
11

Quantum kinetic field theory

11.1 The Kadanoff–Baym equations

Quantum kinetic field theory is the theme of this chapter. In this section we get
right to the heart of it by showing a derivation of the celebrated Kadanoff–Baym
(KB) equations [KadBay62]. The basic idea is that close to equilibrium, prop-
agators are nearly translation invariant. It is possible to define a partial Fourier
transform with respect to the relative position of the arguments. The Kadanoff–
Baym equations then determine how the partial Fourier transform depends on
the average (or “center of mass”) of the arguments in the original propagators.

Besides the presentation in Kadanoff and Baym’s textbook, there are sev-
eral derivations of these equations in the literature [Dub67, Dan84a, MroDan90,
MroHei94, ZhuHei98]. We shall follow [CalHu88, CaHuRa00]. See also [Hen95,
IvKnVo00, KnIvVo01, Nie02, Koi02]. References [BoVeWa00, WBVS00] follow a
different path towards quantum kinetic theory, based on the so-called dynamical
renormalization group.

11.1.1 The model

To better appreciate the main points in this derivation, we shall consider a simple
model, namely, the KB equations for the theory of a single real self-interacting
λΦ4 scalar field, in the absence of background fields. Actually, the key ideas are
not sensitive to the particular models, but for concreteness it will be helpful to
have a model in mind. The classical action is given by equation (6.106).

A translation-invariant propagator Gab depends on its arguments x and x′

only through the so-called “relative” variable u = x− x′. The Fourier transform
with respect to u yields the momentum representation

Gab (x, x′) = �

∫
ddk

(2π)d
eiku Gab (k) (11.1)

We have discussed in Chapter 6 the basic properties of these Fourier transforms.
We say that a Gab is almost translation invariant if, when partially Fourier

transformed with respect to u, the Fourier transform is weakly dependent on the
“center of mass” variable X = (x + x′) /2, i.e.

Gab (x, x′) =
∫

ddk

(2π)d
eikuGab (X, k) (11.2)
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316 Quantum kinetic field theory

The precise definition of what “weakly dependent” means depends up to a certain
point on the problem at hand. For example, in a hard thermal loop scheme such
as discussed in Chapter 10, we may find a situation where ∂xG

ab (x, x′) ≈ TGab,
while ∂XGab (X, k) ≈ gnTGab with n ≥ 1. In such a case, the propagators are
almost translation invariant in the weak coupling limit.

On the other hand, beware that in gauge theories the same object may be
almost translation invariant in some gauges and not in others (with a corre-
sponding problem in relativistic theories with respect to changes of coordinates).
We also mention that in the presence of external gauge background fields, or in
curved spacetimes, some care must be taken to define precisely the Fourier trans-
form in (11.2) [Hei83, Win85, CaHaHu88, Fon94]. We shall discuss these issues
later in this chapter.

Irrespective of whether the assumption of almost translation-invariance holds,
expressions involving Gab (X, k) may be classified according to their “adiabatic
order,” namely, the number of X derivatives appearing in the expression. We call
this the “adiabatic expansion.” When almost translation-invariance is satisfied,
we may further reject all terms above a given adiabatic order. We call such
a truncation of an adiabatic expansion an “adiabatic approximation.” In other
words, the adiabatic order is used as a tag to bunch together certain terms in the
equations of motion in accordance to their derivative orders and the adiabatic
approximation determines how many of those terms are kept.

Our aim is to analyze the adiabatic expansion of the 2PI Schwinger–Dyson
equations for the propagators. These are deduced from the 2PI CTPEA (cf.
Chapter 6)

Γ =
1

2ZB

∫
ddxddy cabD(x, y)Gab(x, y) − i�

2
Tr lnG + ΓQ (11.3)

where c11 = −c22 = 1, c12 = c21 = 0,

D(x, y) =
[
∂2
x −m2

b

]
δ(x− y) (11.4)

ΓQ is the sum of all 2PI vacuum bubbles. Taking variations of the 2PI CTPEA
we find the equations of motion

1
ZB

cabD (x, y) − i�
[
G−1

]
ab

(x, y) − �Σab (x, y) = 0 (11.5)

�Σab (x, y) = −2
δΓQ

δGab(x, y)
(11.6)

These are the exact equations we must solve. We assume there are known rela-
tions expressing Σab in terms of the propagators. These can be found, for exam-
ple, by adopting one of the perturbative schemes discussed in Chapter 6.

Observe that to determine G (X, k) as the inverse Fourier transform of G (x, x′)
we must know the whole evolution of the correlation, both to the past and future
of the event X. It is possible to present an alternative formulation where only
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11.1 The Kadanoff–Baym equations 317

equal time correlations are Fourier transformed, thus more in keeping with the
spirit of causality [ZhaHei96a, ZhaHei96b, ABZH96, ZhuHei98].

In general, it will be necessary to add nonlocal sources to the classical action to
account for nontrivial correlations at the initial time. We consider these sources
are included into the Σab (x, y).

Let us continue with the analysis of (11.5). Our first task is to find an efficient
parameterization for the propagators. It is clear that the four basic propagators
(Feynman, Dyson, positive and negative frequency) are not independent. As we
shall see, there are essentially two (phase space) functions which contain the
relevant information from which all propagators may be reconstructed. One of
these functions plays the role of a (position-dependent) density of states, and
the other one of the nonequilibrium one-particle distribution function. To be
able to write all propagators in terms of these two functions we must consider
first the so-called Keldysh representation of the propagators, in which the four
basic propagators are written in terms of the Hadamard, retarded and advanced
propagators as

Gab =
(
G11 G12

G21 G22

)
=

1
2

(
1 1
−1 1

)(
0 −i�Gadv

−i�Gret G1

)(
1 −1
1 1

)
(11.7)

with inverse(
0 −i�Gadv

−i�Gret G1

)
=

1
2

(
1 −1
1 1

)(
G11 G12

G21 G22

)(
1 1
−1 1

)
(11.8)

11.1.2 Density of states and distribution function

Let us introduce the density of states D (X, k) out of the Fourier transform of
the Jordan propagator G = G21 −G12

G (X, k) ≡ 2π�D (X, k) sign
(
k0
)

(11.9)

Observe that by symmetry we must have G (X, (0,k)) = 0. We shall assume G

is continuous there, implying D (X, (0,k)) = 0.
The Jordan and retarded propagators are related through

G (X, k) = 2� ImGret (X, k)

= −2� |Gret (X, k)|2 Im [Gret (X, k)]−1 (11.10)

This suggests defining a new kernel γ (X, k) such that

D (X, k) = |Gret (X, k)|2 γ (X, k) (11.11)

γ (X, k) =
1
π

Im [−Gret (X, k)]−1 sign
(
k0
)

(11.12)

Observe that per earlier assumptions, γ (X, (0,k)) = 0.
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318 Quantum kinetic field theory

We now define the (dimensionless) distribution function f (X, k) through the
partial Fourier transform of the Hadamard propagator

G1 (X, k) ≡ 2π�D (X, k) F1 (X, k) (11.13)

F1 (X, k) = 1 + 2f (X, k) (11.14)

It follows that

G21(12) (X, k) = 2π� F 21(12) (X, k)D (X, k) (11.15)

where

F 21(12) (X, k) = θ
(
±k0

)
+ f (X, k) (11.16)

In equilibrium, f is the Bose–Einstein distribution function (KMS theorem). It
can be assumed that (11.13) serves as the definition of the function f , valid
to all orders in perturbation theory. Observe that, since the relevant Fourier
transforms are distributions (e.g. in free theories), this definition may only be
applied if both Fourier transforms have the same singularity structure, which
amounts to a restriction on allowed quantum states. In what follows, we shall
assume these restrictions are met.

While this definition of the one-particle distribution function will prove to
be very convenient in practice, and it is guaranteed to give the right result in
equilibrium, it is not tied to any fundamental definition of what a particle is. It
is also possible to take an alternative route, where one introduces a physically
motivated particle destruction operator, builds the corresponding particle num-
ber operator, and finally derives an equation of motion for the latter (cf. the
discussion of the quantum Vlasov equation in Chapter 4) [GreLeu98].

