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1. Introduction

A solution of the strong (or two-point) Hamburger moment problem for a given doubly
infinite sequence {cn}∞

n=−∞ of real numbers is a positive measure σ on the real line R

such that
cn =

∫ ∞

−∞
tn dσ(t) for n = 0, ±1, ±2, . . . . (1.1)

An important tool in the study of moment problems is the Stieltjes transform F (z, σ) of
a given measure σ, which we define here as

F (z, σ) =
∫ ∞

−∞

dσ(t)
z − t

. (1.2)

The correspondence between measures and their Stieltjes transform is one-to-one. We
shall also need the concept of a Pick function (or Nevanlinna function), that is, a function
which is holomorphic in the open upper half-plane of the complex plane C and maps this
half-plane into the closed upper half-plane; the function with constant value ∞ (on the
Riemann sphere) is included as a Pick function.

We shall in the following assume that the given moment problem is indeterminate,
i.e. it has more than one (hence, infinitely many) solutions. There then exists a one-to-
one correspondence (depending on a real parameter) between all Pick functions ϕ and
all solutions σ of the moment problem described by the formula

F (z, σ) =
α(z)ϕ(z) − γ(z)
β(z)ϕ(z) − δ(z)

, (1.3)
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where α, β, γ, δ are functions which are holomorphic in C \ {0} and satisfy the identity
α(z)δ(z)−β(z)γ(z) = 1 (Nevanlinna parametrization of the strong moment problem). We
refer the reader to [8,11,14] for this result. For the classical Hamburger moment problem
and its associated Nevanlinna parametrization, see, for example, [1–7,10,16–20].

In [14] the following result was proved: for fixed numbers ε and η, with ε > 0 and
0 < η < 1

2π, there exists a constant M(ε, η) such that

|F (z)| � M(ε, η) exp
[
ε

(
|z| +

1
|z|

)]
(1.4)

for 0 < |z| < ∞, η � |arg z| � π − η, where F is any of the functions α, β, γ, δ.
The analogous result for the classical moment problem provides an analogous inequal-

ity (where the exponential factor contains only the term ε|z|) valid in the whole complex
plane (see, for example, [1–3, 16–18]). Our aim in this note is to extend the inequal-
ity (1.4) to an inequality valid in the whole deleted complex plane C \ {0}.

2. Orthogonal Laurent polynomials

For detailed treatments of the topics discussed in this section, see [8,11–15].
The linear space spanned by all the monomials zn, n = 0, ±1 ± 2, . . . , is denoted by

Λ, and the elements of Λ are called Laurent polynomials. The doubly infinite sequence
{cn}∞

n=−∞ defining the given strong moment problem gives rise to a linear functional S

and an inner product 〈· , ·〉 on Λ through the formulae

〈f, g〉 = S[f(z) · ḡ(z)], S[zn] = cn, n = 0, ±1, ±2, . . . . (2.1)

Let {ϕn}∞
n=0 be the essentially unique orthonormal sequence of Laurent polynomials

with respect to this inner product corresponding to the ordering {1, z−1, z, z−2, z2, . . . }.
These functions have the form

ϕ2m(z) =
u2m

zm
+ · · · + υ2mzm, υ2m > 0, (2.2)

ϕ2m+1(z) =
υ2m+1

zm+1 + · · · + u2m+1z
m, υ2m+1 > 0, (2.3)

for m = 0, 1, 2, . . . . All the coefficients of ϕn are real.
The orthonormal Laurent polynomial ϕn is called regular if un �= 0. At least one of the

functions ϕn, ϕn+1 is regular for every n; hence, there is always an infinite subsequence of
{ϕn} consisting of regular elements. For simplicity we assume that all the ϕn are regular.
This does not restrict the validity of the final result.

The associated Laurent polynomials {ψn}∞
n=0 are defined by

ψn(z) = St

[
φn(t) − φn(z)

t − z

]
. (2.4)

All the coefficients of ψn are real.
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Let x0 be an arbitrary fixed point in R \ {0}. We define the functions αn, βn, γn and
δn (depending on x0) by

αn(z) = (z − x0)
n−1∑
k=0

ψk(x0)ψk(z), (2.5)

βn(z) = −1 + (z − x0)
n−1∑
k=0

ψk(x0)ϕk(z), (2.6)

γn(z) = 1 + (z − x0)
n−1∑
k=0

ϕk(x0)ψk(z), (2.7)

δn(z) = (z − x0)
n−1∑
k=0

ϕk(x0)ϕk(z). (2.8)

These functions are Laurent polynomials with real coefficients. They satisfy the identity

αn(z)δn(z) − βn(z)γn(z) = 1 for z ∈ C \ {0}. (2.9)

Furthermore, for a given x0 (except possibly for one value) they are all regular in a
sense analogous to that given above (see [13]). We fix a value of x0 where this regularity
property holds for all n.

