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TRANSFORMS ON WHITE NOISE FUNCTIONALS
WITH THEIR APPLICATIONS TO CAUCHY

PROBLEMS

DONG MYUNG CHUNG1 AND UN CIG JI

Abstract. A generalized Laplacian AG(K) is defined as a continuous linear op-
erator acting on the space of test white noise functionals. Operator-parameter
GA,B- and TA,B-transforms on white noise functionals are introduced and then
prove a characterization theorem for QA,B and TA,B-transforms in terms of the
coordinate differential operator and the coordinate multiplication. As an appli-
cation, we investigate the existence and uniqueness of solution of the Cauchy
problem for the heat equation associated with AG(K).

§1. Introduction

Gross [5] initiated the study of the theory of differential equations on

infinite dimensional abstract Wiener space (H,B). Suppose φ is a twice

if-differentiable function on B such that its second iJ-derivative φ" is a

trace class operator of H. Then the Gross Laplacian Acφ of φ is defined

by

Acφ = trace# φn.

In [5] Gross studied the solution of the Cauchy problem for the heat equation

associated with the Gross Laplacian

du(x,θ)

It has been shown [5] that the solution can be represented as an integral

with respect to the abstract Wiener measure. For further works see [10],

[15], [19].

Based on the white noise analysis, Kuo [11] formulated the Gross Lapla-

cian Δ G and the number operator TV in terms of the Hida differentiation dt
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and its adjoint <9t*. In [1] Chung and Ji obtained an explicit description of

differentiable one-parameter transformation group whose infinitesimal gen-

erator is αΔc + bN and applied this result to study Cauchy problem for

the heat equation associated with OΛQ + bN on white noise space.

In this paper we first introduce a generalized Laplacian AG(K), called

the iί-Gross Laplacian, which is a continuous linear operator acting on

the space (E) of test white noise functional and next introduce operator-

parameter QA,B~ a n d .T-^i?-transforms on white noise functionals as a gen-

eralization of scalar-parameter Qa,β~ a n d ^"α^-transforms studied in [1, 2].

The purpose of this paper is to extend some results in [1] for the GA,B- and

FA,B-transforms and to investigate the solution of the Cauchy problem for

the heat equation associated with the if-Gross Laplacian AQ(K).

The paper is organized as follows. In Section 2, we give a brief back-

ground and known results in white noise analysis. In Section 3, we define

the iί-Gross Laplacian AQ(K) and study the properties of if-Gross Lapla-

cian. In Section 4, using the characterization theorem for the symbol of an

operator acting on the space (E) due to Obata [18], we define an operator-

parameter transform QA,B acting on (E) and then define the JF^-transform

as TA,B — G*A B I*1 Section 5, we prove a characterization theorem for QA,B

and J~A5β-transforms in terms of the coordinate differential operator and the

coordinate multiplication. In Section 6, we explicitly obtain a differentiable

one-parameter transformation group with infinitesimal generator AQ{K)

and use this result to study the existence and uniqueness of the solutions

of Cauchy problems for the heat equation associated with the generalized

Gross Laplacian AQ{K).

§2. Preliminaries

In this section we shall briefly recall some of concepts, notation and

known results in white noise analysis [1, 2, 8, 14, 18]. Let T be a topological

space with a Borel measure v(dt) = dt. Let H = L2(T, v) be the real Hubert

space of all square integrable functions on T with norm | |o Let A b e a

densely defined self-adjoint operator in H. We assume that there is an

orthonormal basis {ej}|^0 for H contained in the domain of A such that

Aβj = Xjβj, j = 0 , 1 , . . . ,
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WHITE NOISE FUNCTIONALS

oo
ι-21 < AQ < λi < —> oo, and ^ λ 2 < oo.

