Preregular maps between Banach lattices

David A. Birnbaum

A continuous linear map from a Banach lattice E into a Banach lattice F is preregular if it is the difference of positive continuous linear maps from E into the bidual $F^{\prime \prime}$ of F. This paper characterizes Banach lattices B with either of the following properties:
(I) for any Banach lattice E, each map in $L(E, B)$ is preregular;
(2) for any Banach lattice F, each map in $L(B, F)$ is preregular.

It is shown that B satisfies (1) (respectively (2)) if and only if B^{\prime} satisfies (2) (respectively (1)). Several order properties of a Banach lattice satisfying (2) are discussed and it is shown that if B satisfies (2) and if B is also an atomic vector lattice then B is isomorphic as a Banach lattice to $l^{l}(\Gamma)$ for some index set Γ.

1. Introduction

The following natural question arises in the theory of Banach lattices: Given Banach lattices E and F, is each map in the space $L(E, F)$ of continuous linear maps from E into F the difference of positive (continuous) linear maps? It is known that if F is a $C(X)$ for X an extremally disconnected, compact Hausdorff space X or if E is an $A L$-space and F has the monotone convergence property then the answer to

Received 17 May 1974.
this question is affirmative ([10], Chapter 4, (3.7) and (3.8)). On the other hand, $L\left(z^{2}, z^{2}\right)$ contains maps that are not the difference of positive linear maps, ([10], Chapter 4, (3.3)). Schlotterbeck [16] has shown that if F is an $A M$-space or if E is an $A L$-space then each map in $L(E, F)$ is the difference of positive linear maps into the bidual $F^{\prime \prime}$ of F.

The main goal of this paper is to characterize (in 53) Banach lattices B with either of the following properties.

PROPERTY I. For any. Banach lattice E, each map in $L(E, B)$ is the difference of positive linear maps of E into $B^{\prime \prime}$.

PROPERTY II. For any Banach lattice F, each map in $L(B, F)$ is the difference of positive linear maps of B into $F^{\prime \prime}$.

The characterizations that we obtain indicate that such spaces are similar to $A M$ - and $A L$-spaces. In particular, we show that a Banach lattice has Property I (respectively Property II) if and only if B^{\prime} has Property II (respectively Property I).

In $\S 4$, we study some order properties of a Banach lattice with Property II. We also show that $L^{p}[0,1], 1<p<\infty$, possesses neither Property I nor Property II. Finally in $\S 5$ we show that with the additional assumption that a Banach lattice G is an atomic lattice, G is isomorphic as a Banach lattice to $Z^{l}(\Gamma)$ for some index set Γ whenever G has Property II.

2. Preliminary material

For general terminology and notation concerning functional analysis we refer the reader to [15] while our reference for ordered locally convex spaces will be [10].

By a map between Banach spaces we will always mean a continuous linear map. A sequence in a Banach space is surmable (respectively absolutely summable) if it is unconditionally convergent (respectively absolutely convergent).

A map from a Banach lattice E into a Banach space F is order summable if it maps positive summable sequences into absolutely summable
sequences. $S_{+}(E, F)$ denotes the space of order summable maps from E into F. A map from a Banach space into a Banach lattice is majorizing if its adjoint is order summable. Majorizing maps can also be defined as maps that take null sequences into order bounded sets; (see [16], Chapter I, and [4]).

A map from a Banach space E into a Banach space F is absolutely swmable if it maps summable sequences into absolutely summable sequences. The space of absolutely summable maps of E into F is denoted by $S(E, F)$. A map between Banach spaces is absolutely majorizing (hypermajorizing in [16]) if its adjoint is absolutely summable. The following results characterize these types of maps. For proofs see [16], (3.5), (3.6), and (3.7), or $[6],(6.6),(6.7)$, and (6.8).

PROPOSITION 2.1. If E and F are Banach spaces and if $T \in L(E, F)$, then the following statements are equivalent:
(1) T is absolutely summable;
(2) T^{\prime} is absolutely majorizing;
(3) for every Banach Lattice H and $S \in L(H, E), T \circ S$ is order sumable;
(4) for each $S \in L\left(c_{0}, E\right), T \circ S$ is order summable.

PROPOSITION 2.2. If E and F are Banach spaces and if $T \in L(E, F)$, then the following statements are equivalent:
(1) T is absolutely majorizing;
(2) T^{\prime} is absolutely summable;
(3) for every Banach Zattice H and $S \in L(F, H), S \circ T$ is majorizing;
(4) for every $S \in L\left(F, Z^{1}\right), S \circ T$ is majorizing.

Absolutely summable and absolutely majorizing maps can be factored through Hilbert spaces $([16],(3.8))$ and so are weakly compact.

We need the following four topologies on the tensor product $E \otimes F$ of two Banach spaces E and F.
(i) $E \widetilde{\bigotimes}_{\pi} F$ is the completion of $E \otimes F$ for the norm

$$
\|u\|=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

(ii) $E \widetilde{\bigotimes}_{E} F$ is the completion of $E \otimes F$ for the norm
$\|u\|=\sup \left\{\left|\sum_{i=1}^{n}\left(x_{i}, x^{\prime}\right\rangle\left(y_{i}, y^{\prime}\right)\right|: x^{\prime} \in E^{\prime},\left\|x^{\prime}\right\| \leq 1, y^{\prime} \in F^{\prime},\left\|y^{\prime}\right\| \leq 1\right\}$, where $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ is any representation of $u \in E \otimes F$.
(iii) $E \widetilde{\otimes}_{\sigma} F$ is the completion of $E \otimes F$ for the norm

$$
\|u\|=\inf \left\{\sup _{\left|c_{i}\right| \leq 1}\left\|\sum_{i=1}^{n} x_{i} c_{i}\right\| y_{i}\| \|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

(iv) If E is also a Banach lattice with cone K then $E \widetilde{\mathbb{\theta}}_{|\sigma|} F$ is the completion of $E \otimes F$ for the norm
$\|u\|=\inf \left\{\left\|\sum_{i=1}^{n} x_{i}\right\| y_{i}\| \|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i} \quad\right.$ and $x_{i} \in K$

$$
\text { for } i=1, \ldots, n\}
$$

Jacobs [4] has shown that $\tau_{\varepsilon} \leq \tau_{\sigma} \leq \tau_{|\sigma|} \leq \tau_{\pi}$, that $\left(E \widetilde{\bigotimes}_{\sigma} F\right)^{\prime}=S\left(E, F^{\prime}\right)$, and that $\left(E \widetilde{\bigotimes}_{|\sigma|} F\right)^{\prime}=S_{+}\left(E, F^{\prime}\right)$. Moreover, for maps $T \in S_{+}(E, F)$, the norm of T in $\left(E \widetilde{\bigotimes}_{|\sigma|} F\right)^{\prime}$ is given by

$$
\begin{array}{r}
|\sigma|^{\prime}(T)=\inf \left\{M: \sum_{i=1}^{n}\left\|T x_{i}\right\| \leq M \sup \sum_{i=1}^{n}\left|\left\langle x_{i}, x^{\prime}\right\rangle\right|\right. \\
\text { for all finite sets } \left.\left\{x_{1}, \ldots, x_{n}\right\} \subset K\right\} .
\end{array}
$$