11.1.3 The dissipation and noise kernels

As we have seen, the information content of the almost translation-invariant
propagators can be encoded in just two functions D (X, k) and f (X, k) . To pro-
ceed, we must perform a similar compression of the self-energies Σab. We do this
by writing both propagators and self-energies in terms of the dissipation D and
the noise kernel N, which appear in the Hessian of the one-particle irreducible
(1PI) effective action. These two kernels are largely independent of each other,
and have a distinct physical meaning, with D carrying the dynamical informa-
tion and N the statistical information. This division of labor is most clearly seen
in a free theory. Together D and N are a more compact description of the theory
than the propagators themselves.

We have two different ways of relating D and N to the propagators. On one
hand, they are constructed from Feynman diagrams which carry propagators
in their internal legs. Which diagrams must be considered depends on which
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11.1 The Kadanoff–Baym equations 319

approximation is being used. On the other hand, the Schwinger–Dyson (SD)
equations allow us to express the propagators in terms of D and N. For a true
solution, these two paths must be equivalent. This consistency requirement yields
the most efficient representation of the dynamics.

The dissipation and noise kernels D and N appear in the linearized CTP 1PI
EA Γ1PI (cf. Chapter 6)

Γ1PI =
1
2

∫
ddxddy

{[
ϕ1 − ϕ2

]
(x)
[

1
ZB

D (x, y) + D (x, y)
] [

ϕ1 + ϕ2
]
(y)

+ i
[
ϕ1 − ϕ2

]
(x)N (x, y)

[
ϕ1 − ϕ2

]
(y)
}

(11.17)

D is causal and N is even, and both are real. The causality of D allows for a
more efficient parameterization. Introduce the kernels

Deven (x, y) =
1
2

[D (x, y) + D (y, x)] ; Γ (x, y) =
1
2

[D (x, y) − D (y, x)]

(11.18)
then

D = 2Γ θ
(
x0 − y0

)
(11.19)

Deven= Γ sign
(
x0 − y0

)
(11.20)

D and N are related to the Gab through the identity

D2Γ1PI

DϕaDϕb
= i�

[
G−1

]
ab

(11.21)

The inverse propagators may be read off the Schwinger–Dyson equations, and
we get

−�Σ11 = Deven + iN (11.22)

−�Σ12 = Γ − iN (11.23)

−�Σ21 = −Γ − iN (11.24)

−�Σ22 = −Deven + iN (11.25)

Since D (x, y) is real, we know the real part of D (X, k) is even and the imaginary
part is odd: D (X, k) = D (X,−k)∗, so

Deven (X, k) = Re D (X, k) (11.26)

Γ (X, k) = i Im D (X, k) (11.27)

and (11.20) transforms into the Kramers–Kronig relations for the causal
kernel D.

https://doi.org/10.1017/9781009290036.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290036.016


320 Quantum kinetic field theory

11.1.4 The retarded and advanced propagators

We have seen how to relate the dissipation and noise kernels D and N to the
inverse propagators. To relate them to the propagators themselves, let us first
investigate the SD equations in the Keldysh representation.

Write

�
[
G−1

]
ab

=
1
2

(
1 1
−1 1

)(
�
−1G−1

retG1G
−1
adv iG−1

ret

iG−1
adv 0

)(
1 −1
1 1

)
(11.28)

The equations of motion now read(
�
−1G−1

retG1G
−1
adv iG−1

ret

iG−1
adv 0

)
= (−i)

(
2iN D

ZB
+ D

D
ZzB

+ Dadv 0

)
(11.29)

where

Dadv (x, y) = Deven − Γ = D (y, x) (11.30)

These equations show that G1 and Gret may be considered functionals of D and
N. The formulae above upon partial Fourier transform become

D (X, k) =
{
−G−1

ret (X, k) +
1
ZB

(
k2 + m2

b

)}
(11.31)

To relate G−1
ret (X, k) to [Gret (X, k)]−1 we recall the formula for the partial

Fourier transform of a convolution

[f ∗ g] (X, k) = f (X, k) g (X, k) − i

2
{f, g} −1

8

{
∂2f

∂Xμ∂Xν

∂2g

∂kμ∂kν

+
∂2g

∂Xμ∂Xν

∂2f

∂kμ∂kν
− 2

∂2f

∂Xμ∂kν

∂2g

∂kμ∂Xν

}
+ . . . (11.32)

where we use the Poisson bracket (cf. Chapter 2)

{f, g} =
∂f

∂k

∂g

∂X
− ∂f

∂X

∂g

∂k
(11.33)

We obtain the adiabatic expansion of G−1
ret (X, k) by applying equation (11.32)

to the obvious statement that the convolution of G−1
ret and Gret is the identity

operator. To simplify the resulting expression, we assume that in the second-
order terms we may approximate G−1

ret (X, k) by its quasi-particle approximation
form

[
(k + iε)2 + M2

]
.

More generally, the so-called quasi-particle approximation consists in replac-
ing the actual propagators for those of a free field (see Chapter 5) with a yet-
to-be-determined mass M2. The physical basis of this approximation is that
one expects the most interesting dynamics may be described in terms of local-
ized excitations which, in between collisions, propagate as free particles with
a well-defined mass. This leads to propagators concentrated on a sharp mass
shell, which can be well approximated by free propagators. The quasi-particle
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11.1 The Kadanoff–Baym equations 321

approximation is expected to hold when the mean free path for quasi-particles
is long compared with the Debye length M−1. We warn the reader beforehand
that important processes, such as thermalization, are not well described within
this approximation (see the next chapter).

Computing the required derivatives and rearranging, we obtain

1 =
{

1
ZB

(
k2 + m2

b

)
− D (X, k)

}
Gret (X, k)

− 1
4
∇2

XGret (X, k) − 1
8

∂2M2

∂Xμ∂Xν

∂2Gret (X, k)
∂kμ∂kν

(11.34)

Over and above the need to renormalize (11.34), observe that this is a full-
fledged evolution equation for the Fourier transform of the retarded propagator.
To make the approach more definite, we may request that the quasi-particle
approximation for Gret actually becomes exact as k → 0. We shall discuss mass
renormalization in more detail below.

Ideally one would seek simultaneous solutions for (11.34) and the transport
equation to be derived below, but these are hard (and may be impossible) to
find [Mro97]. In such a case, one simply regards (11.34) as a way to generate the
adiabatic expansion of Gret.

In the approximation where only terms linear in the gradients of the Fourier
transforms of the propagators are retained, it is possible to write down a non-
perturbative (in the coupling constant) expression for the retarded and Jordan
propagators. The advantage of this approach is that it goes beyond the quasi-
particle approximation. In particular, it is sufficient for the discussion of the
transition to hydrodynamics and the computation of transport functions.

It is convenient to introduce a real kernel

R (X, k) =
1
ZB

(
k2 + m2

b

)
− Deven (X, k) (11.35)

The required expression is

[Gret (X, k)]−1 = R− Γ (11.36)

From (11.27)

Γ (X, k) = (−i) Im [Gret (X, k)]−1 = iπ γ (X, k) sign
(
k0
)

(11.37)

and finally, from (11.11),

D (X, k) =
γ (X, k)
R2 − Γ2

(11.38)

Recall that since we assume we know how to express R and Γ (and therefore
also γ) in terms of propagators, this is really a consistency condition linking the
density of states and the distribution function. Also recall that in deriving it we
have neglected terms of second adiabatic order and higher.
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322 Quantum kinetic field theory

11.1.5 The off-shell kinetic equation

To obtain the dynamics of the distribution function f , we make use of the remain-
ing equation involving the noise kernel

N (x, y) =
1
2�

∫
ddz1d

dz2 G−1
ret (x, z1)G1 (z1, z2)G−1

adv (z2, y) (11.39)

Iterating the formula for the partial Fourier transform of a convolution (11.32),
and dropping second-order terms and higher, we get

2�N =
[
G−1

retG
−1
adv − i

2
{
G−1

ret , G
−1
adv

}]
G1

− i

2
[
G−1

adv

{
G−1

ret , G1

}
−G−1

ret

{
G−1

adv, G1

}]
(11.40)

Observe that by performing the adiabatic expansion on this form of the SD
equations we avoid the appearance of N within Poisson brackets. This choice is
related to the so-called Botermans and Malfliet approach [BotMal90, IvKnVo00,
KnIvVo01, IvKnVo03]. Next, write

G1 = 2π�γGretGadvF1 (11.41)

N =
[
πγ

(
1 − i

2
GretGadv

{
G−1

ret , G
−1
adv

})