3=0

In the sequel the following two constants will be used:

p = II^ΊIOP = λo\ s = μ-^Hs = ( Σ λ ;

Note that 0 < p < 1, p < δ. For each p > 0, define

.7=0

and let Ep — {£ 6 i? : |ξ | p < oo}. Then Ep is a real separable Hubert space

with the norm | \p. It is easily seen that Ep C Eq for any p > q > 0 and the

inclusion map Ep+ι ^ £?p is of Hilbert-Schmidt type for any p > 0. Let E

be the projective limit of {Ep : p > 0} and E* the topological dual space of

E. Then E becomes a nuclear space since 0 < δ < oo by assumption, and

we get a GeΓfand triple E C H C E* with the continuous inclusions:

ECEPCH CE^CE\ p>0.

It is known that E* is the inductive limit of {£"* : p > 0} and that the

inductive limit topology of E* coincides with the strong dual topology. We

denote by ( , •} the canonical bilinear form on E* x E.

We further assume that the GeΓfand triple E C H C E* satisfies the

hypotheses (H1)-(H3):

(HI) For each ξ G E there exists a unique continuous function ξ on T such

that ξ(t) = ξ(t) for iA-a.e. t e Γ.

(H2) For each t G T the evaluation map δt : ξ —•» ξ(t), ξ G J5, is a continu-

ous linear functional, i.e., δt G E*.

(H3) The map t ^> δt £ E*, t £ T, is continuous with respect to the strong

dual topology of E*.

Let μ be the Gaussian measure on E* whose characteristic functional

is given by

/ exp{2<x,OM^)=exp{-J|eio}, ξe E.
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We denote by (L2) = L 2 (£"*, μ) the complex Hubert space of μ-square inte-

grable functions on E* with norm || ||o By the Wiener-Itό decomposition

theorem, each φ G (L2) admits an expression

oo

n=0

where fn G H®n (the n-fold symmetric tensor product of the complexifica-

tion of H) and :x®n: denotes the Wick ordering of x®n (see [8]). Moreover,

the (L2)-norm \\φ\\$ of φ is given by

where | |o denotes the ί/^-norm for any n.

Let T(A) denote the second quantization operator of A which is densely

defined on (L2) as follows: For φ(x) = ΣZ=o(:x®n i Λι), T(A)φ(x) is given

by

n=0

For each p G R, define

Let (Ep) = {φ e {L2) : | |^ | | p < oc}. Then (Ep) is a Hubert space with

the norm || | |p. Obviously, (Ep) C (Eq) for any p > q > 0. Let (E)

be the projective limit of {(Ep) : p > 0} and (£J)* the topological dual

space of (U7). Then (£") is a nuclear space and we have a Gel'fand triple

(E) C (L2) C (E)* with the following continuous inclusions:

(E) C (Ep) C (L2) C (Epy C (E)\ p>0.

It is known that (E)* is the inductive limit of {(Ep)* : p > 0} and that

the inductive topology of (E)* coincides with the strong dual topology. An

element in (E) (resp. in (£/)*) is called a test (resp. generalized) white noise

functional. It is obvious that φ E (L2) belongs to (E) if and only if fn G
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for all n and \\φ\\p = (Σ™=onl \fn\2

vΫ
12 < oo for all p > 0. We denote by

((•,•)) the canonical C-bilinear form on (E)* x (E). For each Φ G (£")*, there

exists a unique sequence { F n } ^ 0 , F n G (^c^Osym such

n = 0

for all φ e (£) with 0(:r) = E ^ : * ® " : , /n>, fn € tff". Moreover £ ~ = o n !

|-Fn|-p < oo for some p > 0. In this case we use a formal expression for

Φ e {E)*:

x® n : ,F n ), x G £*.

For each ξ G -EΊc? a n exponential vector </)ξ is defined by

n=0 n

It is well-known that {0ξ : ξ G ̂ c} spans a dense subspace of

The S-transform of Φ G (£")* is a function on £?(c defined by

For Fm G ( ^ m ) * and fm+n G E | ( m + n ) , we denote by F m ® m / m + n G
n uniquely determined by

where F m ® m / m + n is a left contraction (see [18]).