Let E and F be Banach lattices with cones K and H respectively. In $E \otimes F$ define the projective cone K_{p} by $K_{p}=\left\{\sum_{i=1}^{n} x_{i} \otimes y_{i}: x_{i} \in K, y_{i} \in H\right\}$. Then it is easy to see that for the dual system $\left\langle E \tilde{\bigotimes}_{|\sigma|} F, S_{+}\left(E, F^{\prime}\right)\right\rangle, \bar{K}_{p}^{\prime}$ equals the cone of positive maps
in $S_{+}\left(E, F^{\prime}\right)$. It follows from the definition of the dual norm $|\sigma|^{\prime}$ that this latter cone is normal in $S_{+}\left(E, F^{\prime}\right)$ for the $|\sigma|^{\prime}$-topology. Since this cone is also generating in $S_{+}\left(E, F^{\prime}\right)([16],(2.2))$, it follows from [10], Chapter 2, (1.22), that \bar{K}_{p} is normal and generating in $E \widetilde{\bigotimes}_{|\sigma|} F$.

If E and F are Banach lattices and if $T \in L(E, F)$, then T is regular (respectively preregular) if T is the difference of positive linear maps of E into F (respectively E into $F^{\prime \prime}$).

If E and F are Banach spaces and $T \in L(E, F)$ then T is integral if the bilinear form b_{T} defined on $E \times F^{\prime}$ by

$$
b_{T}\left(x, y^{\prime}\right)=\left\langle T x, y^{\prime}\right\rangle
$$

is an element of $\left(E \widetilde{\otimes}_{E} F^{\prime}\right)^{\prime}$. Integral maps are both absolutely summable and absolutely majorizing. For more information see [16], Chapter 3, or [6], Chapters 5 and 6.

A Banach lattice E is an $A M$-space if $x, y \in E, x, y \geq 0$, imply that $\|x \vee y\|=\|x\| \vee\|y\|$. A Banach lattice E is an $A L$-space if $x, y \in E, x, y>0$ imply that $\|x+y\|=\|x\|+\|y\|$. If F is an $A L$-space then $E \widetilde{\bigotimes}_{\sigma} F=E \widetilde{\bigotimes}_{\varepsilon} F$ for all Banach spaces E (for a proof of this result see $[6],(6.3)$).

The following characterizations of $A M$ - and $A L$-spaces (see [16], Chapters 1 and 4) are included so that we may compare them with our results, Theorems 3.3 and 3.7 .

PROPOSITION 2.3. The following statements about a Banach Zattice E are equivalent:
(1) E is isomorphic as a Banach lattice to an AM-space;
(2) every null sequence in E is majomized;
(3) every order sumable map from E into a Banach space is integral.

PROPOSITION 2.4. The following statements about a Banach Zattice E are equivalent:
(1) E is isomorphic as a Banach Zattice to an AL-space;
(2) every positive sumable sequence in E is absolutely summable;
(3) every majorizing map from a Banach space into E is integral.

If E is a Banach lattice and $0 \leq x \in E$ we denote by E_{x} the linear hull of the order interval $[-x, x]$ with $[-x, x]$ as unit ball. If we order E_{x} by restricting the order on E then E_{x} is an $A M$-space.

3. Preregular maps

In this section we characterize Banach lattices with Property I or Property II and show that Property I and Property II are dual to each other.

DEFINITION. If E is a Banach space, then $Z^{\perp}[E]$ will denote the space of summable sequences in E with the norm

$$
\varepsilon\left(\left\{x_{n}\right\}\right)=\sup _{\left\|x^{r}\right\|_{\leq 1}} \sum_{n=1}^{\infty}\left|\left\langle x_{n}, x^{\prime}\right\rangle\right|
$$

Pietsch [14] has shown that $l^{l}[E]$ is isomorphic to $l^{l} \widetilde{\bigotimes}_{\varepsilon} E$. If, in addition, E is a Banach lattice, then this isomorphism is an order isomorphism where we consider the cone C of positive summeble sequences in $Z^{1}[E]$ and the closure \bar{K}_{p} of the projective cone in $\mathcal{l}^{\mathcal{l}} \widetilde{\otimes}_{\varepsilon} E$. In this case the norm

$$
\bar{E}\left(\left\{x_{n}\right\}\right)=\sup _{\substack{\left\|x^{\prime}\right\| \leq 1 \\ x^{\prime} \geq 0}} \sum_{n=1}^{\infty}\left|\left\langle x_{n}, x^{\prime}\right\rangle\right|
$$

is equivalent to the ε norm.
LEMMA 3.1. If E is a Banach Lattice then $\left[2^{l}[E], C\right)$ is a vector Zattice if and only if every sumable sequence in E is the difference of positive sumnable sequences. In this case, $\left(Z^{I}[E], C\right)$ is a Banach Zattice.

Proof. Necessity is clear, so suppose that for every $\left\{x_{n}\right\} \in \mathcal{I}^{1}[E]$, $\left\{x_{n}\right\}=\left\{y_{n}\right\}-\left\{z_{n}\right\}$ where $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ are positive summable sequences. Since $0 \leq x_{n}^{+} \leq y_{n}$, it easily follows that $\left\{x_{n}^{+}\right\}$is summable. Therefore, $\left\{x_{n}^{+}\right\}=\left\{x_{n}\right\}^{+}$and $\mathcal{Z}^{1}[E]$ is a vector lattice.

When $l^{1}[E]$ is a vector lattice, the $\bar{\varepsilon}$ norm is clearly monotone on the cone C and so $Z^{1}[E]$ is a Banach lattice by [8], (8.4).

EXAMPLES 3.2. $\tau^{1} \widetilde{\otimes}_{\varepsilon} \imath^{1}$ is not a vector lattice. For if it were, then every summable sequence in $Z^{\mathcal{I}}$ would be the difference of positive summable sequences. But then every summable sequence in l^{1} would be absclutely summable (by Proposition 2.4) which would contradict the Dvoretzky-Rogers Theorem.

If X is a compact Hausdorff space, then $Z^{1}[C(X)]$ is a vector lattice. This is contained in Remarks 3.4, but can easily be shown directly by noting that $\tau^{1} \widetilde{\otimes}_{\varepsilon} C(X)$ is order and topologically isomorphic to $C\left(X, 2^{1}\right)$, the space of continuous functions from X into Z^{l}, and that the cone of positive functions in $C\left(X, l^{1}\right)$ is a lattice cone.

