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ABSTRACT. Jakobshavn Isbra is a major ice stream that drains the west-central
Greenland ice sheet and becomes afloat in Jakobshavn Isfjord (69° N, 49° W), where it
has maintained the world’s fastest-known sustained velocity and calving rate (7kma )
for at least four decades. The floating portion is approximately 12 km long and 6 km wide.
Surface elevations and motion vectors were determined photogrammetrically for about
500 crevasses on the floating ice, and adjacent grounded ice, using aerial photographs
obtained 2 weeks apart in July 1985. Surface strain rates were computed from a mesh of
399 quadprilateral elements having velocity measurements at each corner. It is shown that
heavy crevassing of floating ice invalidates the assumptions of linear strain theory that (i)
surface strain in the floating ice is homogeneous in both space and time, (i1) the squares
and products of strain components are nil, and (ii1) first- and second-order rotation com-
ponents are small compared to strain components. Therefore, strain rates and rotation
rates were also computed using non-linear strain theory. The percentage difference
between computed linear and non-linear second invariants of strain rate per element were
greatest (mostly in the range 40-70%) where crevassing 1s greatest. Isopleths of strain
rate parallel and transverse to flow and elevation isopleths relate crevassing to known

and inferred pinning points.

INTRODUCTION

Jakobshavn Isbre becomes afloat in Jakobshavn Isfjord at
69°N, 49°W in Disko Bugt, West Greenland (see Fig. 1). It
has the fastest sustained ice velocity, moving 7kma ' at its
terminus for a half-century (Bader, 196]; Carbonnell and
Bauer, 1968; Lingle and others, 1981; Echelmeyer and others,
1992; Fahnestock and others, 1993; Fastook and others, 1995).
Bader (1961) defined “ice stream” as a fast current of ice
imbedded in an ice sheet, based on Jakobshavn Isbre.
Carbonnell and Bauer (1968) made the first use of aerial
photogrammetry in glaciology to measure velocities of its
floating portion. Lingle and others (1981) made the first meas-
urements of tidal flexure along its grounding lines to study
iceberg calving along tidal crevasses. Echelmeyer and others
(1991,1992) studied the surface morphology and mass balance,
and Fastook and others (1995) photogrammetrically mapped
surface elevations and velocities of 10000 km” of ice conver-
ging on Jakobshavn Isfjord. Wong and others (1998) used
radar sounding to map ice thicknesses over this area. Iken
and others (1993) and Tunk and others (1994) measured
internal temperatures by thermal drilling into the main trunk
of the ice stream, and modeled its dynamics where Clarke and
Echelmeyer (1989) had measured ice thicknesses along seis-
mic profiles. Echelmeyer and Harrison (1990) showed that
seasonal variations of velocity across the grounding line of
the main trunk were not above measurement errors, but tidal
variations were, causing the rear grounding line to migrate.
Reeh (1968) and Fastook and Schmidt (1982) used Jakobshavn
Isbra to study calving caused by arching of floating ice along
the calving front in response to the vertical asymmetry of the
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longitudinal gravitational force. Weidick and others (1990)
showed that the calving front had three episodes of rapid
retreat since the Last Glacial Maximum, first in Disko Bugt
until 8000 years ago, then during Holocene climate warming
until 5000years ago, and in Jakobshavn Isfjord after 1850,
when the Little Ice Age ended. Bindschadler (1984) and Pelto
and others (1989) estimated the mass balance of the Jakobs-
havn ice-drainage system in Greenland.

DATA PRESENTATION

These earlier studies showed that the Jakobshavn ice drain-
age system was close to mass-balance equilibrium from 1964
to 1996, that Jakobshavn Isfjord continues beneath the main
trunk of the ice stream for almost 100 km, that basal ice in the
main trunk is sliding and is polythermal ice some 200m
thick, that supraglacial lakes in the ablation zone can drain
quickly through crevasses, that crevasses prevent surface run-
off of summer meltwater, that crevasses become ubiquitous as
ice becomes afloat, and that the relation between crevassing
and calving is complex. Our study focused on this complex
relationship. We densified by six-fold the number of surface
elevation and velocity measurements made by Fastook and
others (1995) on floating and grounded ice at the head of
Jakobshavn Isfjord, obtaining some 500 velocity vectors.
These were controlled by fixed targets on the fjord sidewalls
that were located by Doppler transit surveys from Earth-
orbiting satellites, and triangulated to moving targets (cre-
vasses, seracs, etc,) on the ice that were visible in aerial photo-
graphs obtained on 10 and 24 July 1985. The local geoid was
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Fig. 1. Jakobshavn Isbre floating in fakobshavn Isfjord at 69° N, 49° W, West Greenland. Photo flight on 24 Fuly 1985 by Henderson
Aerial Surveys, Inc. Surface elevations were contoured at 2 m intervals by KUCERA International.