− iπ

2
(
Gret

{
G−1

ret , γ
}
−Gadv

{
G−1

adv, γ
})]

F1

− iπγ

2
[
Gret

{
G−1

ret , F1

}
−Gadv

{
G−1

adv, F1

}]
(11.42)

Recall that

{Γ, γ} = iπ γ (X, p)
{
sign

(
p0
)
, γ
}

= iπ δ
(
p0
) ∂

∂X0
γ2 (X, p) = 0 (11.43)

because γ (X, (0,p)) = 0. Therefore{
G−1

ret , G
−1
adv

}
= {R− Γ,R + Γ} = 2 {R,Γ} (11.44)

{
G−1

ret , γ
}

=
{
G−1

adv, γ
}

= {R, γ} (11.45)

N = [πγ (1 − 2iGretGadv {R,Γ})]F1

− iπγ

2
[
Gret

{
G−1

ret , F1

}
−Gadv

{
G−1

adv, F1

}]
(11.46)

Introduce the collision integral

Icol ≡ [N−πγF1] sign
(
k0
)

=
−i�

2
[
(Σ12 + Σ21)

(
F 21 − F 12

)
+ (Σ12 − Σ21)

(
F 21 + F 12

)]
= −i�

[
Σ12F

21 − Σ21F
12
]

(11.47)
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11.1 The Kadanoff–Baym equations 323

Then we obtain the kinetic equation

A {R,F1} + B {Γ,F1} + CF1 = Icol sign
(
k0
)

(11.48)

where

A = − Γ2

R2 − Γ2
(11.49)

B =
RΓ

R2 − Γ2
(11.50)

C = −2
Γ

R2 − Γ2
{R,Γ} (11.51)

Equation (11.48) is the key result of this chapter.

11.1.6 Weakly coupled theories and the Boltzmann equation

For weakly coupled theories, a series of approximations allow us to reduce (11.48)
to the more familiar Boltzmann kinetic equation (cf. Chapter 2).

We observe that in terms of the coupling constant λ we have, for a generic
momentum p, R ∼ O (1) while Γ ∼ O

(
λ2
)
. The C term in (11.48) combines

both space derivatives (assumed small) and radiative corrections. It is therefore
expected to be smaller than the other terms in the equation, and thus neglected
(approximations of this kind are further discussed in Section 11.1.9). An alterna-
tive, which we shall not follow, is to consider these terms as parts of the collision
integral, in which case we could regard them as a first-order approximation to a
more general, non-Markovian kinetic equation [KBKS97, Ike04].

A second observation is that in general Γ, which involves the coupling con-
stants, will be much smaller than R for a generic choice of p. When the cou-
pling constants go to zero Γ → 0, but the retarded propagator has a well-defined
asymptotic value, and (11.36) becomes

Gret ∼ PV
1
R

+ iπ sign(k0)δ(R) (11.52)

From equations (11.9) and (11.10), the density of states

D = δ(R) (11.53)

In this limit the propagators are insensitive to the behavior of the distribution
function “off shell” (i.e. when R �= 0), because the distribution function is always
multiplied by the density of states, and this is very small there. Therefore, only
“on shell” modes (i.e. those for which R = 0) really contribute to the field corre-
lation functions. If our only concern is to follow the evolution of the distribution
function on shell, we are allowed to replace the A and B coefficients in (11.48) by
their “on shell” values, namely A = 1 and B = 0. We thus obtain the Kadanoff–
Baym equations

{R,F1} = −i� sign
(
k0
) [

Σ12F
21 − Σ21F

12
]

(11.54)
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324 Quantum kinetic field theory

Observe that in this argument we first took the weakly coupled limit, and then
went on-shell. Also we assumed that somehow the adiabatic expansion and the
expansion in powers of the coupling constant were linked; otherwise the C coef-
ficient would be found to be comparable to A and B. A way to put this on a
systematic basis is the hard thermal loop expansion discussed in Chapter 10.

After these approximations (in keeping with the weak coupling assumption,
we are entitled to keep only O (λ) terms in R as well), the nontrivial content
of (11.54) is given by the form of the collision integral, namely, which Feynman
graphs contribute to the self-energies.

The Kadanoff–Baym equations are formally valid to all orders in the coupling
constant. It is convenient to consider the loop expansion of the self-energies to
reduce this equation to a more familiar form. However, even now we recognize
the structure of the collision term as the difference between a gain and a loss
term for particles moving in or out of a phase space cell around the point (X, p)
per unit time. Taking p0 > 0 for simplicity, we see that Σ12F

21 is the gain term,
with F 21 = 1 + f accounting for stimulated emission of particles into the cell,
while the other term is the loss term, which is proportional to the number of
particles F 12 = f already there.

Let us consider the expansion of the self-energies in terms of Feynman graphs
of increasing loop order, as a means of obtaining a definite expression for the
collision term in the kinetic equation. Since we have the relationship Σ21 (p) =
Σ12 (−p) it is enough to analyze only the expansion of Σ12. Physically this means
considering only the gain processes, which produce a particle within a given phase
space cell. The collision term is then obtained by subtracting the loss processes,
which remove a particle therein.

The first term in the expansion is the setting-sun graph. To this order,

Σ12 (x, y) =
i

6
λ2

�G (x, y) (11.55)

G =
1
�3

[
G12 (x, y)

]3
(11.56)

In momentum space, dealing with the propagators as if they were translation
invariant, and using the definition of F 12, we get

G (p)=(2π)4
∫

d4rD (r)
(2π)3

d4sD (s)
(2π)3

d4tD (t)
(2π)3

δ (p− r − s− t)F 12 (r)F 12 (s)F 12 (t)

(11.57)
We also replace D by its quasi-particle form D0 = δ

(
p2 + M2

)
. We must then

find sets of four on-shell momenta adding up to zero. If p0 > 0, this means that
two of the r, s, t momenta must be future oriented, and the third past oriented.
Using the symmetries of this expression, we obtain

G (p) = 3 (2π)4
∫

DrDsDt δ (p + r − s− t) [1 + f (r)] f (s) f (t) (11.58)
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where

Dp =
d4pD(p)θ

(
p0
)

(2π)3
(11.59)

It is fairly obvious that the resulting kinetic equation is just Boltzmann’s.
An important if simple consequence of this fact is that the usual arguments

showing that the only stationary solutions of the Boltzmann equation are ther-
mal distributions carry over to the Kadanoff–Baym equations. In other words,
the only translation-invariant propagators which solve the Kadanoff–Baym equa-
tions, or, for that matter, the 2PI Schwinger–Dyson equations, to this order in
perturbation theory are thermal propagators. This fact is relevant to the discus-
sion of thermalization in quantum field theory [JuCaGr04].

The basic formalism we presented here can be extended in several ways, such
as including higher terms in the derivative expansion [Mro97, Jak02], higher cor-
relations [WanHei02] or non-Markovian effects [MorRop99, SeKrBo00]. Another
important generalization consists of explicitly incorporating the effects of quan-
tum fluctuations in higher composite operators by including a stochastic source
besides the collision integral [ReiToe94, AARS96, CalHu00]. We may regard this
so-called Boltzmann–Langevin equation (see Chapter 2) as the quantum kinetic
analog of the Langevin approach we discussed in Chapter 8.

The classical limit

It is interesting to consider the classical limit of the Boltzmann equation. Naively,
we have, in powers of �, that {R,F1} ∼ O (1) and Icol ∼ O

(
�

2
)
. However, in

the classical limit we must have that the Jordan propagator G → 0 but the
Hadamard propagator G1 remains finite. To allow for a nonzero limit we must
have

f = �
−1fcl (11.60)

and counting powers of � we get

{R, fcl} = I
(3)
col [fcl] (11.61)

where I
(3)
col [fcl] contains all terms in the collision integral that are cubic in fcl.

The conclusion is that the correlation functions for a weakly interacting classi-
cal field, in the nearly translation-invariant limit, may be captured by a kinetic
equation describing two by two scattering of on-shell excitations [MueSon04].

The classical Boltzmann equation describing interacting particles has a col-
lision term quadratic in the distribution function. To obtain equation (11.61)
instead, we must include the Bose enhancement factors, although of course this
is a classical theory [Ein17].
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11.1.7 The Vlasov equation

To lowest order in λ, our theory reduces to the Vlasov equation, namely, a
transport theory for collisionless particles interacting with a self-consistent field.

