ROOT CLOSURE IN INTEGRAL DOMAINS, II

by DAVID F. ANDERSON

(Received 10 August, 1987; revised 22 February 1988)
In this note, we give an elementary procedure for constructing n-root closed integral domains. We then use this construction to give two interesting examples. First, we give an example of a root closed integral domain which is not quasinormal. Secondly, we show that for any subset S of odd positive primes there is a one-dimensional affine domain which is p-root closed for a prime p if and only if $p \in S$.

For the convenience of the reader, we first recall a few definitions. For a positive integer n, an integral domain R with quotient field K is said to be n-root closed if whenever $x^{n} \in R$ for some $x \in K$, then $x \in R$. If R is n-root closed for each positive integer n, then R is root-closed. Note that for relatively prime positive integers m and n, R is $m n$-root closed if and only if R is both m - and n-root closed. Hence we often restrict ourselves to the case in which R is p-root closed for a prime p. The domain R is seminormal if whenever $x^{2}, x^{3} \in R$ for some $x \in K$, then $x \in R$. Clearly an integrally closed domain is root closed, and for each $n \geq 2$, an n-root closed domain is seminormal. In general, though, neither implication is reversible. However, examples of n-root closed domains which are not integrally closed do not seem to be too common (cf. [2] and [3]). Here we show how to construct such a family of examples easily. Root closure has also been investigated in [1], [4], [6], and [11].

For any integral domain R with quotient field K, we let A denote the subring $\{f(X) \in R[X]: f(0)=f(1)\}$ of $R[X]$. Also, let $\varphi_{n}: R \rightarrow R$ be the mapping defined by $\varphi_{n}(x)=x^{n}$ for each $x \in R$. We first record some observations about the domain A.

Proposition 1. (a) $A=R\left[X^{2}-X, X^{3}-X^{2}\right]=R+X(X-1) R[X]$.
(b) A has quotient field $K(X)$ and is not integrally closed.
(c) A is seminormal if and only if R is seminormal.
(d) A is n-root closed if and only if R is n-root closed and φ_{n} is injective.

Proof. (a) is easily verified by induction on $\operatorname{deg} f$ for $f \in A$, and (b) is an immediate consequence of (a).
(c) Certainly R is seminormal if A is seminormal. Conversely, let R be seminormal. Suppose that $f^{2}, f^{3} \in A$ for some $f \in K(X)$. Then $f \in R[X]$ since $R[X]$ is seminormal [6, Theorem 2] (cf. [7, Theorem 1.6] and [5, Theorem 1]). Hence $[f(0)]^{2}=f^{2}(0)=f^{2}(1)=$ $[f(1)]^{2}$ and $[f(0)]^{3}=[f(1)]^{3}$ yield $f(0)=f(1)$. Thus $f \in A$ and hence A is seminormal.
(d) First, suppose that A is n-root closed. Clearly R is then also n-root closed. To show that φ_{n} is injective, suppose that $a^{n}=b^{n}$ for some $a, b \in R$. Define $f(X)=$ $(b-a) X+a$. Then $f^{n} \in A$ since $f(0)=a$ and $f(1)=b$. Hence $f \in A$; thus $a=b$ and so φ_{n} is injective. Conversely, suppose that R is n-root closed and φ_{n} is injective. If $f^{n} \in A$ for some $f \in K(X)$, then $f \in R[X]$ since $R[X]$ is n-root closed [6, Theorem 2]. Hence $[f(0)]^{n}=[f(1)]^{n}$, and thus $f(0)=f(1)$ since φ_{n} is injective. Thus $f \in A$ and hence A is n-root closed.

We remark that a special case of our construction has been used in the proof of [$\mathbf{2}$, Theorem 2.4]. Parts (c) and (d) of Proposition 1 may also be proved by reducing modulo the conductor $X(X-1) R[X]$ (cf. [2, Propositions 2.1 and 2.2]).

We next give some other criteria for φ_{n} to be injective. The elementary proofs will be omitted.

Proposition 2. The following statements are equivalent for an integral domain R with quotient field K.
(a) $\varphi_{n}: R \rightarrow R$ is injective.
(b) $\varphi_{n}: K \rightarrow K$ is injective.
(c) If $x^{n}=1$ for some $x \in K$, then $x=1$.