represented by an ellipsoid with data collated within a geo-
centric coordinate system so that our data could be easily cor-
related with similar data from any other Greenland ice
stream. A Lambert conic projection was used for visualizing
data in the map plane, with each data point accurate to within
20m horizontally and 3.5 m vertically. Details of these meas-
urement procedures are in Prescott (199).

In addition to data collected on moving ice, elevations of
ice-polished side-walls were mapped along Jakobshavn
Isfjord. Asseen in Figure 2, these elevations decrease to sea
level down Jakobshavn Isfjord over some 35 km, and corre-
late with retreat of the calving front since 1850, as reported
by Carbonnell and Bauer (1968) and by Weidick and others
(1990). The former ice elevations show that in 1850 Jakobs-
havn Isbrae was grounded in Jakobshavn Isfjord for some
20km beyond the present-day grounding line, assuming
that the fjord is not deeper than 1000—1500 m below sea level
over this distance, as reported by Echelmeyer and others
(1991). Therefore, retreat of the calving front was accom-
panied by upslope ice thinning.

Surface elevations of floating and grounded ice at the
head of Jakobshavn Isfjord are shown in Figure 3. The main
trunk of Jakobshavn Isbre curves into the fjord just south of a
major icefall. A secondary and much shorter current of ice
enters the fjord just north of the icefall. The two currents of
ice meet at the base of the icefall, where several major longi-
tudinal crevasses open and continue to the calving front, a
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distance of 10 km. These crevasses are collectively called the
Zipper, because they seem to connect the two currents of ice.
Floating ice is about 10m lower in elevation north of the
Zipper. South of the Zipper, the thicker ice spills over the
lower south fjord side-wall and forms a grounded ice lobe in
compressive flow that generates concentric folds along the
lobe margin, except along a small stream-fed ice-dammed
lake, where a calving ice wall develops. A local ice dome
20 m higher than surrounding ice is about 3 km behind the
calving front on the south side. A supraglacial lake covers
thin ice at the base of the icefall just north of the Zipper,
indicating that thin ice pours over a bedrock hill at the head
of the fjord, to produce the icefall. Ice-surface slopes increase
sharply beyond the rear grounding line of floating ice, indi-
cating substantial ice—bed coupling.

Surface velocities of floating and grounded ice at the head
of Jakobshavn Isfjord are shown in Figure 4. Velocity vectors
show that flow from the main trunk of Jakobshavn Isbre
crosses the Zipper, and supplies some 80% of ice at the
north—south calving front. Velocity vectors also show that
much of the ice spilling over the south fjord wall from the
main-trunk ice stream curves back into the fjord and calves
along an east—west calving front, instead of melting on land.
Therefore, longitudinal crevasses in the Zipper are opened by
transverse extension as thick trunk ice pinches out thinner ice
to the north and spills over the fjord wall to the south. The
current of ice entering Jakobshavn Isbra north of the icefall


https://doi.org/10.3189/172756403781816392

Prescott and others: Non-linear strain in the floating part of Jakobshavn Isbre

Fig. 2. Thinning retreat of Jakobshavn Isbre since the Litile Ice
Agein Greenland. Top: ice surface elevations in 1850 ( ?) based
on the upper limit of glacially polished bedrock ( Prescott, 1995).
Bottom: retreat of the calving front, 18501964 ( Carbonnell
and Bauer, 1968).

