT, V TT2E T then either TT, G T or TT2G T. Similarly T
is A(R)-prime if given TT,, TT2& A*(R) such that TT, V TTTT2TT~X G T for all
IT & A(R) then either TT, G T or TT2G T. We also have a more straightforward
definition of Orth(T) for T a tight Riesz order on A(R), namely

r, v TT2G Timplies TT, v TTT^TT-'G T}

(Note that Orth(T) = Orth(/(T))).
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Algebraic tight Riesz

order, T(3>)

re
Tw

Ty

To

Defining

Property

lower section

upper section

well-ordered

finite

empty

Pnmality

of TO5)

A (R)- prime

A (R)- prime

A(R)-prime
—

A (R)- prime

Orth (T(9>))

A

B

<D
<0
<1>

where
A = {IT G A(R): for some y G R, TT(X) = x for* g y}

and
B = { T T G A(K): for some y G/?, TT(X) = JC for x g y }

We note (c.f. Holland (1963) p. 406) that A, B and C = A DB are the only
proper normal subgroups of A(R).

We now show that Ta is A(.R)-prime and Orth (Ta)= A. Suppose that
77,,7r2G A+(R)\Ta and vr, v Tnr2-n^ G 7; for all TT G A (/?). Then for each y £ R
there exist z,, 2 2 S y for which ir,(z,) = z, and ir,(z2) = z2. We choose n E /4(i?)
such that 7r(z2) = z,, and then n, v T T ^ T T ' ^ Z , ) = z,. Thus, for each y G/?,
77, v 7r7r27r"' has a fixed point larger than y which contradicts TT, V 7777277"'G Ta.
Thus, T« is A(/?)-prime, and clearly not prime. We have immediately
Or thCTJ^ A(R). If 77 G A and 77, V772E7; then there exist y, y'ER such
that IT(X) = X for x g y and 77, v 772(x)>x for X g y'. Then with y" =
max{y, y'} we have 77, v TTTT2IT~\X) > x for x S y", so that 77, v 7777277"1 G Ta.
Thus A C OrthCTJ ^ A(/?), so A = OrthCT,,). A similar srgument gives us the
corresponding statement for Tp.

The tight Riesz order Tw is A(R)-prime since 77 G A*(R)\TW if and only if
Fix (77) contains a subset similar to the inversely-ordered natural numbers, so
given 77,, 772 G A*(R)\Tw we can find nGA(R) such that Fix(77i V 7777277"')
contains a subset of R similar to the inversely-ordered natural numbers.

The tight Riesz order Ty is not A(R)-prime for if we let iru TT2 be
piecewise linear elements of A+(R) with Fix(77i) = {0}U{l/n: n = 1,2, • • •} and
Fix(772) = {2,3,4, •• •} then 77,, 772 ^ Ty but 77, v 7777277"' G Ty for all 77 G A(R).

The transitivity of A(R) gives that To is A(l?)-prime, so it remains to see
that Orth(r») = Orth(TT) = Orth (To) = (1). We do this in the case of To, for
instance, by choosing piecewise linear 77,, 772G A+(R) with 771 V T72G TO and a
piecewise linear 77 G C such that 771 V 7777277"' £ To. Then C^Or th(T 0 ) so
Orth (To) = (1). A similar procedure works for Tw and Ty.
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LEMMA 21. Any tight Riesz order on A(R) obtained as an intersection of
two distinct tight Riesz orders on A(R) fails to be A(R)-prime.

PROOF. Let T, and T2 be tight Riesz orders, such that T - T, n T2 is a
tight Riesz order distinct from both T, and T2. Choose irtG.Ti\T2 and
TT2G T2\r,.Then 7r7r27r~'G T2\T, for all TT G A(R), since nir27r~1G T, implies
ir2 G T, (T, normal). However TT, V TTT^TT"1 > TTI implies irt v TTT^TT"1 G TI (T,
a dual ideal) and similarly IT, v IT ir2v~' G T2, i.e. TT, V irir2n~' G T for all
n e A(R), whence T is not A(R) prime.

It now remains for us to find Orth (Tap). In doing this we use arguments
similar to those used previously in conjunction with the following result.

THEOREM 22. Let T, and T2 be tight Riesz orders onA(R) with T, f~l T2 a
further tight Riesz order, then

Orth (T, D T2) D Orth (T,) n Orth (T2).

PROOF. We have TT, V n2 G T, D T2 => w, v TT2 G T, => TT, v TTTTJ^"' G T,
for TT- G Orth (T,). Similarly, TT, V W2 G T, n T2 4> irt v VV2TT~1 G T2 for
7T G Orth (T2). Thus TT, V TT2 G T, D 72 => TT2 v WTT2V~' G T, D T2 for
7 r G O r t h ( r , ) n O r t h ( r 2 ) .

We complete the table of results as follows:

Algebraic tight Riesz order T Orth (7")

We conclude with some questions that we could not answer satisfactorily:
(1) Let K be a Hausdorff topological space with a subset T satisfying

(i) T is totally-ordered and order-dense
(ii) the induced topology on T is the order topology,
(iii) T is dense in K.
When can the order on T be extended to a total order on K such that the

given topology on K is the order topology?

(2) Does the functor T—>K(T) from the lattice of algebraic tight Riesz orders
into the category of compact Hausdorff spaces preserve finite products and
coproducts?

(3) Is the mapping T—* Orth (T) from the lattice of algebraic tight Riesz orders
into the lattice of normal subgroups of A (fl) a functor? If so, does it preserve
finite products and coproducts?
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(4) Is there an element-wise characterization of minimal G-prime G-invariant
ideals of a distributive lattice L on which a group G acts?

(5) If G is a group acting on a distributive lattice L, are the G- prime
G- invariant ideals of L precisely the finitely-meet-irreducible elements of the
lattice of G- invariant ideals of L?
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