Let φ G (£) be given by φ{x) = Σ^=o('x^ /n> Fo^ y G E\ put

Dyφ(x) = hm — , x G E .

It is known that the limit always exists and Dyφ is given by

oo

Dyψ(x) = Σn{:x®n-ί:,y®1fn), x £ E*.
n=0

Furthermore, Dy becomes a continuous linear operator from (E) into itself.

This operator Dy is called a Gateaux differential operator in the direction
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y E E*. Since the delta functions δt are in E* by (H2), we define dt = D$t,

t E T. This operator dt is called Hida's differential operator.

Let qη, η £ E denote the multiplication by ( , η). Then qη is a continu-

ous linear operator from (E) into itself. Moreover, we have qη = Dη + D*

Let L((£J), (E)*) (resp. L((E), (E))) denote the space of all continuous

linear operator from (E) into (E)* (resp. from (E) into itself). For 0,

Ψ E (JE1), define a function by

hφiψ(sι, ,sι,tιr-,tm) = ((9*x --d^dt! dtmφ,ψ)).

Then /i0 ^ G £"c , and for any /ς G (£"c

 m ^ ) * 5 there exists a continuous

linear operator Ξ/5m(ft) G L((E), (51)*) such that

((Ξ^m(/ί)0,^» = (κ,hφiψ), φ,ψ e (E).

We sometimes use a formal integral expression:

/c(5i, ,s/,ίi, , t m ) S * -'d*dtl •"dtrnds1 - - dsidti - - dtm.
m L L

We call Ξ/5m(ft) an integral kernel operator with kernel distribution K (see

[8, 18]).

For any Ξ G L((E), (£?)*), a function Ξ on Ec x £ c defined by

is called the symbol of Ξ. We note that the map Ξ —» Ξ is injective.

The following theorem is an analytic characterization theorem for sym-

bols of operators on white noise functionals due to Obata [18].

PROPOSITION 2.1. Let θ be a function on Ec x Ec with values in C.

Then there exists a continuous operator Ξ E L((E), (E)) such that θ = Ξ

if and only if

(i) for any ξ, ξι, η, ηι G Ec, the function

is an entire holomorphic function on £ x C;
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(ii) for any p > 0 and e > 0, there exist constants C > 0 and q > 0 such

that

\θ(ξ,η)\ < Cexp{e(\ξ\2

p+q + \η\lp)}, ξ,η G £ c .

/n this case,

HΞ^IIp-! < CM(e, g,r) | |0 | | p + q+ r+i, 0 G (E),

where Mi^e^q^r) is a [finite) constant for e < (2e3<52)~1

; r > ro(q) > 0.

PROPOSITION 2.2. ([18]) For any Ξ G L({E), (£)*), t/iere

) * m ( | m )
)),

unique family of distributions {/^jm}/,m=0; /̂,m ^ (^c )*

(2.1) Ξ = 2_^ Z>l,m(κi,m)>

Z,ra=O

where the series converges in L((E), (-E)*). / / Ξ E L((E), (E)), then

the series (2.1) converges in L((£7), (£"))•

The unique expression given in (2.1) is referred to as the Fock expansion

of Ξ.

§3. Generalized Gross Laplacians

Let L(Ec,E^) and L(ECiEc) be the set of all continuous linear op-

erators from Ec into E^ and those from Ec into itself, respectively. In

this section, we define, for K G L(Ec^E^)y a generalized Gross Laplacian

ΔG(-K'), called the iί-Gross Laplacian.