For the remainder of this paper, we will restrict ourselves to the case in which R is itself a field. In this case, $A=K\left[X^{2}-X, X^{3}-X^{2}\right]$ is a one-dimensional seminormal affine domain which is n-root closed if and only if φ_{n} is injective-i.e., if and only if 1 is the only nth root of unity in K. For example: $\mathbb{Z} / 2 \mathbb{Z}\left[X^{2}-X, X^{3}-X^{2}\right]$ is root closed, $\mathbb{Q}\left[X^{2}-X, X^{3}-X^{2}\right]$ and $\mathbb{R}\left[X^{2}-X, X^{3}-X^{2}\right]$ are each n-root closed if and only if n is odd, and $\mathbb{C}\left[X^{2}-X, X^{3}-X^{2}\right]$ is seminormal but not n-root closed for any $n \geqslant 2$.

We may also localize A. Let M be the maximal ideal $\left(X^{2}-X, X^{3}-X^{2}\right)=$ $\{f \in K(X): f(0)=f(1)=0\}$ of A. Then A_{M} is n-root closed if and only if A is n-root closed. We prove this in our next theorem, which also collects several earlier observations about the domain A.

Theorem 3. Let K be a field, $A=K\left[X^{2}-X, X^{3}-X^{2}\right]$, and $M=\left(X^{2}-X, X^{3}-X^{2}\right)$.
(a) A is a one-dimensional seminormal affine domain which is n-root closed if and only if 1 is the only n-th root of unity in K.
(b) A_{M} is a one-dimensional seminormal local domain which is n-root closed if and only if 1 is the only n-th root of unity in K.

Proof. We have already observed that (a) holds. It is well known that a localization of a seminormal (resp. n-root closed) integral domain is also seminormal (resp. n-root closed). Hence we need only show that A is n-root closed whenever A_{M} is n-root closed. Suppose that $a^{n} \in A$ for some $a \in K(X)$. Then a is in both $K[X]$ and A_{M}. Write $a=f / g$ with $f, g \in A$ and $g \notin M$. Then $f=a g$ and $g(0)=g(1) \neq 0$ yield $a(0)=a(1)$. Hence $a \in A$, so A is n-root closed.

Next we give a few specific cases in which we can determine whether A is n-root closed (cf. [3, Theorems 1, 2, and 3]). The proofs, which involve only elementary field theory, will be omitted.

Proposition 4. Let K be a field and $A=K\left[X^{2}-X, X^{3}-X^{2}\right]$.
(a) A is 2-root closed if and only if char $K=2$.
(b) If char $K=p \geq 2$, then A is n-root closed if and only if $(|F|-1, n)=1$ for each finite subfield F of K. In particular, A is p-root closed if char $K=p$.
(c) A is root closed if and only if char $K=2$ and each element of $K-\mathbb{Z} / 2 \mathbb{Z}$ is transcendental over $\mathbb{Z} / 2 \mathbb{Z}$.
(d) If K is algebraically closed, then A is p-root closed for a prime p if and only char $K=p$. In particular, if char $K=0$, then A is not n-root closed for any $n \geq 2$; if char $K=p$, then A is n-root closed if and only if n is a p-power.

We end this paper with two specific applications of the earlier theory. Our first example is a root closed integral domain which is not quasinormal. We recall that a domain R is seminormal if and only if $\operatorname{Pic}(R)=\operatorname{Pic}(R[X])$ and that R is said to be quasinormal if $\operatorname{Pic}(R)=\operatorname{Pic}\left(R\left[X, X^{-1}\right]\right)$. It is well known that an integrally closed domain is quasinormal, a quasinormal domain is seminormal, and that in general neither implication is reversible. We show that root closure neither implies nor is implied by quasinormality. This is particularly interesting because in [9, Theorem 2.15] it was shown that an n-root closed noetherian domain R is quasinormal if R contains a field which has a nontrivial nth root of unity. Our example shows that this last hypothesis is essential. Finally, recall that an integral domain R is said to be u-closed if whenever $x^{2}-x$, $x^{3}-x^{2} \in R$ for some $x \in K$, then $x \in R$. A one-dimensional domain R is quasinormal if and only if R is seminormal and u-closed [9, Corollary 1.14].

Example 5. Let $A=\mathbb{Z} / 2 \mathbb{Z}\left[X^{2}-X, X^{3}-X^{2}\right]$. We have already observed that A is a one-dimensional root closed affine domain. However, A is not quasinormal since it is not u-closed. We may also localize A at its maximal ideal $M=\left(X^{2}-X, X^{3}-X^{2}\right)$ to obtain a one-dimensional root closed local domain which is not u-closed and hence not quasinormal.