We now characterize Banach lattices with Property I.
THEOREM 3.3. If H is a Banach Lattice with cone K then the following assertions about H are equivalent:
(1) every summable sequence in H is the difference of positive summable sequences;
(2) $\left(\imath^{1} \tilde{\otimes}_{\varepsilon} H, K_{p}\right)$ is a vector Zattice;
(3) H has Property I, that is, every map from a Banach Lattice into H is preregular;
(4) each map in $\mathrm{L}\left(c_{0}, H\right)$ is preregular;
(5) every order sumable map from H into a Banach space is absolutely summable.

Proof. That (1) is equivalent to (2) follows from Lemma 3.1 and that (3) implies (4) is clear.
(2) implies (3). Let E be a Banach lattice and $T \in L(E, H)$. Since $H^{\prime \prime}$ is a Banach lattice all, positive linear maps from E into $H^{\prime \prime}$ are continuous $([10]$, Chapter $2,(2.16)$), and so it suffices to show that $T^{+}: E \rightarrow H^{\prime \prime}$ exists. To do this we must show that for each $x \in E$, $x \geq 0$, the set

$$
B_{x}=\left\{\sum_{n=1}^{k}\left(T x_{n}\right)^{+}: x=\sum_{n=1}^{k} x_{n}, x_{n} \in K \text { for all } n\right\}
$$

has a supremum in $H^{\prime \prime}$; (see [10], Chapter 2, Section 2, equation (9)).
By Lemma 3.1, $l^{1} \widetilde{\bigotimes}_{\varepsilon} H$ is a Banach lattice and hence the map $\phi: \mathcal{L}^{\beth} \bigotimes_{\varepsilon} H \rightarrow \mathcal{L}^{\mathcal{I}} \dddot{\bigotimes}_{\varepsilon} H$ defined by $\phi\left(\left\{y_{n}\right\}\right)=\left\{y_{n}^{+}\right\}$is continuous. Let $\psi: Z^{I} \mho_{\varepsilon} H \rightarrow H$ be defined by $\psi\left(\left\{y_{n}\right\}\right)=\sum_{n=1}^{\infty} y_{n}$. Then ψ is continuous, since

$$
\begin{aligned}
\left\|\psi\left(\left\{y_{n}\right\}\right)\right\| & =\sup _{\left\|y^{\prime}\right\| \leq 1}\left|\sum_{n=1}^{\infty}\left\langle y_{n}, y^{\prime}\right\rangle\right| \\
& \leq \sup _{\left\|y^{\prime}\right\| \leq 1} \sum_{n=1}^{\infty}\left|\left\langle y_{n}, y^{\prime}\right\rangle\right| \\
& =\phi\left(\left\{y_{n}\right\}\right) .
\end{aligned}
$$

For each $0 \leq x \in E$, define

$$
\begin{aligned}
& A_{x}=\left\{\left\{x_{n}\right\} \in l^{l}[E]: \text { for some } k, x_{n}=0 \text { for } n \geq k+1,\right. \\
& \\
& \left.\quad x_{n} \geq 0 \text { for all } n \text { and } \sum_{n=1}^{k} x_{n}=x\right\} .
\end{aligned}
$$

Then for $\left\{x_{n}\right\} \in A_{x}$,

$$
\bar{\varepsilon}\left\{x_{n}\right\}=\sup _{\substack{\left\|x^{\prime}\right\| \leq 1 \\ x^{\prime} \geq 0}} \sum_{n=1}^{k}\left\langle x_{n}, x^{\prime}\right\rangle=\|x\|
$$

Therefore, the set A_{x} is bounded in $\imath^{l} \widetilde{\theta}_{E} E$ and hence the set

$$
[\psi \circ \phi \circ(1 \otimes P)](A x)=\left\{\sum_{n=1}^{k}\left(T x_{n}\right)^{+}:\left\{x_{n}\right\} \in A_{x}\right\}=B_{x}
$$

is topologically bounded in H. A standard argument using the decomposition lemma shows that B_{x} is also directed (\leq). By [10], Chapter 4, (1.8), $H^{\prime \prime}$ is boundedly order complete (that is, every topologically bounded, directed (\leq) subset has a supremum) and so B_{x} has a supremum in $H^{\prime \prime}$.
(4) implies (5). Suppose that F is a Banach space, that $T: H \rightarrow F$ is order summable and that $S \in L\left(c_{0}, H\right)$. Then $S=S_{1}-S_{2}$ where $0 \leq S_{1}, S_{2} \in L\left(c_{0}, H^{\prime \prime}\right)$. Therefore, $T^{\prime \prime} \circ S=T^{\prime \prime} \circ S_{1}-T^{\prime \prime} \circ S_{2}$ is order summable and hence $T^{\prime \prime}$ is absolutely summable by Proposition 2.1. It follows from Propositions 2.1 and 2.2 that T is absolutely summable.
(5) implies (2). If F is a Banach space, then

$$
\left(H \otimes_{\sigma} F\right)^{\prime}=S(H, F)=S_{+}(H, F)=\left(H \Theta_{|\sigma|} F\right)^{\prime}
$$

Since σ and $|\sigma|$ are both norm topologies it follows that $\sigma=|\sigma|$. Hence, in particular,

$$
H \widetilde{\mathbb{Q}}_{|\sigma|} \imath^{1}=H \widetilde{\otimes}_{\sigma} \imath^{l}=H \widetilde{\bigotimes}_{E} \imath^{l}
$$

Therefore, by the discussion in $\S 2$, the cone \bar{K}_{p} is generating in $\eta^{1} \widetilde{\otimes}_{\varepsilon} H$ and so the latter space is a vector lattice.

This completes the proof of Theorem 3.3.
REMARKS 3.4. (I) It follows from the proof of Theorem 3.3 that if H is boundedly order complete (for example, if H is a dual Banach lattice and satisfies any of the conditions of Theorem 3.3) then each map in $L(E, H)$ is regular and so $L(E, H)$ is a vector lattice for every Banach lattice E.
(2) If H is an $A M$-space then H has Property II. This follows from [10], Chapter 4, (3.7), and the fact that H is isomorphic as a Banach lattice to a $C(X)$ for a stonean space X.
(3) In Theorem 3.3, (2) is equivalent to (3) in more general circumstances. In particular, if H is a Fréchet lattice such that H_{B}^{\prime} is barrelled or such that H is boundedly order complete then this equivalence holds. If $\left\{H_{n}\right\}$ is a sequence of such spaces with Property I then one can show that $\prod_{n=1}^{\infty} H_{n}$ is also a Frechet lattice with Property I. Therefore, $\prod_{n=1}^{\infty} C\left(X_{n}\right)$, where each X_{n} is a compact, Hausdorff space, is an example of a Fréchet lattice with Property I.
(4) If H is a nuclear Fréchet lattice then $z^{1} \widetilde{\otimes}_{\varepsilon} H=z^{1} \widetilde{\otimes}_{\pi} H$ which equals the space of absolutely summable sequences in H ([14]). The latter space is a vector lattice and so $Z^{1} \widetilde{\otimes}_{E} H$ is a vector lattice. Since H_{β}^{\prime} is barrelled, it follows that H has Property I.
(5) The characterization in Proposition 2.3 of an $A M$-space indicates that a Banach lattice with Property I is similar to an $A M$-space.