We denote by r(K) the corresponding distribution to K G

under the canonical isomorphism L(Ec, J5<£) = (.Ec <S> -Ec)*? i e

In particular, τ(/) is a usual tracer, i.e. τ(/) = r. It can be easily shown

that

3=0

where K* is the adjoint operator of K. We note that the integral kernel

operator Ξo^CK^O) associated with τ(K) G (Ec ® -Ec)* is a continuous

linear operator from (E) into itself.
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DEFINITION 3.1. For K G L(EC,E£), the if-Gross Laplacian AQ{K)

is defined by the integral kernel operator given by

= ί τ(K)(s,t)dsdtdsdt.
JT2

In particular Ac (I) — AQ If / is a function such that ξ —•» fζ gives

a continuous operator Mf G L^Ec , E£) (see [3]), then we see that the Mf-

Gross Laplacian Ac(Mf) is given by

AG(Mf) = fτf(t)d2

tdt.

Moreover, if K is the corresponding operator to K G (EC ® -^c)* under the

canonical isomorphism (Ec ® Ec)* = L(Ec,E^), then we have AQ{K) =

Ξo,2(^)
The following two lemmas are easily proved by direct computations.

LEMMA 3.2. Let K e L(EC, ££). For any ξ, η e Ec,

LEMMA 3.3. Let φ(x) = Σ!£=o(-x®n'Jn) e (E). Then for any x e E*,

the series

CXD O O

(n + 2)(ra + l)(:x®n:, (K*ek ® e f c )® 2 / π + 2 )

absolutely converges.

THEOREM 3.4. Let <£(z) = Σ^=o( :a;(8>ri :» fn) € {E). Then for any x G

AG(K)φ(x) = Yj(n + 2)(n

Proof. From Lemma 3.3 we note that

(3.1)
fc=O n=0

Put Ξ = ΣkLo Dκ-ekDek. Then by (3.1) and Lemma 3.2,

«Ξ^,^)) = (((τ(K),ξ®2)φξ,φη)) = ^

https://doi.org/10.1017/S0027763000006292 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006292


WHITE NOISE FUNCTIONALS

Hence Ξφ(x) = AQ{K)Φ{X) for any φ G (E) and x G E*. This completes

the proof.

Remark. For M G L(EC,EC), put if = M*M. Then K G L(EC,E£).

Hence by Theorem 3.4, the K-Gross Laplacian AQ{K) is given by

k=0

Moreover, the symbol AQ{K) of AQ{K) is given by

^ {ζ η\ ξ,η e Ec.

§4. GA,B- a n d ^A^-transforms on white noise functionals

Let GL((E)) (resp. GL((E)*)) denote the group of all linear homeo-

morphisms from (E) (resp. (E)*) onto itself.

LEMMA 4.1. For any A G L(EC,E^) and B G L(ECiEc), there exists

an operator GA,B £ L((E), (E)) such that

GA,BΦζ = foί e x p { ^ | ^ } , ξ G Ec.

Proof. The proof follows from a simple application of Proposition 2.1.

Now we define operator-parameter QA ̂ -transforms (A G L(Ec, E^),

B G L(Ec,Ec)) as a generalization of scalar-parameter £/α ^-transforms

DEFINITION 4.2. The operator <^ ; JB G L((E), (E)) obtained in Lemma

4.1 is called the ^^-transform and the adjoint operator G\ B °f @A,B is

denoted by TA,B a n d is called the ^4^-transform.

THEOREM 4.3. Let A, A' G L(EC,E^) and B, B' G L(EClEc) Then

in order that GA',B'GA,BΦ — Φ for anV Φ £ (^); ^ ^5 necessary and sufficient

that

B'B = / and B*A'B + A = 0 (zero operator).
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Proof. By Lemma 4.1, we have, for any φξ G (E)

GA',B'{GA,BΦO
 = ΦB'Bζ e χ P \

J

Hence we complete the proof.

By duality we have the following theorem.

THEOREM 4.4. Let A, A! G L(EC,E^) and B,B' G L(EC,EC) Then

in order that TA'^B'^A.B^ — Φ for any Φ G (E)*, it is necessary and

sufficient that

BB1 = / and B'*AB' + A' = 0 {zero operator).