This theory is obtained by neglecting the O
(
λ2
)

terms in our equations. The
unperturbed equations are

R = Ω0 = p2 + M2 (11.62)

and

D(p) = δ
(
p2 + M2

)
+ O

(
λ2
)

(11.63)

The kinetic equation reduces to

0 = D
[
p

∂

∂X
− 1

2
∂XM2∂p

]
f (11.64)

which is indeed in the form of a Vlasov equation. The mass is defined through
the self-consistent gap equation

M2 = m2
b + m2

V +
λb�

2
M2

T (11.65)

where

M2
T =

∫
d4p

(2π)3
δ (Ω0) f (X, p) (11.66)

m2
V =

λb�

4

∫
d4p

(2π)3
δ (Ω0) (11.67)

This second quantity is actually divergent, so to evaluate it we need to regu-
larize it first. We shall use dimensional regularization, writing (cf. Chapter 5)

m2
V = −λb�M

2

16π2

[
z − 1

2
ln
(

M2

4πμ2

)]
(11.68)

z ≡ Γ
[
1 + ε

2

]
ε
[
1 − ε

2

] =
1
ε

+
1
2

(1 − γ) + . . . (11.69)

(γ = 0.5772 . . .).
We go back to the gap equation and write it as

M2

{
1 +

λb�

16π2

[
z − 1

2
ln
(

M2

4πμ2

)]}
= m2

b +
λb�

2
M2

T (11.70)

which implies

1
2
dM2

T

dM2
=

1
λb�

+
1

16π2

[
z − 1

2
− 1

2
ln
(

M2

4πμ2

)]
(11.71)

Since the left-hand side is finite, the expression

1
λb�

+
1

16π2

[
z − 1

2

]
≡ 1

λ�
(11.72)
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must also be finite, and the differential gap equation becomes

1
2
dM2

T

dM2
=

1
λ�

− 1
32π2

ln
(

M2

4πμ2

)
(11.73)

Mass renormalization entails defining an initial condition for this differential
equation, such as M2

T (M2 = 0) = T 2/6�
2.

What is the small parameter?

Since reducing the theory to just the Vlasov equation means dropping terms of
order λ2, it might appear that one ought to replace the physical mass by the
solution of the gap equation to the same order, namely

M2 = M2
0 +

λ�

32π2
M2

0 ln
(

M2
0

4πμ2

)
(11.74)

where

M2
0 =

λ�

2

(
M2

T − T 2
c

6

)
(11.75)

(we gloss over the fact that M2
T itself depends on M2; at high enough temperature

M2
T stabilizes at a value of T 2/6, as in the massless theory). However, a moment’s

thought shows that, at least in the high-temperature limit, this is not a good
idea. For high enough temperature, the second term in our expansion is of the
order of the first term, meaning the breakdown of naive perturbation theory.

However, we can also proceed differently. In the regime where the derivation
of the gap equation is valid, we can also write it as

M2 =
M2

0

1 − λ�

32π2 ln
(

M2
0

4πμ2

) (11.76)

(of course, this expression also blows up when the denominator vanishes, but
that is a pathology of the λφ4 theory, which is not asymptotically free). If we
replace back equation (11.74) into the gap equation, we see that there is an error
term of order

2
[

λ�

32π2
ln
(

M2
0

4πμ2

)]2
M2

0 (11.77)

If we repeat the same with the expression (11.76), we see that the error has been
reduced to [

λ�

32π2

]2
ln
(

M2
0

4πμ2

)
M2

0 (11.78)

that is, an improvement by a factor of
(
ln
[
M2

0 /4πμ
2
])−1. An analysis of the

perturbative expansion shows that the terms from higher order Feynman graphs
are also of this order (see [CaJaPA86] and references therein).
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In other words, by adopting expression (11.76) we obtain a nonperturbative
(in powers of the coupling constant) approximation to the physical mass, which
is equivalent to summing all terms of the form

(
λ� ln

[
M2

0 /4πμ
2
])p in the per-

turbative expansion (the so-called leading logs) while leaving aside terms of the
form (λ�)p

(
ln
[
M2

0 /4πμ
2
])q with q < p. In this sense, the true small parame-

ter in our expansion is not the coupling constant, but rather
(
ln
[
M2

0 /4πμ
2
])−1

[ArSoYa99a, ArSoYa99b].

11.1.8 Time reversal invariance

Time reversal invariance means that for any solution Gab (x, y) of the equations
of motion the time-reversed expression Gab

rev (x, y) is also a solution. The form
of Gab

rev is determined by the time reversal operation appropriate to the under-
lying field theory. In our case, time reversal transforms an expectation value〈
Φ
(
x, x0

)
Φ
(
y, y0

)〉
into

〈
Φ
(
y,−y0

)
Φ
(
x,−x0

)〉
(see Streater and Wightman

[StrWig80] and T.D. Lee [Lee81]). If x =
(
x, x0

)
, write x̄ =

(
x,−x0

)
(observe

that x̄μ = xμ = ημνx
ν , where ημν is the Minkowski metric); therefore

G21
rev (x, y) = G21 (ȳ, x̄) (11.79)

G12
rev (x, y) = G12 (ȳ, x̄) (11.80)

For the Feynman propagator, we have

G11
rev (x, y) = θ

(
x0 − y0

)
G21

rev (x, y) + θ
(
y0 − x0

)
G12

rev (x, y)

= θ
(
−y0 −

(
−x0

))
G21 (ȳ, x̄) + θ

(
−x0 −

(
−y0
))

G12 (ȳ, x̄)

= G11 (ȳ, x̄) (11.81)

Similarly,

G22
rev (x, y) = G22 (ȳ, x̄) (11.82)

These formulae are summarized by

Gab
rev (x, y) = Gab (ȳ, x̄) (11.83)

It is convenient to introduce the notation: for any kernel A (x, y) , we define the
kernel Ā (x, y) = A (ȳ, x̄) . Therefore the time reversal operation means changing
Gab into Ḡab. Observe that a spherically symmetric translation invariant solution
is automatically a fixed point under time reversal.

In terms of the partial Fourier transform we get for any kernel A that

Ā (X, p) = A
(
X̄,−p̄

)
(11.84)

and as a consequence the first-order terms on the left-hand side of the kinetic
equations (11.48) change sign (there is always one derivative that does), while the
right-hand side Icolsign

(
k0
)

does not. So equations (11.48) are not time reversal
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invariant, unless I
(0)
col vanishes (which implies a thermal solution). On the other

hand, a local thermal solution cannot be a solution to first order, because then
I
(0)
col vanishes, but just four degrees of freedom βμ (X) are not enough to kill the

left-hand side terms identically in p.

Since (11.48) is the result of a systematic adiabatic expansion of the origi-
nal 2PI SD equations, and the expansion itself would not break time reversal
invariance, we conclude that the equations derived from the 2PIEA, unlike the
Heisenberg equations themselves, break time reversal symmetry. This is to be
expected, since these equations result from the slaving of higher correlations to
the two-point functions [IvKnVo99, CalHu00].

However, we must not conclude that the observed thermalization in solutions
of the evolution equations derived from the 2PIEA [Ber02, Ber04b, JuCaGr04,
ArSmTr05] is an artifact of the approach. Thermalization is also observed in
classical field theories, where the wave equation is directly solved [BoDeVe04].
We shall discuss this important issue in Chapter 12.

11.1.9 The limits of the kinetic approach

The derivation of the kinetic equations in this chapter is important for both
practical and fundamental reasons. The fact that it can be done, as we have seen,
already shows that the equations derived from the 2PIEA are not time reversal
invariant. We will see in the next chapter that the Kadanoff–Baym equations play
an important role in the derivation of the transport coefficients for a quantum
field, and that kinetic equations may be used to describe an important stage in
the thermalization process.

However, whether the kinetic equations, and more generally the adiabatic
approximation, are quantitatively accurate, is a difficult issue and should not
be taken lightly. We present an example, taken from [Mro97], which clearly dis-
plays the dangers at hand.