is not a true ice stream; rather, it is ice drawn into the fjord by
faster ice in the main-trunk ice stream. This induced flow
seems to generate an anticlockwise swirl of velocity vectors
just below the accuracy of measurement in ice entering the
fjord from the north. These ice velocities, ice velocities over
the icefall, and ice velocities in the ice lobe are all small com-
pared to the velocities in the main-trunk ice stream and of
floating ice. Velocity vectors pass over, and partly around, a
local ice dome just behind the south side of the calving front,
indicating that the dome results from weakly grounded ice
that creates ice rumples, not an ice rise. Contoured isopleths
of ice velocity in Figure 5 show that ice velocity peaks at
7kma ' as it crosses the rear grounding line of the main-
trunk ice stream, slows slightly, and peaks again at 7kma '
near the calving front. This suggests other partial grounding
sites in the fjord in addition to the ice rumples. Strong lateral
velocity gradients and shear crevasses rotated to longitudinal
orientations along both fjord side-walls do not extend into the
main-trunk flow of floating ice. This indicates partial lateral
uncoupling of ice from fjord side-walls, possibly due to tidal
flexure concentrated along these crevasses, as analyzed by
Lingle and others (1981).

DATA ANALYSIS

The major assumption controlling analysis of our data is that
rotation rates and strain rates have comparable magnitudes
in heavily crevassed floating ice having horizontal dimen-
sions an order of magnitude greater than the vertical thick-
ness (Truesdale, 1952). These are the conditions for non-
linear strain (Love, 1927, p. 59; Novozhilov, 1953; Sokolnikoff,
1956, p. 28). Displacements u; of points initially at positions x;
give new positions:

&=+ u;. (1)
Differentiating for infinitesimal displacements:

d¢; = (5,] + U,j,j)dl'j = (5,] + e+ w,jj)dl‘j , (2)

where 6;; is the Kronecker delta, such that é;; = 1 for longi-
tudinal displacements ¢ =j and 6;; = 0 for transverse
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Fig. 3. Surface elevations on Fakobshavn Isbre contoured at 5m intervals above the OSU9IAIF geoid ( Prescott, 1995). The bold
line is the tentative grounding line. The long rectangle encloses crevasses in the Zipper.
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Iig. 4. Surface velocity vectors of floating and grounded ice at the head of Jakobshavn Isfjord ( Prescott, 1995). Velocities range over
three orders of magnitude, so slow velocities are only points inside arrowheads.

displacements i # j, u; j = Ou;/0x; when i, j = 1, z2, 3
and Ugj = 8u,/8] when Z,] =T,Y,%z € ZI/Q(U,J + ’U/j,)
are linear strain components, and w;; = 1/2(u; j — u;;) are
angular rotation components.

Forming the squares of the distances between the points
M and N before deformation and between M’ and N after
deformation gives the following:

2 2
ds® = dx;dx; for |MN)|
— (3)
ds”? = dgdg; for |[M'N'|)°.

Taking the difference of the distance squares and using
Equation (1) produces:

where ¢;; are the non-linear (also known as the Cauchy—
Green or finite) strain components defined by:

1
€ij = E(Um‘ + wji + U u ) - (5)

Using Equation (2), Equation (4) can also be defined in
terms of the linear strains:

ds? — ds? = 2{6” +% [(e,;k - w,;k)(ejk., — wjk.,)]} dz; dz; .

(6)
Thus the relation between the linear and non-linear strain
components is:

Eij = €ij +% [(6711« - wzk»)(@jk - wjk:)] : (7)

From Equation (7) it can be seen that the non-linear strain
includes the second-order products between the linear

2 462 — 9 do- ds
ds ds 2ej dw; dzj, (4) strains and rotations.
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Fig. 5. Isopleths of surface velocities contoured at 0.5 km a “intervals at the head of Jakobshavn Isfjord ( Prescott, 1995).
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Fig. 6. A mesh of quadrilateral elements created from point locations on fakobshavn Isbre. Top: the complete mesh. Bottom: the
part of the mesh inside the bold border showing the percentage difference between computed linear and non-linear strain rates for

each element.