Remark. {GA,B \ A e L(EC,E^),B G GL(EC)} (resp. {TA,B I A G

L{EC)E^),B G GL(£C)}) is a subgroup of GL((E)) (resp. GL((E)*)).

The following result shows that the GA^-transform has the integral

representation.

PROPOSITION 4.5. Let A G L(EC)E^) and B, C G L(EC,EC) such

that C*C = A — B*B + /. Then for any φ G (E), GA,BΦ i>s represented by

(4.1) GA,BΦ(X)= f
JE*

Proof It is known [4] that the linear operator φ —> $E* φ(C*y +

B*x) dμ(y) is a continuous from (E) into itself. Hence it suffices to show

that (4.1) holds for all exponential vectors φξ since {φξ : ξ G £c} spans a

dense subspace of (E). Note that φξ is given by
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Using the fact that JE. e^'A^ dμ(y) = e^'A^/2, we have

(Bξ,Bξ)-(ξ,ξ)
/ φζ{C y + B x)dμ(y) = φBξ{x)exp\

JE* '

Thus we complete the proof.

The following theorem gives a characterization for the J^^-transforms.

THEOREM 4.6. Let A e L(EC,E^) and B e L(EC,EC). Then TA,B~

transform is the unique operator in L((£1)*, (E)*) such that for each Φ G

(E)*, the S-transform of J~A,BΦ is given by

S(ΓA,BΦ)(ξ) = SΦ(Bξ) e x p { ^ | ^ } , ξ e Ec.

Proof. Let Φ 6 (E)* and ξ € Ec. Then by the definition of

Hence by Lemma 4.1, we have

S(^A ί j BΦ)(O = ((Φ,^ξ))

so that we complete the proof.

We now obtain an explicit expression of J~A,B&>

THEOREM 4.7. Let A e L(EC,E£), B e L(EC,EC) and let Φ e (E)*

be given by
oo

Ύ^Λ) / ^ χ-1 "i rnj i Γn ^ V^C /sym*

n=0

Then TA,B^ is given by

[n/2]

n=0 x m=0
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Proof. Since S(Φ)(ξ) = Σ^o(Fn,£®n), we have, by Theorem 4.6

L ^ ra!
n=0m=0

OO OO -|

~~ 2-J 2-^ ooo! 9

oo [n/z\

= Σ Σ -Σ Σ ^
n=0 ra=0

Hence we obtain the desired expression of

The following theorem gives an expression of the <5^#-transforms.

THEOREM 4.8. Let A e L(EC,E£), B e L(EC,EC) and ψ e (E) be

given by

n=0

Then GA,BΦ is given by

n

Proof. For any Φ G (E)* with Φ(x) = Σ^=o{ x m ,Fn), we have

oo

n=0

* \ Z^ ^1 9

(n + 2m). PH<\(g)nF \ ^ / 4 \ ^ f \

Σ

Hence we obtain the desired expression of GA,BΦ-

https://doi.org/10.1017/S0027763000006292 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006292


WHITE NOISE FUNCTIONALS 13

THEOREM 4.9. Let A E L(EC,E^) and B E L(EC,EC). Then the

symbols of GA,B and J~A,B are given by

(Bη,ξ)}.

Further, the Fock expansion of QA,B and TA,B are given by

oo ,
'—' / _ / 7~> T 7\ -̂v / Λ\(g>m\

l,m=0
oo

where τ(B — 1,1) e (E®21)* is given by

σo

Proof By the definition of symbol of operator, we have

S Z B ( ^ ) = e x p { ^ | ^ + (Bξ,η)}.

Thus we have

Hence by using the Taylor expansion, we obtain

The rest of proof follows from the duality.

§5. Characterizations of QA,B~ a n d J^A,B-transforms

Let Dη denote the Gateaux differential operator in the direction η E E*.