Consider a simple free Klein–Gordon field. The Heisenberg equations may be
solved exactly, and the field decomposed in creation and destruction operators:

Φ =
∫

d3k

(2π)3/2
eikx

√
2ωk

{
ake

−iωkt + a†ke
iωkt
}

(11.85)

where ω2
k = k2 + M2. Thus we may write any correlation function in terms of

the expectation values of products of ak and a†k. Let us assume for simplicity a
spatially homogeneous and isotropic state, so that

〈
a†paq

〉
= fpδ (p − q) (11.86)

〈apaq〉 =
〈
a†pa

†
q

〉∗
= gpδ (p + q) (11.87)
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The Jordan propagator is of course state independent and translation invari-
ant. The Hadamard propagator is

G1 (x, x′)=
∫

d3k

(2π)3
eik(x−x′)

ωk

{
[1 + 2fk] cosωk (t− t′) + gke

−2iωkT + g∗ke
2iωkT

}
(11.88)

where T = (t + t′) /2. Observe that no nontrivial choice of the gk makes this
almost translation invariant. The propagator is either exactly translation invari-
ant (if all gk = 0) or else strongly T dependent; in particular, no modification of
the distribution function f in a neighborhood of the mass-shell may account for
the gk terms.

We find the kinetic theory formalism is of no help in this problem, except in
the case where it is unnecessary, since the state is time independent.

11.2 Quantum kinetic field theory on nontrivial backgrounds

11.2.1 The scalar Wigner function in scalar quantum

electrodynamics (SQED)

The application of quantum kinetic field theory methods to fields defined on
nontrivial backgrounds (both abelian and non-abelian gauge fields and gravita-
tional backgrounds) presents special features which are not found in the general
formulation presented above. We shall now discuss some of these characteristics.

For simplicity we shall concentrate on the basic issues of how to define a Wigner
transform on a nontrivial background, the nature of the object so introduced and
the “transport” part of the kinetic equation. Once these difficulties are overcome,
the construction of the “collision” term of the kinetic equation follows the general
guidelines presented above. For the remainder of this Chapter we set � = 1.

The first difficulty encountered in applying the formalism of quantum kinetic
field theory to a scalar field on an electromagnetic background is also the most
obvious. Quantum kinetic theory assumes the two-point functions of the theory
are nearly translation invariant. But this is not a gauge-invariant statement. For
example, the Green function for a charged scalar field

G1 (x, x′) =
〈{

φ̂ (x) , φ̂†(x′)
}〉

(11.89)

becomes

G1 (x, x′) → ei{ε(x)−ε(x′)}G1 (x, x′) (11.90)

under a gauge transformation. It is clear that a nearly translation-invariant kernel
in one gauge may seem to be arbitrarily far from translation invariance in some
other gauge.

As we shall show, it is possible nevertheless to associate a “Wigner func-
tion” with the propagators under a well-defined gauge transformation law. For
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an abelian theory, the Wigner function is actually gauge invariant; in the non-
abelian case, it transforms as an element of the adjoint representation.

The price to be paid is to relinquish the identification of the Wigner function
as the partial Fourier transform of a propagator. That relationship will hold
only if both the propagator and the Wigner function are expressed in the Fock–
Schwinger gauge to be introduced momentarily [Foc37, Sch70, Jac02]. Observe
that this is not a very original procedure: it is the same logic by which one
specifies the temperature of a fluid by identifying the frame in which it should
be measured, namely the rest frame.

Concretely, let X be a spacetime event at which we want to define the Wigner
function F (X, p) for the charged scalar field. We want to specify a gauge in which
the gauge aspects of the background are suppressed as much as possible. As a
start, we demand A

(X)
μ (X) = 0, where A

(X)
μ is the background abelian gauge

field in the special gauge around X. We cannot remove all the derivatives of the
abelian field by gauge transformations (unless the field is trivial to begin with),
but we can and will set to zero the symmetric combination

A
(X)
(μ,ν) =

1
2

[
A(X)

μ,ν + A(X)
ν,μ

]
(11.91)

In general, we define

A(μ,ν1...νn) =
1

n + 1

[
Aμ,ν1...νn +

n∑
i=1

Aνi,μν1...νn

]
(11.92)

where the overbar means that νi is omitted. Then the Fock–Schwinger gauge is
defined by the conditions

A
(X)
(μ,ν1...νn) (X) = 0 (11.93)

Without loss of generality we may take X = 0. The above equation (11.93)
reduces to

uμA(0)
μ (tu) = 0 (11.94)

where t is just a parameter, unrelated to time. We may now define the Wigner
function as

F (0, p) =
∫

d4u e−ipuG
(0)
1 (u/2,−u/2) (11.95)

where

G
(0)
1 (x, x′) =

〈{
φ̂(0)(x), φ̂†(0)(x′)

}〉
(11.96)

is the Hadamard propagator in the Fock–Schwinger gauge. On the other hand,
suppose the background field in the gauge we happen to be working in (which
we shall refer to as “the gauge,” for short) is Aμ. There must exist a gauge
parameter ε(0) (x) such that

A(0)
μ (u) = Aμ (u) +

∂

∂uμ
ε(0) (11.97)
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The Fock–Schwinger gauge condition (11.94) becomes an equation for ε(0)

d

dt
ε(0) (tu) = −uμAμ (tu) (11.98)

with solution

ε(0) (u) = ε(0) (0) −
∫ 1

0

dt uμAμ (tu) (11.99)

By the same token

G
(0)
1 (u/2,−u/2) = G1 (u/2,−u/2) exp

{(
− i

2

)∫ 1

−1

dt uμAμ

(
tu

2

)}
(11.100)

Performing a simultaneous gauge transformation of G1 and Aμ in (11.100), we
see that G

(0)
1 , and therefore also F , are gauge invariant. Also, observe that the

constant of integration in the gauge parameter (11.99) drops out. In the non-
abelian case, the constant of integration matters, and the Wigner function will
be merely gauge covariant, rather than invariant.

The next step is to invert (11.95), that is, to express the Hadamard propagator
in terms of the Wigner function. Let x and x′ be the points at which we want to
evaluate the Hadamard propagator. Let X (x, x′) be the midpoint and u (x, x′)
the relative variable

Xμ =
1
2

(xμ + x′μ) ; uμ = xμ − x′μ (11.101)

Then

G1 (x, x′) = exp
{(

i

2

)∫ 1

−1

dt uμAμ

(
X +

tu

2

)}∫
d4p

(2π)4
eipu F (X, p)

(11.102)

The transport equation

We shall use (11.102) to obtain the transport equation for the Wigner function F .
Observe that since we already know F is a gauge-invariant object, the transport
equation we are looking for must be gauge invariant. This observation will be
useful in our search.

If we disregard scalar field self-interactions, the field operators obey the Heisen-
berg equations [

DμDμ −m2
]
φ̂ = 0 (11.103)

where D is the covariant derivative

Dμ = ∂μ − iAμ (11.104)

For a non-self-interacting theory the Hadamard propagator obeys the same equa-
tion. From (11.102) we find

DμG1 = e(
i
2 )
∫ 1
−1 dt uμAμ(X+ tu

2 )Dμ (11.105)
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where

Dμ =
∫

d4p

(2π)4
eipu

{
ipμ +

1
2

∂

∂Xμ
+ iPμ

}
F (X, p) (11.106)

Pμ =
1
2

∫ 1

−1

dt

[
Aμ

(
X +

tu

2

)
+

1 + t

2
uλAλ,μ

(
X +

tu

2

)]
−Aμ

(
X +

u

2

)
(11.107)

We now make a crucial observation. The object Dμ defined in (11.106) is gauge
invariant, so we may evaluate it in any gauge, and in particular in the Fock–
Schwinger gauge around X. Similarly, now that all derivatives have been made
explicit, there is no harm done if we set X = 0. We add the assumption that the
background field tensor is slowly varying, so we may approximate the background
field (in the special gauge) by its Taylor expansion. Up to two derivatives, we get

A(0)
ν

(u
2

)
=

uλ

4
Fλν (0) +

uλuρ

24
[Fλν,ρ + Fρν,λ] (0) + . . . (11.108)

Dμ =
∫

d4p

(2π)4
eipu

{
ipμ +

1
2

[
Fλμ

∂

∂pλ
+

∂

∂Xμ

]}
F (X, p) (11.109)

Since this expression is gauge invariant, it holds in any gauge.
We now observe that DμG1 has the same structure as G1 itself, namely, with

the factor

e(
i
2 )
∫ 1
−1 dt uμAμ(X+ tu

2 ) (11.110)

multiplying a Fourier integral over momentum space of a gauge-invariant quan-
tity. Therefore, we immediately find

DμDμG1 = e(
i
2 )
∫ 1
−1 dt uμAμ(X+ tu

2 )D2 (11.111)

for some operator D2. This operator, like Dμ, has both real and imaginary parts.
The former, together with the mass term in the Klein–Gordon equation, give rise
to the mass-shell constraint of the theory, while the latter yields the transport
equation

pμ
[

∂

∂Xμ
+ Fλμ

∂

∂pλ

]
F (X, p) = 0 (11.112)

The transport equation describes the evolution of a swarm of particles acted
upon by the Lorentz force. A similar calculation yields the conserved current

jμ (x) =
(−i

2

)
{[Dμ

x −Dμ
x′ ]G1 (x, x′)}x=x′ (11.113)

Using our previous results for the covariant derivatives we get

jμ (X) =
∫

d4p

(2π)4
pμF (X, p) (11.114)

whose conservation follows from the transport equation.
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We see that both the transport equation and the conserved current agree (to
this order) with the corresponding expressions in classical kinetic theory, while
the mass-shell condition begins to show traces of nonlocality.