We now show that Properties I and II are dual to each other.
PROPOSITION 3.5. A Banach lattice B has Property II (respectively Property I) if and only if its dual B^{\prime} has Property I (respectively Property II).

Proof. B has Property II implies B^{\prime} has Property I. Suppose that E is a Banach lattice and that $T \in L\left(E, B^{\prime}\right)$. Then $T^{\prime}: B^{\prime \prime} \rightarrow E^{\prime}$ and the map $S=\left.T^{\prime}\right|_{B}: B \rightarrow E^{\prime}$ is regular, since B has Property II. Therefore, $S^{\prime}: E^{\prime \prime} \rightarrow B^{\prime}$ is regular. If $x \in E$ and $y \in B$ then

$$
\left\langle S^{\prime} x, y\right\rangle=\langle x, S y\rangle=\left\langle x, T^{\prime} y\right\rangle=\langle T x, y\rangle .
$$

Therefore, $\left.S^{\prime}\right|_{E}=T$ and hence T is regular.
B^{\prime} has Property I implies B has Property II. Suppose that E is a Banach lattice and that $T \in L(B, E)$. Then $T^{\prime}: E^{\prime} \rightarrow B^{\prime}$ is regular and so $T^{\prime \prime}: B^{\prime \prime} \rightarrow E^{\prime \prime}$ is regular. Therefore, $T=\left.T^{\prime \prime}\right|_{B}$ is preregular.
B has Property I implies B^{\prime} has Property II. We first show that every majorizing map into B^{\prime} is absolutely majorizing. Let E be a

Banach space and $S \in L\left(E, B^{\prime}\right)$ be majorizing. Then $S^{\prime}: B^{\prime \prime} \rightarrow E^{\prime}$ is order summable and so $T=\left.S^{\prime}\right|_{B}: B \rightarrow E^{\prime} \quad$ is order summable and hence absolutely summable since B has Property I. Therefore, $T^{\prime}: E^{\prime \prime} \rightarrow B^{\prime}$ is absolutely majorizing and so, by Proposition 2.2, $R \circ T^{\prime}$ is majorizing for all $R \in L\left(B^{\prime}, Z^{\prime}\right)$. Hence, $\left.\left(R \circ T^{\prime}\right)\right|_{E}=R \circ\left(\left.T^{\prime}\right|_{E}\right)$ is majorizing. Since this is true for all $R \in L\left(B^{\prime}, Z^{l}\right)$, Proposition 2.2 implies that $\left.T^{\prime}\right|_{E}=S$ is absolutely majorizing.

We now show that $B^{\prime \prime}$ has Property I. This will imply that B^{\prime} has Property II by an earlier part of this theorem. By Theorem 3.3 it is enough to show that $L\left(c_{0}, B^{\prime \prime}\right)$ is a vector lattice and to do this it suffices to show that the projective cone in $c_{0} \widetilde{\otimes}_{\pi} B^{\prime}$ is normal. Since $c_{0} \widetilde{\otimes}_{\pi} B^{\prime}=B^{\prime} \widetilde{\otimes}_{\pi} c_{0}$, this is equivalent to showing that $L\left(B^{\prime}, Z^{1}\right)$ is a vector lattice. So, let $T \in L\left(B^{\prime}, Z^{1}\right)$. To see that T^{+}exists in $L\left(B^{\prime}, Z^{l}\right)$ let $x \in B^{\prime}, x \geq 0$, and let B_{x}^{\prime} be the linear hull of $[-x, x]$ with unit ball $[-x, x]$. Let $I: B_{x}^{\prime} \rightarrow B^{\prime}$ be the inclusion map. Since B_{x}^{\prime} is an $A M$-space and I is a positive map, I is majorizing and hence absolutely majorizing by what we have just proved about B^{\prime}. Proposition 2.2 thus implies that T o I is majorizing. It follows that $T \circ I([-x, x])=T([-x, x])$ is bounded above in Z^{l} (see [16], (1.5)). Therefore, T^{+}exists and is necessarily continuous. Since T was chosen arbitrarily in $L\left(B^{\prime}, Z^{l}\right)$, it follows that $L\left(B^{\prime}, Z^{l}\right)$ is a vector lattice.
B^{\prime} has Property II implies B has Property I. Suppose that E is a Banach lattice and $T \in L(E, B)$. Then $T^{\prime}: B^{\prime} \rightarrow E^{\prime}$ is regular and so $T^{\prime \prime}: E^{\prime \prime} \rightarrow B^{\prime \prime}$ is regular. Therefore, $\left.T^{\prime \prime}\right|_{E}=T$ is preregular.

COROLLARY 3.6. If H is a Banach Zattice with Property I then $L\left(E, H^{\prime \prime}\right)$ is an order complete vector Zattice for any Banach lattice E.

Proof. This follows from Proposition 3.5, (3.4) of Chapter 4 in [10], and the fact that there is a positive continuous projection from $H^{\prime \prime \prime \prime}$ into $B^{\prime \prime}$.

THEOREM 3.7. If G is a Banach lattice then the following assertions about G are equivalent:
(1) for any Banach lattice F, the closure of the projective cone K_{p} is normal in $G \widetilde{\otimes}_{\pi} F$;
(2) \bar{K}_{p} is normal in $G \widetilde{\bigotimes}_{\pi} c_{0}$;
(3) G has Property II, that is, every map from G into a Banach lattice is preregular;
(4) $L\left(G, Z^{1}\right)$ is a vector lattice;
(5) every majorizing map from a Banach space into G is absolutely majorizing.

Proof. That (1) implies (2), and that (2) is equivalent to (4) is clear. If (2) holds then $L\left(c_{0}, G^{\prime}\right)$ is a vector lattice and so G^{\prime} has Property I by Theorem 3.3. Therefore, G has Property II by Proposition 3.5. (3) easily implies (1) by [10], Chapter 2, (1.22), and so (1), (2), (3), and (4) are equivalent.

Suppose that (3) holds, that E is a Banach space, and that $T: E \rightarrow G$ is majorizing. Then $T^{\prime}: E^{\prime} \rightarrow G^{\prime}$ is order summable and hence absolutely summable since G^{\prime} has Property I. Therefore, T is absolutely majorizing and hence (5) holds. Finally, if (5) holds then one can show that $L\left(G, Z^{l}\right)$ is a vector lattice in a manner similar to the latter part of the proof of Proposition 3.5. This completes the proof.

We remark that Proposition 2.4 and Theorem 3.7 show that a Banach lattice with Property II has a characterization similar to that of an $A L$-space.

4. Order properties of a Banach lattice with Property II

PROPOSITION 4.1. A Banach Zattice G with Property II has $\sigma\left(G, G^{\prime}\right)$ compact order intervals.