Then Dη £ L((E), (E)) and D* e L{{E)*, (E)*) for any η E E. For each

η E E1 let qη denote the multiplication by ( ,̂ } Then qη E L((£ l), (E)) for
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any η £ E. For η E E, the operators Z)^ and qη are continuously extended

to operators in L((£")*, (£")*), which are denoted by Z}̂  and qη, respectively.

Moreover, we have qη = Dη + D*

In [7], Hida, Kuo and Obata proved a characterization theorem for the

Fourier-Mehler transform in terms of the operators Dη and qη. In [1], Chung

and Ji proved a characterization theorem for the Ta^-transform in terms

of the operators Dη and qη. In this section, we extend some results in [1]

for the operator-parameter GA,B~ and TA^B-transforms.

DEFINITION 5.1. For each y £ E1* the translation operator Ty is de-

fined by

Tyφ(x) = φ(χ + y), 0 E (£7), x E £7*.

Note that the operator Ty is a continuous linear operator from (E) into

itself (see [21]).

THEOREM 5.2. Let A E L(E£)El) and B E GL(EC). Then the GA,B~

transform has the following properties:

(i) QA,BDV = DB-i*ygA,B, y E E\

(ii) GAIBD* = ΰ * β _ i B - i * ( A + Λ * ) ) r ? ^ , β + g i β - i * ( A + A * h ^ , β , V e E,

(in)

(iv) 5A^T y = TB-^yGAiBf y E

(v) ^

(vi)

Proof. Since {φξ '• ζ £ E^\ spans a dense subspace of (E) and the

operators GA,B-> Dy, Tyi N and AQ(K) are continuous linear operators

from (E) into itself, it is sufficient to prove that for any φξ with ξ E Ec,

the properties (i)-(vi) hold. Let £ E £ c Then

(i) Since for any y E £^*, Dyφξ = (y,ξ)Φξi by Lemma 4.1, we have
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WHITE NOISE FUNCTIONALS 15

and

Hence we have

(ii) By applying Theorem 4.8 and using the relation:

(n + 21 + l)

we obtain

- Θ ( n + 1 ) : > Σ (n + 20!

2/

1=0
oo

n = 0
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1 6 D. M. CHUNG AND U C JI

Since qη=Dη + D*, gA,BD*ηφξ=D*B_1_B_1*{A^))ηgA,BΦξ + qiB-i*{A+A*)η

- We complete the proof.

(iii) Note that qη = Dη + D*. So by (i) and (ii) we have

(iv) We note that for any y G £?*, Tyφξ = ex.p{(y1ζ)}φξ. So we obtain

exp

(v) We note that ΔG(K)φς = (Kξ,ξ)φζ. So we have

gAiBAG(K)φξ = (Kξ,

(vi) We note that Nφζ(x) = Σ^=o n(:x®n:,ξ®n/n\). So by Theorem

4.8, we obtain

GA,BNφξ =

This completes the proof.

Now we will prove a characterization theorem for the QA,B-transform.

For the proof we adopt the method used in [1, 7].

THEOREM 5.3. Let A e L(ECiE^) and B e GL(EC). Suppose AA,B

is a linear operator in L((E), (E)) satisfying the properties (ii) and (iii) in

Theorem 5.2. Then AA,B is a constant multiple of GA,B-

For the proof we need the following proposition.

PROPOSITION 5.4. ([7]) Let L e L((E), (E)) satisfy

(i) Lqη = qηL for every η E E;

(ii) LDη — DηL for every η G E.

Then L is a scalar operator.
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Proof of Theorem 5.3. Suppose ΛA,B is in L((£7), (E)) and satisfies the

properties (ii) and (iii) in Theorem 5.2. Let A1 E L(EC,E^) and B1 G

Ec) satisfy the following equations:

(5.1) B'B = I and B*A'B + A = 0 (zero operator).