11.2.2 Scalar Wigner functions on non-abelian backgrounds

We now consider the case in which the scalar field forms a multiplet minimally
coupled to a non-abelian gauge field. Observe that now the Hadamard propagator
carries group indices, transforming as φ̂ at x and as φ̂+ at x′.

The first issue we must confront is whether the Fock–Schwinger gauge condi-
tion (11.94) can be realized [Cro80]. We now have

A(0)
μ (u) = g

[
Aμ (u) − ig−1 ∂g

∂uμ

]
g−1 (11.115)

where g = exp {iε} is a group element and ε = εATA belongs to the group algebra.
If we impose the condition (11.94) we get

d

dt
g (tu) = −ig uμAμ (tu) (11.116)

whose solution is

g (u) = g (0) T̃
[
e−i

∫ 1
0 dt uμAμ(tu)

]
(11.117)

where the operator T̃ anti-orders with respect to the parameter t. Recall that
Aμ = AA

μTA are matrices, so they may not commute at different values of t.
This shows that the Fock–Schwinger gauge exists. However, the constant of

integration is no longer irrelevant. When we express the Hadamard propagator
in terms of the propagator in the Fock–Schwinger gauge we find

G1 = T
[
e(

i
2 )
∫ 1
0 dt uμAμ(X+ tu

2 )
]
g−1 (0)G(0,g)

1 g (0) T̃
[
e(

i
2 )
∫ 1
0 dt uμAμ(X− tu

2 )
]

(11.118)

To obtain the right gauge properties for G1 we must assume g−1 (0)G(0,g)
1 g (0) =

G
(0)
1 is independent of g. This means that G

(0)
1 transforms as an element of the

adjoint representation at X.
We adopt the same definition (11.95) for the Wigner function as in the abelian

case; now F is an element of the adjoint representation. The inverse relationship
reads

G1 = T
[
e(

i
2 )
∫ 1
0 dt uμAμ(X+ tu

2 )
] ∫ d4p

(2π)4
eipu F (X, p) T̃

[
e(

i
2 )
∫ 1
0 dt uμAμ(X− tu

2 )
]

(11.119)
To compute the transport equation, observe that

∂

∂Xλ
T
[
e(

i
2 )
∫ 1
0 dt uμAμ(X+ tu

2 )
]

= T
[
e(

i
2 )
∫ 1
0 dt uμAμ(X+ tu

2 )
]( i

2

)∫ 1

0

dt uμÂμ,λ

(
X +

tu

2

)
(11.120)
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where

Âμ,λ

(
X +

tu

2

)
= T̃

[
e(

−i
2 )
∫ t
0 dr uμAμ(X+ ru

2 )
]

×Aμ,λ

(
X +

tu

2

)
T
[
e(

i
2 )
∫ t
0 dr uμAμ(X+ ru

2 )
]

(11.121)

also

Aλ

(
X +

u

2

)
T
[
e(

i
2 )
∫ 1
0 dt uμAμ(X+ tu

2 )
]

= T
[
e(

i
2 )
∫ 1
0 dt uμAμ(X+ tu

2 )
]
Âλ

(
X +

u

2

)
(11.122)

and so

DμG1 = T
[
e(

i
2 )
∫ 1
0 dt uμAμ(X+ tu

2 )
]
DμT̃

[
e(

i
2 )
∫ 1
0 dt uμAμ(X− tu

2 )
]

(11.123)

where

Dμ =
∫

d4p

(2π)4
eipu

{
ipμF +

1
2

∂

∂Xμ
F (X, p) − iÂμ

(
X +

u

2

)
F (X, p)

+
(
i

2

)∫ 1

0

dt

[
Âμ

(
X +

tu

2

)
+

uρ

2
(1 + t)Âρ,μ

(
X +

tu

2

)]
F (X, p)

+
(
i

2

)∫ 1

0

dt

[
Âμ

(
X − tu

2

)
+

uρ

2
(1 − t) Âρ,μ

(
X − tu

2

)]
F (X, p)

}
(11.124)

Since Dμ has definite gauge transformation properties (it belongs to the adjoint
representation) it is enough to evaluate it in the Fock–Schwinger gauge, where
Â = A. Moreover, we replace the background fields by their Taylor expansion
around X = 0, which, since A(0) (0) = 0, is formally identical to the expansion
(11.108), taking into account that now the field tensor is a matrix. In the same
way that in the abelian case the covariant derivative of the propagator decom-
poses into real and imaginary parts, here the covariant derivative is the sum of
Hermitian and anti-Hermitian terms

D(0)
μ =

∫
d4p

(2π)4
eipu

{
ipμF +

1
2

∂

∂Xμ
F +

1
4

{
Fλμ,

∂F

∂pλ

}
+

1
8

[
Fλμ,

∂F

∂pλ

]}

(11.125)

This expression is valid in the Fock–Schwinger gauge. To obtain the correspond-
ing expression in an arbitrary gauge we must replace ∂F/∂Xμ by the covariant
derivative for an element of the adjoint representation

DμF =
∂F

∂Xμ
− i [Aμ, F ] (11.126)
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The double covariant derivative DμD
μ in the wave equation may be analyzed in

the same terms. Its anti-Hermitian part gives rise to the transport equation

0 = pμ
(
DμF +

1
2

{
Fλμ,

∂F

∂pλ

})

− i

8

([
Fλμ,

∂2F

∂pλ∂Xμ

]
+

1
2

[
Fμ
λ,μ,

∂F

∂pλ

]
+

1
4

[{
Fλμ, F

μ
ρ

}
,

∂2F

∂pλ∂pρ

])
(11.127)

The conserved current is −i times the momentum integral of the anti-Hermitian
part of the covariant derivative of the propagator. Discarding total derivatives it
is given formally by the same expression (11.114) as in the abelian case.

Classical limit and the Wong equations

The issue of the classical limit in the kinetic theory of particles on a non-abelian
background is subtler than in the abelian case, because at first sight the objects
involved are of a quite different nature. In the quantum case, as we have seen,
the distribution function is a Hermitian matrix F (X, p) belonging to the adjoint
representation of the group; in the classical case, particles carry a non-abelian
charge qA which may rotate within the group manifold, and the distribution
function f

(
X, p, qA

)
is then an ordinary function with extra arguments.

One simple way of connecting these two objects is by demanding that the
sequence of moments of both distributions are the same. The moments are
defined as

MQ
A1...An

= Tr {TA1 . . . TAnF} (11.128)

in the quantum case, and as

mc
A1...An

=
∫

dq qA1 . . . qAn f (11.129)

where dq is the invariant measure on the group manifold. Observe that because of
the group algebra only a few quantum moments are truly independent. We find
no such restriction in the classical case, which underlines the difference between
both approaches.