Proof. Let $x \geq 0$ in G. Since G_{x} is an $A M$-space, the inclusion map $I: G_{x} \rightarrow G$ is majorizing, hence absolutely majorizing by Property II. Therefore $I([-x, x])=[-x, x]$ is $\sigma\left(G, G^{\prime}\right)$ compact in G.

DEFINITIONS. A sequence $\left\{x_{n}\right\}$ in a Banach space E is called weakly summable if $\sum_{n=1}^{\infty}\left|\left\langle x_{n}, x^{\prime}\right\rangle\right|<\infty$ for all $x^{\prime} \in E^{\prime}$.

It follows from the fact that weakly bounded sets in E are norm bounded that if $\left\{x_{n}\right\}$ is a weakly summable sequence then

$$
\varepsilon\left(\left\{x_{n}\right\}\right)=\sup _{\left\|x^{\prime}\right\| \leq 1} \sum_{n=1}^{\infty}\left|\left\langle x_{n}, x^{\prime}\right\rangle\right|
$$

is finite. Note that $\left\{x_{n}\right\}$ is summable in E if it is weakly summable and the net $\left\{\left\{x_{n}\right\}_{n \in \sigma}: \sigma\right.$ is a finite subset of $\left.N\right\}$, where N is the set of natural numbers, converges to $\left\{x_{n}\right\}_{n=1}^{\infty}$ for the ε-topology on $\mathcal{L}^{1}[E]$. For more details see [12], Chapter 1.

A Banach lattice has the monotone convergence property if the filter of sections of every directed (\leq) topologically bounded subset converges to its supremum.

PROPOSITION 4.2. For a Banach lattice E the following statements are equivalent:
(1) E has the monotone convergence property;
(2) every positive weakly summable sequence is summable;
(3) every increasing, topologically bounded sequence converges to its supremum.

Proof. (1) implies (2). Let $\left\{x_{n}\right\}$ be a positive weakly summable sequence in E. For each rinite subset σ of N,

$$
\begin{aligned}
\left\|\sum_{n \in \sigma} x_{n}\right\| & \sup _{\substack{\left\|x^{\prime}\right\| \leq 1 \\
x^{\prime} \geq 0}}\left\langle\sum_{n \in \sigma} x_{n}, x^{\prime}\right\rangle \\
& \leq \sup _{\substack{\left\|x^{\prime}\right\| \leq 1 \\
\\
x^{\prime}>0}} \sum_{n=1}^{\infty}\left\langle x_{n}, x^{\prime}\right\rangle \leq \varepsilon\left(\left\{x_{n}\right\}\right)<\infty .
\end{aligned}
$$

Therefore $\left\{\sum_{n \in \sigma} x_{n}: \sigma\right.$ is a finite subset of $\left.N\right\}$ is a topologically bounded, directed (\leq) subset of E and so converges by the monotone
convergence property. Hence $\left\{x_{n}\right\}$ is summable.
(2) implies (3). Let $\left\{x_{n}\right\}$ be an increasing, topologically bounded sequence in E. Without loss of generality we can assume that $x_{n} \geq 0$ for all n. Define $y_{n}=x_{n}-x_{n-1}$ (where $x_{0}=0$). Then $\sum_{n=1}^{k} y_{n}=\sum_{n=1}^{k} x_{n}-x_{n-1}=x_{k}$ and so for $0 \leq x^{\prime} \in E^{\prime}$ we have that

$$
\begin{aligned}
\sum_{n=1}^{k}\left\langle y_{n}, x^{\prime}\right\rangle & =\left\langle x_{k}, x^{\prime}\right\rangle \leq\left\|x_{k}\right\|\left\|x^{\prime}\right\| \\
& \leq\left(\sup _{n}\left\|x_{n}\right\|\right)\left\|x^{\prime}\right\|<\infty
\end{aligned}
$$

This is true for all k so that the sequence $\left\{y_{n}\right\}$ is weakly summable and hence summable by (2). Since E is complete, $\sum_{n=1}^{\infty} y_{n}$ exists, that is, the sequence $\left\{x_{n}^{*}\right\}$ converges to some $x \in E$, and $x=\sup \left\{x_{n}\right\}$ since the cone in E is closed.
(3) implies (1). Assume that E does not have the monotone convergence property. Then there exists a topologically bounded, directed (\leq) net $\left\{x_{\alpha}: \alpha \in A\right\}$ such that $\alpha \geq \beta$ if and only if $x_{\alpha} \geq x_{\beta}$ and such that $\left\{x_{\alpha}\right\}$ does not converge. Hence there is a $\delta>0$ such that there is no $\alpha_{0} \in A$ with the property that $\left\|x_{\alpha}-x_{\beta}\right\|<\delta$ for all $\alpha, \beta \geq \alpha_{0}$. Let $\alpha_{1} \in A$ and choose $\alpha_{2}>\alpha_{1}$ such that $\left\|x_{\alpha_{2}}-x_{\alpha_{1}}\right\| \geq \frac{\delta}{2}$. Now choose $\alpha_{3}>\alpha_{2}$ such that $\left\|x_{\alpha_{3}}-x_{\alpha_{2}}\right\| \geq \frac{\delta}{2}$. Continuing in this way we get a monotone increasing, topologically bounded sequence $\left\{x_{\alpha_{n}}\right\}$ that does not converge.

PROPOSITION 4.3. A Banach Lattice G with Property II has the monotone convergence property.

Proof. Let $\left\{x_{n}\right\}$ be a weakly summable positive sequence in G. By (1.3.5) in [12], $\left(\lambda_{n} x_{n}\right)$ is summable for each $\left\{\lambda_{n}\right\} \in c_{0}$ and so we can
define a map $T: c_{0} \rightarrow G$ by $T\left(\left\{\lambda_{n}\right\}\right)=\sum_{n=1}^{\infty} \lambda_{n} x_{n} \cdot T$ is continuous since

$$
\begin{aligned}
\sup _{\left\|\left\{\lambda_{n}\right\}\right\| \leq 1}\left\|\sum_{n=1}^{\infty} \lambda_{n} x x_{n}\right\| & =\sup _{\left\|\left\{\lambda_{n}\right\}\right\| \leq 1} \sup _{\left\|x^{\prime}\right\| \leq 1}\left|\left\langle\sum_{n=1}^{\infty} \lambda_{n} x_{n}, x^{\prime}\right\rangle\right| \\
& \leq \sup _{\left\|x^{\prime}\right\| \leq 1} \sum_{n=1}^{\infty}\left|\left\langle x_{n}, x^{\prime}\right\rangle\right| \\
& =\varepsilon\left(\left\{x_{n}\right\}\right)<\infty
\end{aligned}
$$

T is positive since $\left\{x_{n}\right\}$ is positive, and hence T is majorizing since c_{0} is an $A M$-space. Therefore, by Property IT, T is absolutely majorizing and hence weakly compact.