Then, using the equations (ii), (iii) in Theorem 5.2 and (5.1), we obtain

Next using (ii) and (iii) in Theorem 5.2 and the equations (5.1) again, we

obtain

Note that Dη = qη - D*. Using (5.2) and (5.3), we have

Hence by Proposition 5.4, ^Λ',B'̂ A,β is & scalar operator. Equivalently,

,B is a constant multiple of the ^

By duality argument for Theorems 5.2 and 5.3, we obtain a character-

ization theorem of the jΓ^-transform.

THEOREM 5.5. Let A, K e L(EC,E^) and B e GL(EC) Then the

FA,B-transform has the following properties:

(i) ΓA,BD; = D*B*yτAiB, y e E\

(ii)

(ill)

η e E,

(iv) TAjB(AG(K))* -

THEOREM 5.6. Let A e L(EC, E£) and B e GL(EC). Suppose ΛA,B is

a linear operator in L((E)*, (E)*) satisfying the properties (ii) and (iii) in

Theorem 5.5. Then ΛA,B is a constant multiple of J~A,B
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§6. Applications to Cauchy Problems

A one-parameter subgroup {Vβ}βeR of GL((E)) is called differentiable

if for every φ G (E),

v VΘΦ-Φ
lim
Θ^O θ

converges in the topology of (E). In this case, a linear operator X from

(E) into itself defined by

χφ = ψj^±, Φe(E)
u—>U ϋ

is called the infinitesimal generator of {Vβ}βeR. It is shown that X G

L((E), (E)) and that for any θ G R and φ G (E), we have

VβXφ = XVβφ = lim
O 6

where the right hand side converges in the topology of (E).

DEFINITION 6.1. A differentiable one-parameter group {V^}^GR with

the infinitesimal generator X is called regular if for any p > 0, there exists

q > 0 such that
Vβφ-φ

hm sup Xφ = 0.

In this section we investigate the following Cauchy problem:

(6.1)

where Δ c ( i ί ) is the iί-Gross Laplacian and φ G (E).

We easily see that {G2θK,l}θeR is a one-parameter subgroup of GL((E)).

The following theorem shows that for any K G L(Ec^E^)1 {G2θKj}θm is

differentiable. For the proof, we will adopt the method used in [1, 18].

THEOREM 6.2. Let K G L(Ec,El). Then {G2θKj}θaι i s a differen-

tiable one-parameter subgroup of GL((E)) whose infinitesimal generator is

AG(K). Moreover, {G2θKj}θem is regular.
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Proof. Note that {G2θK,l}θeR i s a one-parameter subgroup of GL((E)).

Now we consider the operator symbol G2ΘKJ °f GΊΘKJ For any £, η G Ec5

we put

f(θ) =

Then we have

and f"(θ) = (Kξ,ζ)2f(θ).

Let 0O > 0 be fixed. Whenever |0| < θ0, \f"(θ)\ < exp{{θ0

\{ξ,η)\}. Now we put gθ(ξ,η) = f(θ) - /(0) - f(O)θ. Then by the Taylor

theorem, we have \gθ{ζ,v)\ ^ l^|2/2 rnaχ|6>|<(9o \f"(@)\- Hence for any p > 0

and e > 0, there exists q — g(ίί,p, e, #0) > 0 such that

1̂ 1 ~™Γ^/Ί^|2\ , ι_|2^ \η\ίp)}, \θ\ < θ0, ξ,η € Ec.

It then follows from Proposition 2.1 that there exists Ξ# G L((E), (E)) such

that Ξβ = go and

\θ\2

(6.2) | |Ξ^ | | p _i < -γM{e, q, τ)\\φ\\p+q+r+u φ E (E)

for some r > 0. On the other hand, by Lemma 3.2, we see that

Hence we have

Ξθ = g2ΘKtI-I-ΘAG(K).

From (6.2), it follows that

sup
\\φ\\P+q+r+i<l

as θ —> 0. Hence we complete the proof.

THEOREM 6.3. Ze£ K e L(EClE^) and ψ e (E). Put u(x,

G2θK,lΦ(χ) Then we have
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(1) u(Ίθ) e (E) for any θ e R.