Principal strain rates give the largest values of the
normal strain-rate components. Assuming that surface
strain rates do not vary through the floating ice thickness,
the linear and non-linear principal strain rates were com-
puted using the standard relation (Chou and Pagano, 1967,
p.10). In terms of east—west and north—south axes x and y,
respectively parallel and transverse to Jakobshavn Isfjord,
the maximum non-linear normal strain rates are:

. Exz T E.ZZ L. SALEIY
€11 = % + \/Z (E:L';I: + EUU) + E%U (8a)
. 5 T + 5 1 . i 2 -
oy = % B \/Z (E:L'J: + Et/u) + E%u : (8b)

Instead of computing the rotational angle associated with
the principal strain rates, which is coordinate-system
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dependent, the value of maximum non-linear shear strain
rate was computed:

-max L. SN2,
611112(1 = \/Z (E.’L';I: +€yy) +€%y (9)

For linear strain rates, replace £;; with é;; in Equations (8)
and (9). Irom the non-linear adjustment, the standard devi-
ations for the velocity gradients were computed and then
using the law of variance—covariance propagation (e.g. Leick
and Humphrey, 1981, p.102), the standard deviations for the
principal strain rates and maximum shear strain rate were
computed. The relation between the standard deviations for
the velocity gradients and those for the principal strain rates
is:

(10)
153
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Fig. 7. Non-linear principal strain rates computed for each element of the mesh generated from point measurements of surface

velocity on fakobshavn Isbre ( Prescott, 1995).

where Zfl is the variance—covariance matrix of u; j, ZZ/ is
the square of the standard deviations for the principal
strains, and G is the vector describing the linear relation-
ship between %7, and Y. The subscripts ¢ and j range over
the number of parameters in ¥¥ and in the variance—co-
variance matrix, respectively. See Prescott (1995) for further
details.

Figure 6 shows a mesh of 399 quadrilateral elements that
was created from the measured point locations on Jakobshavn
Isbre to compute the linear and non-linear strain rates. For
the majority of the elements, the measured displacements
served as the corners.

As discussed in detail by Prescott (1995), the data were
made more robust using the following technique. The error
estimates for each observation are changed after each itera-
tion so that they are proportional to the computed residuals
(Leick and Humphrey, 1981). In this case, the weights were
set to the inverse of the square of the residuals. This proced-
ure produced the percentage errors of the minimum strain
rate, the minimum shear rate and the second invariant
(7%,8% and 17%).

A comparison was made between the linear and non-
linear strain rates by calculating percentage differences for
the strain rates in the local coordinate system, the principal
strain rates and maximum shear rate, and the second invari-
ant. Although the majority of the principal strain rates and
maximum shear rates agree to within 10%, there still are
about one-third of the data that differ by >20%. The differ-
ence between the second invariants is somewhat worse, with
less than half of the data agreeing to within 10%, and 38%
differing by >20%. For the local coordinate-system strain-
rate components, the comparison is worse. The most notice-
able difference is in the transverse ¥y component, where 30%
ofthe data differ by >50%. Thislarger difference is probably
due to the z-coordinate axis approximately corresponding to
the flow direction, so that the magnitudes of the y-component
strain rates are much smaller. However, based on the statis-
tical methods outlined above, the y-component strain rates
should be considered valid.

154

https://doi.org/10.3189/172756403781816392 Published online by Cambridge University Press

In general, it appears that the maximum shear rate and
the local shear rate give the best agreement between the lin-
ear and non-linear forms. If this is indeed true, then certain
inferences can be drawn about the data. Rewriting Equa-
tion (7) for the two-dimensional case gives:

1 2
o = €xp T 5 [e%/.la + (e.’L'y - w.’L'y) :| (11&)
1 2
Eygy = Eyy + 3 [ef/y + (el.y + wl.y) } (11b)
Exy = Cay T Cap (e:cy + w:cy) + eyy (E;L-y — wl-y) . (11c)

Strain rates are obtained from the strains in Equations (1)
by dividing the strains by the time during which strains were
measured. Equations (11) then show that the invalidity of the
linear form for the normal strain rates could be due to the
square of the normal strain rate not being small compared
to unity, and/or the square of the rotation rate w;; not being
small compared to the normal strain-rate component.

RESULTS

The data analysis showed that non-linear strain theory was
preferable to linear strain theory in accounting for deform-
ation of the floating part of Jakobshavn Isbre. Figure 6
shows the percentage difference per element between the
second invariants of strain rate, € = (% éijéij)l/Q for linear
strain rates and € = (%E'ijéij)lm for non-linear strain rates.
These differences are greatest where crevassing is greatest,
namely, along the Zipper and in the lateral shear zones,
indicating a concentration of rotated elements where ice is
most fractured.