Let U be the unit ball in c_{0}. Then $T(U)$ is weakly relatively compact and contains the net $A=\left\{\sum_{n \in \sigma} x_{n}: \sigma\right.$ is a finite subset of $\left.N\right\}$. Hence every subnet of A contains a convergent subnet which necessarily must converge to $\sup A$ ([10], Chapter 2, (3.1)). By a standard property of net convergence this implies that A converges to $\sup A$ for $\sigma\left(G, G^{\prime}\right)$ and hence for the norm topology of G by [10], Chapter 2, (3.4). It follows that $\left\{x_{n}\right\}$ is summable and so G has the monotone convergence property by Proposition 4.2.

In an $A L$-space every summable sequence is absolutely summable. A Banach lattice with Property II has a weaker property. In order to describe this property we need the following definitions.

DEFINITIONS (see [13]). A sequence $\left\{x_{n}\right\}$ in a normed space E is called (weakly) p-summable $(p \geq 1)$ if $\sum_{n=1}^{\infty}\left|\left\langle x_{n}, x^{\prime}\right)\right|^{p}<\infty$ for all $x^{\prime} \in E^{\prime} \cdot\left\{x_{n}\right\}$ is called absolutely p-sumable if $\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{p}<\infty . \mathrm{A}$ continuous linear map T from a normed space E into a normed space F is called absolutely p-sumable if T maps p-summable sequences into absolutely p-summable sequences.

PROPOSITION 4.4. Every positive summable sequence in a Banach
lattice G with Property II is absolutely 2-summable.
Proof. Let $\left\{x_{n}\right\}$ be a positive summable sequence in G, let $x=\sum_{n=1}^{\infty} x_{n}$, and consider the $A M$-space G_{x}. The sequence $\left\{x_{n}\right\}$ is weakly summable in G_{x}. For, let $a \in G_{x}^{\prime}, a \geq 0$. Then

$$
\begin{aligned}
\sum_{n=1}^{k}\left|\left\langle x_{n}, a\right)\right| & =\sum_{n=1}^{k}\left\langle x_{n}, a\right\rangle \\
& =\left\langle\sum_{n=1}^{k} x_{n}, a\right\rangle \leq(x, a\rangle
\end{aligned}
$$

Since k is arbitrary it follows that $\sum_{n=1}^{\infty}\left|\left\langle x_{n}, a\right\rangle\right|<\infty$ and so $\left\{x_{n}\right\}$ is weakly summable in G_{x}. Therefore $\left\{x_{n}\right\}$ is 2-summable in G_{x}.

Consider the inclusion map $I: G_{x} \rightarrow G$. As we have seen before in Proposition 4.2, I is absolutely majorizing and hence I can be factored through a Hilbert space H, that is, there exist continuous linear maps $I_{1}: G_{x} \rightarrow H$ and $I_{2}: H \rightarrow G$ such that the following diagram commutes;

By [5], (4.3), I_{1} is absolutely 2-summable. Therefore I is absolutely 2-summable and so $\left\{I\left(x_{n}\right)\right\}=\left\{x_{n}\right\}$ is absolutely 2-summable in G.

EXAMPLE 4.5. $L^{p}[0,1], 1<p \leq \infty$, does not have Property II. For $p=\infty$ this follows immediately since $L^{\infty}[0,1]$ does not have the monotone convergence property. For $p<\infty$ we consider two cases. First assume that $p>2$. Let $\left\{E_{n}\right\}$ be a sequence of disjoint sets of positive measure. Let $\phi_{n}(x)$ be that positive multiple of the characteristic function of E_{n} such that $\int_{0}^{1}\left|\phi_{n}(x)\right|^{p}=1$. Choose a sequence $\left\{a_{n}\right\}$
such that $a_{n} \geq 0, \sum_{n=1}^{\infty} a_{n}^{2}=\infty$, and $\sum_{n=1}^{\infty} a_{n}^{p}<\infty$. Then the series $\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)$ converges unconditionally in $L^{p}[0,1]$ but

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left\|a_{n} \phi_{n}(x)\right\|^{2} & =\sum_{n=1}^{\infty}\left(\int_{0}^{1}\left|a_{n} \phi_{n}(x)\right|^{p}\right)^{2 / p} \\
& =\sum_{n=1}^{\infty} a_{n}^{2}=\infty
\end{aligned}
$$

Hence $L^{P}[0,1]$ cannot have Property II by Proposition 4.4.
Now assume that $1<p \leq 2$ and let q be such that $\frac{1}{p}+\frac{1}{q}=1$. Suppose on the contrary that $L^{P}[0,1]$ does have Property II. Let $T: \ell^{2} \rightarrow z^{2}$ be a nonregular map (see [10], pp. 171-172). We note that for $r>1, Z^{2}$ is isomorphic to the complemented subspace of $L^{r}[0,1]$ generated by the Rademacher functions and, moreover, this isomorphism sends the nth unit vector in i^{2} into the nth Rademacher function in $L^{r}[0,1]$ (see [9]). So, let $S: Z^{2} \rightarrow L^{q}[0,1]$ be this isomorphism and let $R: L^{p}[0,1] \rightarrow Z^{2}$ be a continuous projection. Then the map T can be factored as

where I is the continuous, positive injection of $L^{q}[0,1]$ into $I^{p}[0,1]$ which exists since $q \geq p$. Since we are assuming that $L^{p}[0,1]$ has Property II, $T \circ R$ is a regular map and S is a regular map by Proposition 3.5. Hence $T=T \circ R \circ I \circ S$ is regular, a contradiction.

5. The atomic case

DEFINITIONS. A positive element x in a vector lattice is called an atom if $0 \leq y \leq x$ implies that $y=\alpha x$ for some $\alpha \in[0,1]$. An order
complete vector lattice E is called atomic if the band generated by the atoms is equal to E.

The ${ }_{2}{ }^{p}$ spaces, $1 \leq p<\infty$, are examples of atomic lattices.
In this section we prove that if G is a Banach lattice with Property II, and, in addition, G is atomic, then G is isomorphic as a Banach lattice to $Z^{l}(\Gamma)$ for some index set Γ.

First, suppose that G is any Banach lattice with Property II and that $\left\{x_{n}\right\}$ is a positive summable sequence in G that is disjoint; that is, $x_{n} \wedge x_{m}=0$ for $n \neq m$. Define the functional $x_{m}^{\prime \prime}$ on L.H. $\left\{x_{n}\right\}$ (where L.H. denotes linear hull) by

$$
\left\langle x_{m}^{\prime}, \sum \alpha_{n} x_{n}\right\rangle=\alpha_{m}\left\|x_{m}\right\|
$$

where, of course, $\alpha_{n}=0$ for all but a finite number of n. Then x_{m}^{\prime} is continuous on L.H. $\left\{x_{n}\right\}$ since

$$
\begin{aligned}
\left|\left\langle x_{m}, \sum \alpha_{n} x_{n}\right\rangle\right| & =\left|\alpha_{m}\right|\left\|x_{m}\right\| \\
& =\left\|\left|\alpha_{m}\right| x_{m}\right\| \leq\left\|\sum\left|\alpha_{m}\right| x_{n}\right\| \\
& =\left\|\left|\sum \alpha_{n} x_{n}\right|\right\|=\left\|\sum \alpha_{n} x_{n}\right\|
\end{aligned}
$$

the next to last equality resulting from the fact that the $x_{n}{ }^{\prime s}$ are disjoint. It follows that each x_{m}^{\prime} can be extended to a continuous linear functional x_{m}^{\prime} of norm 1 on $X=\overline{\text { L.H. }\left\{x_{n}\right\}}$.