In addition to the Laurent polynomials introduced above, we consider the functions
ωn and πn given by

ωn(z) =
n−1∑
k=0

|ϕk(z)|2, (2.10)

πn(z) =
n−1∑
k=0

|ψk(z)|2. (2.11)

The two sequences {ωn(z)} and {πn(z)} converge or diverge simultaneously, and the
moment problem is indeterminate if and only if these sequences converge for all (or,
equivalently, for some) z ∈ C \ R. When the moment problem is indeterminate, the
sequence {ωn(z)} converges locally uniformly in C \ {0} to a function ω(z) and the
sequence {πn(z)} converges locally uniformly in C\{0} to a function π(z). Furthermore,
the sequences {αn(z)}, {βn(z)}, {γn(z)} and {δn(z)} converge locally uniformly in C\{0}
to functions α(z), β(z), γ(z) and δ(z), which are then holomorphic in C \ {0} and satisfy

α(z)δ(z) − β(z)γ(z) = 1 for z ∈ C \ {0}. (2.12)

These functions are those appearing in the Nevanlinna parametrization of the strong
Hamburger moment problem stated in § 1.

A further important fact is that when the moment problem is indeterminate the
inequality ∫ ∞

−∞

ln[ω(t)]
1 + t2

dt < ∞ (2.13)

holds. This is the Riesz criterion for the strong Hamburger moment problem (see [12]).

https://doi.org/10.1017/S0013091505001446 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505001446


184 O. Nj̊astad

3. Inequalities

For proofs of the results in this section, see [14].
The following inequalities hold (with z = x + iy):

ωn(z) � |βn(z)δn(z)|
|y| for y �= 0, (3.1)

|αn(z)| � c0

|y| |βn(z)|, |γn(z)| � c0

|y| |δn(z)| for y �= 0, (3.2)

|gn(z)| � c0

|y| [1 + π(x0)|z − x0|
√

ω(z)] for y �= 0, (3.3)

|hn(z)| � 1 + π(x0)|z − x0|
√

ω(z) for z �= 0, (3.4)

where gn is either of the functions αn or γn and hn is either of the functions βn or δn.
From the Poisson formula it follows that

ln |hn(z)| =
|y|
π

∫ ∞

−∞

ln |hn(ξ)| dξ

(x − ξ)2 + y2 (3.5)

for z outside the real axis and hn is either of the functions βn or δn.
We introduce the angular regions Ωη given by

Ωη = {z ∈ C : η � |arg z| � π − η, |z| > 0}, (3.6)

where 0 < η < 1
2π. By using the Riesz criterion (2.13) it can be shown that, for every

ε > 0, there is a constant B(ε, η) independent of n such that

|hn(z)| � B(ε, η) exp
[
ε

(
|z| +

1
|z|

)]
(3.7)

for all z in Ωη. From this result, together with the inequalities (3.1)–(3.4), it follows that
there exists a constant M(ε, η) independent of n such that

|Fn(z)| � M(ε, η) exp
[
ε

(
|z| +

1
|z|

)]
(3.8)

for all z in Ωη, where Fn is any of the functions αn, βn, γn, δn, ωn. From this the
inequalities (1.4) follow.

4. The general growth theorem

Theorem 4.1. For every positive ε there exists a constant A(ε) such that

|F (z)| � A(ε) exp
[
ε

(
|z| +

1
|z|

)]
(4.1)

for all z ∈ C \ {0}, where F is any of the functions α, β, γ, δ.
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Proof. We first note that, because of the locally uniform convergence of the sequences
{αn(z)}, {βn(z)}, {γn(z)}, {δn(z)}, there is a constant µ such that

|αn(z)| � µ, |βn(z)| � µ, |γn(z)| � µ, |δn(z)| � µ

for all z on the unit circle and all n. In the following (until (4.11)) we assume that
Re(z) > 0.

Let Fn be any of the functions αn, βn, γn, δn, and let η be an arbitrary value in (0, 1
2π).