(2) u( ,θ) is differentiable with respect to θ in the topology of (E).

(3) u{x,θ) is a unique solution of (6.1) such that u(x,θ) satisfy (1) and

(2).

(4) // there exists C £ L(Ec,Ec) such that K = C*C, then u{x,θ) is

represented by an integral:

ι(x,θ)= ί
JE*

Proof. (1) Follows from the fact that G2ΘK,i e GL((E)).

(2) Since {G2θK,l}θeπ is differentiable, it follows that the limit

lim

exists in (E). Hence (2) follows.

(3) Since d/dθQ2θκjΦ = AG(K)g2θκ,iΦ, u(x,θ) is a solution of (6.1).

To show the uniqueness, let v(x1θ) be any solution of (6.1) such that (1)

and (2) hold. Fix θ e R. Set w(-,e) = G2(θ-e)κjv(^ e ) , e G M. Then it easily

see that w( ,e) is differentiable and

_«;(., e) = -AG(K)g2{θ_e)Kjυ(-,e) + g2(θ-e)κ,i-^-ev(-,ή

= -G2{θ-e)K,lΔG(K)v(; e) + G2(θ-e)K,I^G{K)v(; e)

= 0.

This implies that w( ,e) = M (a constant) for e 6 E. Setting e = 0, e = θ

yields w( ,θ) = w(-,0) = G2ΘKM'> °) = ^θKjΦ But ̂ ( , β) = GOjv(', θ) =

v( , θ). Hence we have v(x,θ) = G2θK,iΦ(%) for every x E E*.

(4) Follows from Proposition 4.5.

Remark 6.4. A similar result of (4) in Theorem 6.3 is given in [4, The-

orem 81 with different proof.
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Let {ek}^L0 C Ec be a complete orthonormal basis for He given in Sec-

tion 2 and let {ak}^L0 C C be a sequence such that there exists p > 0,

Σ£Lo \ak^k

p\2 < oo. Then for any η G Ec, ΈT=oak{v^ek)ek converges in

E^. Moreover, the operator K defined on Ec by

OO

(6.3) K(η) = J2ak(η,ek)ek, η G EC

k=o

is a continuous linear operator from Ec into E^.

COROLLARY 6.5. Let K G L{E£,E^) be defined by (6.3). Then

{02θKj}θeR is a differentiable one-parameter subgroup of GL((E)) whose

infinitesimal generator is AG(K) = Y^?=§akD^k. Moreover, {G2θK,l}θ£R is

regular.

COROLLARY 6.6. Let K G L(EC,E^) be defined by (6.3) and φ G (E).

Put u(x,θ) = θ2θK,lΦ(χ)- Then we have

(1) u(-,θ) G (E) for any θ G R.

(2) u(-,θ) is differentiable with respect to θ in the topology (E).

(3) u(x, θ) is a unique solution of the following equation

such that u(x,θ) satisfy (1) and (2).

(4) u(x, θ) is represented by an integral:

u{x,θ)=

Now we consider the following Cauchy problem:

(6.4) d~^~ = Δ*G(KM*, θ)^ <*^ 0) = Φ(x),

where Φ E (£)*.

By duality of Theorem 6.2 and Theorem 6.3, we have the following

theorems.
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THEOREM 6.7. Let K e L(EC,E£). Then {^ΘKJJΘER
 is a differ-

entiable one-parameter subgroup of GL((E)*) with infinitesimal generator

THEOREM 6.8. Let K e L(EC,E£). Let Φ e (E)* with Φ(x) = Σ™=0

(:x®n:,Fn). Put u(x,θ) = ^ΘKJ^)- Then u{x,θ) is a solution of (6.4)

and u{x, θ) is given by

oo i [n/2] Qm .

u{x,θ) = Σ ( : * 0 r \ Σ —.Fn-2m®τ(K)*m).
n=0 X m=0 m < /
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