If we define $z_{n}=x_{n} /\left\|x_{n}\right\|$, then $\left\{z_{n}, x_{n}^{\prime}\right\}$ is a biorthogonal system (that is, $\left.\left\langle z_{n}, x_{m}^{\prime}\right\rangle=\delta_{n m}\right\}$ in X. Moreover, $\left\{z_{n}\right\}$ is an unconditional basis for X such that if $\sum_{n=1}^{\infty} \alpha_{n} z_{n}$ is convergent in X then $\sum_{n=1}^{\infty} \alpha_{n}^{2}<\infty$. To see this define U_{m} on X by

$$
U_{m}(x)=\sum_{n=1}^{m}\left\langle x_{n}^{\prime}, x\right\rangle z_{n}, \quad x \in X
$$

U_{m} is continuous since x_{n}^{\prime} is continuous for each n and if $\sum \alpha_{n} z_{n} \in$ L.H. $\left\{z_{n}\right\}=$ L.H. $\left\{x_{n}\right\}$ then

$$
\begin{aligned}
\left\|U_{m}\left(\sum \alpha_{n} z_{n}\right)\right\| & =\left\|\sum_{n=1}^{m} \alpha_{n} z_{n}\right\| \\
& =\left\|\sum_{n=1}^{m}\left|\alpha_{n}\right| z_{n}\right\| \leq\left\|\sum\left|\alpha_{n}\right| z_{n}\right\| \\
& =\left\|\sum \alpha_{n} z_{n}\right\|
\end{aligned}
$$

Since $U_{m}\left(z_{m}\right)=z_{m}$ it follows that $\left\|U_{m}\right\|=1$. It now follows from [7], Corollary 3, p. 31, that $\left\{z_{n}\right\}$ is a basis for X.

$$
\text { If } x \in X \text { and } x=\sum_{n=1}^{\infty} \alpha_{n} z_{n} \text { then } \alpha_{n}=\left\langle x, x_{n}^{\prime}\right\rangle \text { for all } n \text { and so }
$$

$x=\sum_{n=1}^{\infty}\left\langle x, x_{n}^{\prime}\right\rangle z_{n}$. Then the disjointness of the z_{n}^{\prime} s and continuity of the lattice operations imply that $|x|=\sum_{n=1}^{\infty}\left|\left\langle x, x_{n}^{\prime}\right\rangle\right| z_{n}$. Hence, given $\delta>0$ there exists an n_{0} such that

$$
\left\|\sum_{n=n_{0}}^{\infty}\left|\left(x, x_{n}^{\prime}\right)\right| z_{n}\right\|<\delta .
$$

If σ is any finite subset of N such that σ is disjoint from $\left\{1,2, \ldots, n_{0}\right\}$ then

$$
\begin{aligned}
\left\|\sum_{n \in \sigma}\left\langle x, x_{n}^{\prime}\right\rangle z_{n}\right\| & =\left\|\sum_{n \in \sigma}\left|\left(x, x_{n}^{\prime}\right\rangle\right| z_{n}\right\| \\
& \leq\left\|\sum_{n=n_{0}}^{\infty}\left|\left\langle x, x_{n}^{\prime}\right\rangle\right| z_{n}\right\| \\
& <\delta .
\end{aligned}
$$

Hence, $\sum_{n=1}^{\infty}\left\langle x, x_{n}^{\prime}\right\rangle z_{n}$ converges unconditionally to $x, \sum_{n=1}^{\infty}\left|\left\langle x, x_{n}^{\prime}\right\rangle\right| z_{n}$ converges unconditionally to $|x|$, and it follows from Proposition 4.4 that

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left\|\left\langle x, x_{n}^{\prime}\right\rangle z_{n}\right\|^{2} & =\sum_{n=1}^{\infty}\left\|\alpha_{n} z_{n}\right\|^{2} \\
& \leq \sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{2}<\infty
\end{aligned}
$$

We make use of these results in the following proposition.
PROPOSITION 5.1. Suppose that G is a Banach lattice with Property II and that $\left\{x_{n}\right\}$ is a positive, disjoint, summable sequence in G. If $X=\overline{\text { L.H. }\left\{x_{n}\right\}}$ is complemented in G then $\left\{x_{n}\right\}$ is absolutely surmable.

Proof. Let P be a continuous projection of G onto X. By the considerations preceding the statement of this proposition, we can define a map $T: X \rightarrow z^{2}$ by

$$
T\left(\sum_{n=1}^{\infty}\left\langle x, x_{n}^{\prime}\right\rangle z_{n}\right)=\left\{\left\langle x, x_{n}^{\prime}\right\rangle\right\} .
$$

A simple application of the Closed Graph Theorem shows that T is continuous (since convergence implies coordinate convergence in X and in $\left.z^{2}\right)$. Let $R: Z^{2} \rightarrow L^{1}[0,1]$ be the isomorphism that sends e_{n} into the nth Rademacher function ϕ_{n}. If $S=R \circ T \circ P$, then $S: G \rightarrow L^{1}[0,1]$ and $S\left(x_{n}\right)=\left\|x_{n}\right\| \phi_{n}$. Moreover, since G has Property II, S is a regular map and hence S is order summable. Therefore, the positive sequence $\left\{x_{n}\right\}$ gets mapped into the absolutely surmable sequence $\left\{\left\|x_{n}\right\| \phi_{n}\right\}$. Since $\left\|\phi_{n}\right\|_{L^{1}}=1$, it follows that

$$
\sum_{n=1}^{\infty}\left\|x_{n}\right\|=\sum_{n=1}^{\infty}\| \| x_{n}\left\|\phi_{n}\right\|<\infty
$$

and so $\left\{x_{n}\right\}$ is absolutely summable.
COROLLARY 5.2. Suppose that G is a Banach Zattice with Property II
and that $\left\{x_{n}\right\}$ is a positive, disjoint, summable sequence of atoms in G. Then $\left\{x_{n}\right\}$ is absolutely sumable.

Proof. First note that in Banach lattices E with the monotone convergence property the closure of a lattice ideal is a band. For, let L be a lattice ideal in E and let $x \geq 0$ be an element of the band generated by L. Then $x=\sup \{y \in L: 0 \leq y \leq x\}$. The set $\{y \in L: 0 \leq y \leq x\}$ is directed (\leq), and so by the monotone convergence property its filter of sections converges to x. Therefore x is in the closure of L.