Let ε > 0. Then, according to (3.8), there exists a constant M(ε cos η, η), independent of
n, such that

|Fn(z)| � M(ε cos η, η) exp
[
ε cos η

(
|z| +

1
|z|

)]
(4.2)

for all z ∈ Ωη.
We let Sη denote the region given by

Sη = {z ∈ C \ Ωη : |z| > 1} (4.3)

and define the function Qn by

Qn(z) = Fn(z)e−εz. (4.4)

This function is holomorphic in C \ {0}, and |Qn(z)| = |Fn(z)|e−εx (with z = x + iy).
For z on the line segments of the boundary ∂Sη we have

|Qn(z)| � M(ε cos η, η) exp
[
ε cos η

(
|z| +

1
|z|

)]
e−ε|z| cos η;

hence,

|Qn(z)| � M(ε cos η, η)eε cos η (since |z| � 1).

For z on the circular arc of ∂Sη we have |Qn(z)| � µe−ε cos η (since eεx � eε cos η).
Thus, for all z ∈ ∂Sη, we have |Qn(z)| � C(ε, η), where

C(ε, η) = max[M(ε cos η, η)eε cos η, µe−ε cos η].

Furthermore, since Fn is a Laurent polynomial, there is a constant Γn such that |Fn(z)| �
Γneε|z| cos η for sufficiently large |z|. Consequently, |Qn(z)| � Γn for all sufficiently large
|z|, z ∈ Sη. (Again recall that eεx � eε|z| cos η). Thus,

lim
r→∞

ln[lnM(r)]
ln r

= 0, where M(r) = max
|z|=r, z∈Sη

|Qn(z)|.

Then, according to the Phragmén–Lindelöf theorem (see, for example, [9, Part II, The-
orem 7.5 with proof]),

|Qn(z)| � C(ε, η) for z ∈ Sη. (4.5)
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Consequently (since x < |z| + 1/|z|),

|Fn(z)| � C(ε, η) exp
[
ε

(
|z| +

1
|z|

)]
(4.6)

for all z in Sη.
Next, let Tη denote the region given by

Tη = {z ∈ C \ Ωη : |z| < 1} (4.7)

and define the function Rn by

Rn(z) = Fn(z)e−ε/z. (4.8)

The function is holomorphic in C \ {0}, and |Rn(z)| = |Fn(z)| exp(−εx|z|−2). For z on
the line segments of ∂Tη \ {0} we have

|Rn(z)| � M(ε cos η, η) exp
[
ε cos η

(
|z| +

1
|z|

)]
exp(−ε|z|−1 cos η)

(note that exp(ε|z|−2) = exp(ε|z|−1 cos η)).
Hence, |Rn(z)| � M(ε cos η, η)eε cos η (since |z| � 1). For z on the circular arc of ∂Tη

we have |Rn(z)| � C(ε, η). Furthermore, since Fn is a Laurent polynomial, there is a
constant ∆n such that

|Fn(z)| � ∆n exp(ε|z|−1 cos η)

for sufficiently small |z|. Consequently, |Rn(z)| � ∆n for all sufficiently small |z|, z ∈ Tη.
(Recall that exp(εx|z|−2) � exp(|z|−1 cos η).) Thus,

lim
z→0, zεEη

|Rn(z)| � ∆n.

Then according to a version of the maximum principle (see, for example, [9, Part II,
p. 208]) we have

|Rn(z)| � C(ε, η) for z ∈ Tη. (4.9)

Consequently (since x/|z|2 < |z| + 1/|z|),

|Fn(z)| � C(ε, η) exp
[
ε

(
|z| +

1
|z|

)]
(4.10)

for all z in Tη.
In a similar way we obtain an estimate

|Fn(z)| � C̃(ε, η) exp
[
ε

(
|z| +

1
|z|

)]
(4.11)

for all z in C \ Ωη with Re(z) < 0.
Now recall that η is an arbitrary fixed value. Taking into account (4.2), (4.6), (4.10)

and (4.11), we find that there exists a constant A(ε) independent of n such that

|Fn(z)| � A(ε) exp
[
ε

(
|z| +

1
|z|

)]
(4.12)

for all z ∈ C \ {0}. From this we conclude that (4.1) holds. �
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Remark 4.2. The inequality (4.1) is equivalent to two inequalities of the form

|F (z)| � A0(ε) exp
[

ε

|z|

]
and |F (z)| � A∞(ε) exp[ε|z|].

It may therefore be natural to state Theorem 4.1 in the following form: the functions
α, β, γ and δ (which are holomorphic in C \ {0}) are of order less than 1 or of order 1
and type 0 at the origin and at ∞.
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