We shall carry the comparison in the “near-equilibrium” case where F is close
to a diagonal matrix in color space

F = f0 (X, p) 1 + fA (X, p)TA (11.130)

Let us assume the trace relations

Tr TA = 0; Tr TATB =
1
2
δAB (11.131)

The first few moments are then

MQ
0 = Nf0 (X, p) ; MQ

A =
1
2
fA (X, p) (11.132)
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where N is the dimension of the representation. If we have the corresponding
moments ∫

dq = N ;
∫

dq qA = 0;
∫

dq qAqB =
1
2
δAB (11.133)

then we are led to suggest

f = f0 (X, p) + fA (X, p) qA (11.134)

Our recipe meant the replacement of the identity matrix 1 by the number 1, and
the group generators TA by qA. Assume further the multiplication table

TATB =
1

2N
1δAB +

1
2
(
KC

AB + iCC
AB

)
TC (11.135)

The CC
AB are the structure constants; the KC

AB vanish for SU (2), but not for
SU (3). We insert the quantum distribution function (11.130) into the transport
equation (11.127), with the added assumption that the fA, being small, can be
neglected in terms involving the field tensor. Applying our recipe of replacing
generators by classical charges we obtain the classical transport equation

pμ
∂f

∂Xμ
+ qCC

C
AB

(
pμAA

μ

) ∂f

∂qB
+ pμ

(
qAF

A
λμ

) ∂f

∂pλ
= 0 (11.136)

If we wish to interpret this as a conservation equation for the number of particles
in a phase-space volume, then we must conclude that these particles move along
worldlines whose tangent is proportional to pμ, and whose momenta and charge
evolve according to

pμ
∂pλ
∂Xμ

=
(
qAF

A
λμ

)
pμ (11.137)

pμ
∂qB
∂Xμ

=
(
pμAA

μ

)
CC

ABqC (11.138)

These are the so-called Wong equations [Won70, LitMan02], which form the basis
for a classical theory of non-abelian plasmas.

In most problems of interest the back-reaction of the particles described by the
distribution function on the background fields is not negligible and one must seek
a self-consistent dynamical framework. One possibility is to couple the transport
equation for the particle distribution function to the Yang–Mills equations for the
soft part of the background fields. On general grounds [LitMan02] one expects
that such an approach is reliable when the plasma parameter ε is small. The
plasma parameter is the inverse to the number of particles within a sphere whose
radius is the screening length (see Chapter 10). In a gluon plasma, for example
(see below for the application of quantum kinetic theory to the gauge fields
themselves), the density scales as T 3 and the screening length as (gT )−1, so
ε ≈ g3. In this case, this scheme works for theories with weak coupling.
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11.2.3 Quantum kinetic theory in curved spacetimes

Quantum kinetic field theory in curved spacetimes has both similarities with and
important differences from the transport theory in non-abelian field backgrounds.
To begin with, there is one more layer of structure, because besides the Riemann
tensor (to be defined momentarily), which is the natural analog to the field
tensor, and the Christoffel symbols, which are the analogs to the field 4-vector,
there is the metric tensor itself, which has no analog in non-abelian gauge theory.
In particular, we shall carry the derivation of the transport equation up to two
derivatives of the metric, which means only one derivative of the connection and
no derivative of the Riemann tensor.

Let us begin by summarizing the useful definitions and conventions. The met-
ric tensor appears in the expression of Pythagoras’ theorem appropriate to the
spacetime in question: the geodesic distance between two events whose coor-
dinates differ by infinitesimal amounts dxμ is ds2 = gμνdx

μdxν (we adopt the
MTW conventions [MiThWh72] throughout this book). The connection appears
in the covariant derivative for a contravariant vector field Aμ

∇νA
μ = Aμ

;ν = Aμ
,ν + Γμ

νλA
λ (11.139)

We shall adopt the so-called Levi-Civita connection, whose components are the
Christoffel symbols

Γμ
νλ =

1
2
gμρ {gνρ,λ + gλρ,ν − gνλ,ρ} (11.140)

The Riemann tensor is the commutator of two covariant derivatives

[∇ν ,∇ρ]Aμ = Rμ
λνρA

λ (11.141)

It is related to the connection through

Rμ
λνρ = ∂νΓ

μ
λρ − ∂ρΓ

μ
λν + Γμ

νσΓσ
λρ − Γμ

ρσΓσ
λν (11.142)

As in our earlier discussions, start from an event P on the spacetime manifold at
which we wish to define the Wigner function. We will build a special coordinate
system in a neighborhood of P : the so-called Riemann normal coordinates (RNC)
centered at P [Pet69] comes in handy. In this system, the coordinates of P are
Xμ = 0. We also perform a linear change of variables such that the metric tensor
at P becomes gμν = ημν . We now consider a second point P ′ and assume there is a
unique geodesic joining P and P ′ (we say P ′ belongs to a normal neighborhood
of P ). Moreover we parameterize this geodesic as P ′ (t), such that P ′ (0) = P

and P ′ (1) = P ′. We define the RNC of P ′ as the components uμ of the tangent
vector to this geodesic at t = 0. Observe that ημνuμuν gives the geodesic distance
σ (P ′, P ) between P and P ′.

In RNC the line tuμ is by definition a geodesic. Substituting it into the geodesic
equation we obtain the identity

uνuρΓμ
νρ (tu) = 0 (11.143)
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This allows us to express the connection in terms of the Riemann tensor

Γμ
νρ (u) =

1
3

[
Rμ

νλρ + Rμ
ρλν

]
uλ + . . . (11.144)

and similarly for the metric

gμλ = ημν − 1
3
Rμνλρu

νuρ + . . . (11.145)

Now we define the Wigner function F (P, p) by demanding that in RNC the
Hadamard propagator evaluated at opposite points may be represented as

G1

(u
2
,−u

2

)
=

Δ1/2
VM

(
u
2 ,−u

2

)
√
−g (P )

K (P, u) (11.146)

where

K (P, u) =
∫

d4p

(2π)4
eipu F (P, p) (11.147)

and ΔVM is the Van Vleck–Morette determinant [Vle28, Mor51]

ΔVM (x, x′) =
1

16
√
−g (x)

√
−g (x′)

det
[
∂2σ (x, x′)
∂x∂x′

]
(11.148)

ΔVM is a biscalar, that is, a scalar both at x and x′. It is included so that
the lowest order adiabatic expansion of the propagator agrees with its WKB
approximation.

The factor
√
−g (P ) = 1, but we have made it explicit for the following reason.

The Hadamard propagator is a biscalar. If we make a coordinate transformation
from coordinates x to coordinates x′, then u transforms as a contravariant vector
at P . To make the product pu a scalar, p must transform as a covariant vector at
P , and in this case, d4p/

√
−g (P ) is the invariant measure. So we get the right

transformation properties, provided F (P, pμ) transforms into

F ′ (P, p′μ) = F

(
P,

∂x′λ

∂xμ
p′λ

)
(11.149)

The representation (11.146) may be generalized to the case when the propagator
is evaluated at two arbitrary points. Consider three points x, y and z in a normal
neighborhood of P , and let x (s) be the geodesic going from x (0) = z to x (1) = x.

Then in an adiabatic expansion we have x (s) = xs + z (1 − s) + ξ (s). Plug this
into the geodesic equation to get

d2ξμ

ds2
=

−1
3

[
Rμ

νλρ + Rμ
ρλν

]
(xs + z (1 − s))λ (x− z)ν (x− z)ρ + . . .

=
−zλ

3

[
Rμ

νλρ + Rμ
ρλν

]
(x− z)ν (x− z)ρ (11.150)

xμ (s) = xμs + zμ (1 − s) +
zλ

6

[
Rμ

νλρ + Rμ
ρλν

]
(x− z)ν (x− z)ρ s (1 − s)

(11.151)
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The tangent at s = 0 is

tμ (x, z) = (x− z)μ +
zλ

6

[
Rμ

νλρ + Rμ
ρλν

]
(x− z)ν (x− z)ρ (11.152)

To obtain the RNC of x around z we should make a linear coordinate transform
so that the metric tensor at z assumes its Minkowski value. However, this last
step is nonessential for obtaining the representation of the propagator, because
it is compensated by a change of variables in the momentum integral and the√
−g (P ) factor.
If the point z̄ is the geodesic midpoint between x and y, then tμ (x, z̄) =

−tμ (y, z̄) . We get

z̄μ =
(x + y)μ

2
+

(x + y)λ

48

[
Rμ

νλρ + Rμ
ρλν

]
(x− y)ν (x− y)ρ + . . . (11.153)

tμ (x, z̄) =
(x− y)μ

2
+ . . . (11.154)

and the representation of the propagator is

G1 (x, y) =
Δ1/2

VM (x, y)√
−g (z̄)

K (z̄, 2tμ (x, z̄)) (11.155)

where K was defined in (11.147). To this adiabatic order we may approximate
z̄ = (x + y) /2 within the K function.