Figure 7 shows non-linear principal strain rates obtained
from the mesh of quadrilateral elements in Figure 6. Since
corners of elements typically coincide with corners of prom-
inent crevasses, each element may be a discrete parcel of ice
within which deformation may be largely homogeneous, with
inhomogenities concentrated between elements. Principal
strain rates confirm transverse extension across the Zipper
as the explanation for opening longitudinal crevasses along
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Fig. 8. Lsopleths contoured at 0.1a ’intervals for non-linear strain rates €, (top) and Eyy (bottom) respectively parallel and
transverse to ice-flow vectors in Figure 4. Also shown is the portion of the finite-element mesh in Figure 5 that was used in these

calculations.

the Zipper, and confirm sub-longitudinal compression in ice
approaching the ice rumples as an explanation for little
velocity change from the rear grounding line to the calving
front. Simple shear, consisting of equal parts pure shear and
rigid rotation, dominates in floating ice north of the Zipper
and between the south grounded ice lobe and the main float-
ing trunk of the ice stream. Pure linear extension, coinciding
with release of the largest icebergs, occurs between the
Zipper and the ice rumples.

Figure 8 shows isopleth contours for non-linear strain rates
Ege parallel to flow and €, transverse to flow. These show
strong extending and compressive flow beyond and behind
the ice rumples, respectively, combined with transverse exten-
sion behind the ice rumples. This indicates a tendency for ice to
flow around the ice rumples as well as across the ice rumples.
Therefore ice grounding beneath the ice rumples is firm
enough to give the ice rumples some characteristics of an ice
rise. Closed strain-rate isopleths scattered over the floating ice
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give hints of partial grounding elsewhere. Longitudinal strain
rates are compressive below the icefall, tensile near the calving
front, and close to zero in between. Transverse strain rates
become increasingly tensile toward the icefall. This is com-
patible with the general absence of large transverse crevasses
and the prominent longitudinal crevasses (the Zipper) in this
region. The near-zero longitudinal strain rate (€,, ~ 0) and
the average extending transverse strain rate (¢,, ~ 02a )
over most of the region from the grounding line to the calving
front allows a calculation of ice thinning over this 10 km
distance due to ice melting on the top and bottom surfaces.
Taking 50 m as the elevation change in Figure 3 and 6.8 km
a ' as the ice velocity in Figure 4, with ice thickness as 9.2
times ice elevation (Echelmeyer and others, 1991), and taking
ézz = _(é.’L'.IJ + El/l/) =-02a :
rate, ice 1012 m thick (110 m high) at the rear grounding line

as the vertical thinning creep

thins by 202ma ' and is 300m thinner at the calving front
due to creep thinning. The actual thinning is 460 m, which
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requires a net melting rate of 109ma . This compares with
44ma ' beneath the floating part of Pine Island Glacier in
Antarctica (Rignot and Jacobs, 2002).

DISCUSSION

Non-linear strain rates are concentrated in the most heavily
crevassed ice, indicating that the assumptions of continuum
mechanics break down in these regions. Longitudinal cre-
vasses in the Zipper are opened by transverse extension.
Floating ice moves with little longitudinal deformation
between the icefall and the calving front. Ice north of the
icefall is drawn into Jakobshavn Isfjord by fast flow in the
main trunk of Jakobshavn Isbre. Flow from the main trunk
occurs along 80% of the north—south calving front. The
position of the calving front is stabilized by ice rumples
south of the Zipper, and perhaps by other partial grounding
elsewhere. Tidal crevasses and rotated shear crevasses sig-
nificantly decoupleice in the main trunk from the fjord side-
walls. Large tabular icebergs are released primarily along
the narrow zone of pure longitudinal extension between
the Zipper and the ice rumples. The size of tabular icebergs
may be determined by the spacing of large transverse cre-
vasses that open as the main-trunk ice stream crosses the
rear grounding line, where ice accelerates and is bent by
tidal flexure, as these crevasses are transported passively to
the calving front. Melting of floating ice on the top and
bottom surfaces is an important ablation process. In the
main trunk of floating ice, 10 km long, 3 km wide, and aver-
aging 550 m thick along the calving front, 3.3 km”a ' of ice
are lost by melting, and 1.2 km® a ' are lost by calving.
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