If we now consider our original sequence $\left\{x_{n}\right\}$ then L.H. $\left\{x_{n}\right\}$ is a lattice ideal in G. For if $0 \leq y \leq \sum_{n=1}^{k} \alpha_{n} x_{n}$, then $\alpha_{n} \geq 0$ and

$$
\begin{aligned}
y & =y \wedge \sum_{n=1}^{k} \alpha_{n} x_{n} \\
& =y \wedge\left(\alpha_{1} x_{1} \vee \alpha_{2} x_{2} \vee \ldots \vee \alpha_{k} x_{k}\right) \\
& =\left(y \wedge \alpha_{1} x_{1}\right) \vee\left(y \wedge \alpha_{2} x_{2}\right) \vee \ldots \vee\left(y \wedge \alpha_{k} x_{k}\right) \\
& =\sum_{n=1}^{k} \beta_{n} x_{n} \in \text { L. Н. }\left\{x_{n}\right\},
\end{aligned}
$$

since each x_{n} is an atom. Therefore $X=\overline{\text { L.H. }\left\{x_{n}\right\}}$ is a band in G and so is complemented in G by [10], Chapter 2, (4.9). The result now follows from Proposition 5.1.

THEOREM 5.3. If G is an atomic Banach Zattice with Property II then G is order and topologically isomorphic to the Banach lattice $Z^{1}(\Gamma)$ for some index set Γ.

Proof. By Zorn's Lemma there exists a maximal, disjoint collection $\left\{z_{\alpha}: \alpha \in A\right\}$ of atoms of norm one. G is equal to the band generated by the $\left\{z_{\alpha}\right\}$ and, since L.H. $\left\{z_{\alpha}\right\}$ is a lattice ideal, if $x \geq 0$ in G then

$$
x=\sup \left\{y \in \text { L.H. }\left\{z_{\alpha}\right\}: 0 \leq y \leq x\right\}
$$

By the monotone convergence property the filter of sections of $\left\{y \in\right.$ L.H. $\left.\left\{z_{\alpha}\right\}: 0 \leq y \leq x\right\}$ converges to x an $\bar{\alpha}$ so, since G is a Banach
space, there exists a sequence $\left\{y_{n}\right\} \in \operatorname{L.H.}\left\{z_{\alpha}\right\}$ such that $y_{n} \rightarrow x$. It follows for each $x \geq 0$ in G, and hence for each x in G, that x is in the closure of the linear hull of a countable number of the $\left\{z_{\alpha}\right\}$. Then, by the methods similar to those used in the remarks preceding Proposition 5.1, it is easy to see that $\left\{z_{\alpha}: \alpha \in A\right\}$ is an unconditional basis for G and for each $x \in G, x=\sum_{\alpha \in A} a_{\alpha} z_{\alpha}$ where all but a countable number of the a_{α} 's are zero. Moreover, it follows from Corollary 5.2 that $\sum_{\alpha \in A} a_{\alpha} z_{\alpha}$ is absolutely surmable and so $\sum_{\alpha \in A}\left|a_{\alpha}\right|<\infty$. Hence we may define a map $T: G \rightarrow Z^{l}(A)$ by $T\left(z_{\alpha}\right)=e_{\alpha}$, where e_{α} is the ath unit vector in $Z^{1}(T) . T$ is clearly a positive, one-to-one, onto map. The continuity of T follows from the Closed Graph Theorem and the fact that in G and in $l^{1}(A)$ convergence implies coordinate convergence. Hence T is an isomorphism by the Open Mapping Theorem.

COROLLARY 5.4. Suppose that G is a Banach lattice with Property II. If G has atoms then G has a complemented subspace that is order isomorphic to an $L^{l}(\Gamma)$ for some index set Γ.

Proof. Let. G_{1} be the band in G generated by the atoms and let $P: G \rightarrow G_{1}$ be the canonical, positive, continuous band projection. Let F be a Banach lattice and $T \in L\left(G_{1}, F\right)$. Then $T \circ P$ is preregular and so $T=T \circ P \circ I$ is preregular where $I: G_{1} \rightarrow G$ is the inclusion map. Therefore, G_{1} has Property II. The result now follows from Theorem 5.3.

COROLLARY 5.5. $\tau^{p}, 1<p<\infty$ has neither Property I nor Property II.

We conjecture that any Banach lattice with Property II is isomorphic as a Banach lattice to an $A L$-space.

References

[1] T. Andô, "On fundamental properties of a Banach space with a cone", Pacific J. Math. 12 (1962), 1163-1169.
[2] J.A. Crenshaw, "Extreme positive linear operators", Math. Scand. 25 (1969), 195-217.
[3] Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires (Mem. Amer. Math. Soc. 16. Amer. Math. Soc., Providence, Rhode Island, 1955).
[4] Harold Jacobs, "Ordered topological tensor products", Dissertation, University of Illinois, Urbana, Illinois, 1969.
[5] J. Lindenstrauss and A. Pełczyñski, "Absolutely summing operators in L_{p} spaces and their applications", Studia Math. 29 (1968), 275-326.
[6] H.P. Lotz, Lectures on topological tensor products, linear mappings and nuclear spaces (University of Illinois, Urbana, Illinois, 1971).
[7] Jürg T. Marti, Introduction to the theory of bases (Springer Tracts in Natural Philosophy, 18. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
[8] Isaac Namioka, Partially ordered linear topological vector spaces (Mem. Amer. Math. Soc. 24. Amer. Math. Soc., Providence, Rhode Island, 1957).
[9] A. Pełczyński, "Projections in certain Banach spaces", Studia Math. 19 (1960), 209-228.
[10] Anthony L. Peressini, Ordered topological vector spaces (Harper and Row, New York, Evanston, and London, 1967).
[11] A.L. Peressini and D.R. Sherbert, "Ordered topological tensor products", Proc. London Math. Soc. (3) 19 (1969), 177-190.
[12] Albrech \dagger Pietsch, Nukleare Zokalkonvexe Räume (Akademie-Verlag, Berlin, 1965; 2nd ed., Akademie-Verlag, Berlin, 1969). English translation of 2nd ed.: Nuclear locally convex spaces
(translated by William H. Ruckle. Ergebnisse der Mathematik und ihrer Grenzgebiete, 66. Springer-Verlag, Berlin, Heidelberg, New York, 1972).
[13] A. Pietsch, "Absolut p-summierende Abbildungen in normierten Räumen", Studia Math. 28 (1967), 333-353.
[14] Albrech + Pietsch, "Zur Theorie der topologischen Tensorprodukte", Math. Nachr. 25 (1963), 19-30.
[15] Helmut H. Schaefer, Topological vector spaces (The Macmillan Company, New York; Collier-Macmillan, London, 1966).
[16] Ulf Schlotterbeck, "Uber Klassen majorisierbarer Operatoren auf Banachverbänden", Dissertation, Eberhard-Karls-Universität zu Tübingen, Tübingen, 1969.

Department of Mathematics,
Amhers \dagger College,
Amherst, Massachusetts, USA.

Present address:
Department of Mathematics, Hamilton College, Clinton, New York, USA.