Thus a root closed integral domain need not be quasinormal. For the other direction, $R=\mathbb{R}+X \mathbb{C}[[X]]$ is a one-dimensional quasinormal local domain which is not n-root closed for any $n \geq 2$ [8, Example (a)].

Since an integral domain R is $m n$-root closed for relatively prime positive integers m and n if and only if R is both m - and n-root closed, $\mathscr{C}(R)=\{n \in \mathbb{N}: R$ is n-root closed $\}$ is a (multiplicative) submonoid of \mathbb{N} generated by positive primes. Moreover, in [1, Theorem 2.7] we showed that any (multiplicative) submonoid of \mathbb{N} generated by primes can be realized as $\mathscr{C}(R)$ for some integral domain R. That construction used monoid domains over an arbitrary field and R was usually quite large ($\operatorname{dim} R=2 \mid\{p: p$ is prime and R is not p-root closed\}| and R was noetherian if and only if $\operatorname{dim} R$ was finite). The construction here allows R to be a one-dimensional noetherian domain (as long as $p \neq 2$). We state this as a theorem.

Theorem 6. Let S be a set of odd positive primes. Then there is a one-dimensional seminormal affine domain A such that $\mathscr{C}(A)$ is generated by S. The integral domain A may also be chosen to be a one-dimensional seminormal local domain.

Proof. By Theorem 3(a), we need only construct a field K such that for each prime p, K contains a primitive p th root of unity if and only if $p \notin S$. Let $T=\{p: p$ is prime and $p \notin S\}$ and $K=\mathbb{Q}\left(\left\{\zeta_{p}: p \in T\right\}\right)$, where ζ_{p} is a primitive p th root of unity. We need only show that for a prime $q, \zeta_{q} \in K$ implies $q \in T$. Note that always $\zeta_{2}=-1 \in K$ and $2 \in T$. For $q>2$, if $\zeta_{q} \in K$, then $\zeta_{q} \in \mathbb{Q}\left(\zeta_{p_{1}}, \ldots \zeta_{p_{n}}\right)=\mathbb{Q}\left(\zeta_{p_{1} \ldots p_{n}}\right)$ for distinct $p_{1}, \ldots, p_{n} \in T$. Then
$\left(q, p_{1} \ldots p_{n}\right) \neq 1$ by [10, Corollary, page 204], and hence $q \in T$. The last statement in the theorem now follows from Theorem 3(b).

The above construction does not extend to the case in which $2 \in S$. In this case, K would necessarily have char 2 by Proposition 4(a). For example, $K=\mathbb{Z} / 2 \mathbb{Z}\left(\zeta_{5}\right)$ has 16 elements and hence also $\zeta_{3} \in K$. Thus for our construction, if A is both 2- and 3-root closed, then A is also 5 -root closed. It would be interesting to know if Theorem 6 is true for any subset S of positive primes.

REFERENCES

1. D. F. Anderson, Root closure in integral domains, J. Algebra 79 (1982), 51-59.
2. D. F. Anderson and D. E. Dobbs, Fields in which seminormality implies normality, Houston J. Math., to appear.
3. G. Angermüller, On the root and integral closure of noetherian domains of dimension one, J. Algebra 83 (1983), 437-441.
4. G. Angermüller, Root closure, J. Algebra 90 (1984), 189-197.
5. J. W. Brewer and D. L. Costa, Seminormality and projective modules over polynomial rings, J. Algebra 58 (1979), 208-216.
6. J. W. Brewer, D. L. Costa and K. McCrimmon, Seminormality and root closure in polynomial rings and algebraic curves, J. Algebra 58 (1979), 217-226.
7. R. Gilmer and R. C. Heitmann, On $\operatorname{Pic}(R[X])$ for R seminormal, J. Pure Appl. Algebra 16 (1980), 251-257.
8. N. Onoda, T. Sugatani, and K. Yoshida, Local quasinormality and closedness type criteria, Houston J. Math. 11 (1985), 247-256.
9. N. Onoda and K. Yoshida, Remarks on quasinormal rings, J. Pure Appl. Algebra 33 (1984), 59-67.
10. S. Lang, Algebra (Addison-Wesley, 1965).
11. J. J. Watkins, Root and integral closure for $R[[X]]$, J. Algebra 75 (1982), 43-58.

Department of Mathematics
University of Tennessee

Knoxville

Tennessee 37996
U.S.A.