We can now evaluate

∇μ∂μG1 (x, x′) = gμν (x) ∂μ∂νG1 (x, y) − gμν (x) Γλ
μν (x) ∂λG1 (x, y)

= ημν∂μ∂νG1 (x, y) +
Δ1/2

VM (x, y)√
−g (z̄)

×
[
1
3
Rμ ν

λ ρx
λxρ∂μ∂νK − 2

3
Rλ

σx
σ∂λK

]
(11.156)

Observe that

∂νG1 (x, y) =
Δ1/2

VM (x, y)√
−g (z̄)

[
∂νK +

(
1
2
∂ν ln [ΔVM (x, y)] − 1

2
∂ν ln [−g (z̄)]

)
K

]
(11.157)

ημν∂μ∂νG1 (x, y) = ημν
Δ1/2

VM (x, y)√
−g (z̄)

Jμν (11.158)

Jμν = ∂μ∂νK + (∂ν ln [ΔVM (x, y)] − ∂ν ln [−g (z̄)]) ∂μK

+
1
2

(∂μ∂ν ln [ΔVM (x, y)] − ∂μ∂ν ln [−g (z̄)])K (11.159)
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Now that all derivatives have been made explicit, there is no loss of generality if
we specialize to the case x = −y = u/2. We have

∂ν ln
[
ΔVM

(
u

2
,
−u

2

)]
=

1
3
Rνσu

σ (11.160)

∂ν ln [−g (z̄)] = 0 (11.161)

ημν∂μ∂ν ln [ΔVM (x, y)] =
1
3
R (11.162a)

ημν∂μ∂ν ln [−g (z̄)] =
−1
6

R (11.162b)

∇μ∂μG1

(
u

2
,
−u

2

)
=

Δ1/2
VM

(
u
2 ,−u

2

)
√
−g (P )

{
ημν∂μ∂νK +

1
4
RK +

1
12

Rμ ν
λ ρu

λuρ∂μ∂νK

}

=
Δ1/2

VM

(
u
2 ,−u

2

)
√
−g (P )

∫
d4p

(2π)4
eipu

{
−p2 + ipμ

∂

∂Xμ

+
ημν

4
∂2

∂Xμ∂Xν

1
6
R +

1
12

Rμ ν
λ ρpμpν

∂

∂pλ

∂

∂pρ

−1
6
R ν

λ pν
∂

∂pλ

}
F (X, p)X=0 (11.163)

Therefore the mass-shell constraint and the transport equation, evaluated at the
origin of a RNC system, read[

−p2 −m2 −
(
ξ − 1

6

)
R +

1
12

Rμ ν
λ ρpμpν

∂

∂pλ

∂

∂pρ

− 1
6
R ν

λ pν
∂

∂pλ
+

ημν

4
∂2

∂Xμ∂Xν

]
F = 0 (11.164)

pμ
∂

∂Xμ
F = 0 (11.165)

To obtain the corresponding expressions in an arbitrary coordinate system, we
must replace the ordinary derivatives by the covariant derivatives

∇μF =
[

∂

∂Xμ
+ Γλ

μρ pλ
∂

∂pρ

]
F (11.166)

∇ν∇μF = ∂ν∇μF − Γλ
νμ∇λF + Γλ

νρ pλ
∂

∂pρ
∇μF (11.167)

At the origin of the RNC

∇ν∇μF (X, p)X=0 = ∂ν∂μF +
1
3
[
Rλ

μνρ + Rλ
ρνμ

]
pλ

∂

∂pρ
(11.168)

so the covariant mass-shell constraint is[
−p2 −m2 −

(
ξ − 1

6

)
R +

1
12

[
Rμ ν

λ ρpμpν
∂

∂pλ

∂

∂pρ
−R ν

λ pν
∂

∂pλ

]

+
gμν

4
∇ν∇μ

]
F = 0 (11.169)
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and the covariant transport equation is

pμ
∂F

∂Xμ
+ pμΓλ

μρ pλ
∂F

∂pρ
= 0 (11.170)

If we think of this as a classical Liouville equation, it describes particles moving
along the geodesics of the background spacetime. The geodesics are parameter-
ized by s = τ/m, where m is the mass of the particles and τ is their proper time,
and the 4-velocity is uμ = pμ/m.

Higher spin fields

We now discuss the generalization of the quantum kinetic theory for scalar fields
in curved spacetimes to fields of higher spin. For concreteness, we shall discuss
the case of a Dirac spinor, but the central ideas apply to fields of any spin.

To begin, the notion of a local Lorentz transformation is introduced to define
spinor fields in curved spacetimes. To do this, we need a moving frame, or, in
four-dimensional spacetimes, a vierbein. A vierbein is a set of four vector fields
eμa such that at every point

gμνe
μ
ae

ν
b = ημν and ηabeμae

ν
b = gμν (11.171)

The components of the vierbein transform as contravariant vectors under general
coordinate transformations. The vierbein changes under a local Lorentz trans-
formation as

eμa → ξμa = Λb
ae

μ
b (11.172)

A Dirac spinor ψ is a set of four (world) scalar fields which transform as a spinor
under the local Lorentz transformation Λb

a. In general the quantity obtained by
taking the ordinary derivatives of a spinor field is not a spinor. We define instead
the covariant derivative

∇μψ = ∂μψ − Γμψ (11.173)

where

Γμ =
1
2
Σabeaνe

ν
b;μ (11.174)

Σab is the Lorentz generator appropriate to the representation to which ψ

belongs. ∇μψ is a spinor of the same order as ψ.
The propagator S (x, x′) transforms as the product ψ (x) ψ̄ (x′). We want to

express it in terms of a Wigner function F defined at the geodesic midpoint z̄

between x and x′, which transforms as ψ (z̄) ψ̄ (z̄). To do this, we introduce the
so-called parallel transport matrices A (x, z̄), which transform as ψ (x) ψ̄ (z̄), and
write

S (x, x′) = A (x, z̄)S(z̄) (x, x′)A (x′, z̄) (11.175)
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The matrices A (x, z̄) are parallel transported along the geodesic from z̄ to x. In
RNC around z̄ this means

xμA (x, 0);μ = 0 (11.176)

with the boundary condition A (0, 0) = 1. This equation allows us to write the
parallel transport matrices in terms of the spin connection

A (x, 0) = 1 + xμΓμ (z̄) + . . . (11.177)

The object S(z̄) (x, x′) may be treated with the methods we have used for scalar
fields; indeed, it is a world biscalar, though a local bispinor at z̄. We refer the
reader to [CaHaHu88] for further details.

Higher spin fields in non-abelian theories require the combination of methods
presented in all sections of this chapter. The gauge fields themselves pose a
particular problem, since their transformation law is not homogeneous. In this
case the simplest strategy is the so-called background field method [DeW81,
Abb81, Hart93, Alx99, PesSch95]. The gauge field Aμ is split into a c-number
background V μ and a quantum fluctuation Wμ. Under a gauge transformation,
V μ transforms as a gauge field, and Wμ as a field on the adjoint representation.
A gauge-fixing term

1
2α

(Dμ
V Wμ)2 (11.178)

is added to the action, where α is the gauge-fixing parameter and Dμ
V Wν is the

gauge covariant derivative with connection V μ, namely

DV μW
ν = ∂μW

ν − i [Vμ,W
ν ] (11.179)

The action (where we must also add the corresponding ghost terms) is invariant
under joint gauge transformations of V μ and Wμ, but non-invariant under gauge
transformations of Wμ alone. This is enough to make the W propagator well
defined.

The quantum field W has a homogeneous transformation law, and may be
handled as any other higher spin field. In curved spacetime, of course, we would
not be concerned with the world-vector Wμ but with the four world-scalars
W a = eaμW

μ, which transform as a vector under local Lorentz transformations.

11.2.4 A note on the literature

For original literature on Wigner functions in gauge backgrounds we recommend
Heinz [Hei83] and Winter [Win84], and for Wigner functions in curved space-
times, Winter [Win85] and Calzetta, Habib and Hu [CaHaHu88]. These meth-
ods were elaborated by many authors; other relevant references are [ElGyVa86,
Mro89, Fon94, Gei96, Gei97, Son97, BlaIan99, BlaIan02, LitMan02]. Our
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exposition on gauge backgrounds is greatly influenced by [WRSG02, WRSG03],
and on curved spacetimes by [CaHaHu88].

We recommend [BirDav82] as an entry point to the literature on higher spin
fields in curved spacetimes, and [ChWiDi77] for further information on geometry
and analysis on group manifolds.
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