COMMUTATORS IN PSEUDO-ORTHOGONAL GROUPS

F. A. ARLINGHAUS, L. N. VASERSTEIN and HONG YOU

(Received 6 November 1992; revised 11 April 1994)

Communicated by H. Lausch

Abstract

We study commutators in pseudo-orthogonal groups $O_{2 n} R$ (including unitary, symplectic, and ordinary orthogonal groups) and in the conformal pseudo-orthogonal groups $G O_{2 n} R$. We estimate the number of commutators, $c\left(O_{2 n} R\right)$ and $c\left(G O_{2 n} R\right)$, needed to represent every element in the commutator subgroup. We show that $c\left(O_{2 n} R\right) \leq 4$ if R satisfies the Λ-stable condition and either $n \geq 3$ or $n=2$ and 1 is the sum of two units in R, and that $c\left(G O_{2 n} R\right) \leq 3$ when the involution is trivial and $\Lambda=R^{\epsilon}$. We also show that $c\left(O_{2 n} R\right) \leq 3$ and $c\left(G O_{2 n} R\right) \leq 2$ for the ordinary orthogonal group $O_{2 n} R$ over a commutative ring R of absolute stable rank 1 where either $n \geq 3$ or $n=2$ and 1 is the sum of two units in R.

1991 Mathematics subject classification (Amer. Math. Soc.): 20G35, 20 H 25.

1. Introduction

For any group G, let $c(G)$ be the least integer $s \geq 0$ such that every product of commutators is the product of s commutators. If no such s exists, we set $c(G)=\infty$.

The number $c(G)$ has been studied extensively for various groups G. For a survey of commutator results, see [7]. In [7], it was shown that $c\left(G L_{n} R\right) \leq 2$, where R is a commutative ring of stable rank 1 and either $n \geq 3$ or $n=2$ and 1 is the sum of two units in R. In [8], You obtained a similar result for symplectic groups, showing $c\left(S p_{2 n} R\right) \leq 4$ and $c\left(G S p_{2 n} R\right) \leq 3$ where R is a ring of stable rank 1 and $n \geq 3$.

The main goal of this paper is to study commutators in pseudo-orthogonal groups $O_{2 n} R$ (including unitary, symplectic, and ordinary orthogonal groups) and in the conformal pseudo-orthogonal groups $G O_{2 n} R$ and to estimate $c\left(O_{2 n} R\right)$ and $c\left(G O_{2 n} R\right)$. We show that if R satisfies the Λ-stable condition and either $n \geq 3$ or $n=2$ and 1 is the sum of two units in R, then $c\left(O_{2 n} R\right) \leq 4$ and, when the involution is trivial and $\Lambda=R^{\epsilon}$, then $c\left(G O_{2 n} R\right) \leq 3$. This result generalizes a previous result of [8]. We also

[^0]show that $c\left(O_{2 n} R\right) \leq 3$ and $c\left(G O_{2 n} R\right) \leq 2$ for the ordinary orthogonal group $O_{2 n} R$ over a commutative ring R of absolute stable rank 1 where either $n \geq 3$ or $n=2$ and 1 is the sum of two units in R.

We assume that an involution $*: x \mapsto x^{*}$ is given on an associative ring R with 1. Thus $\left(x^{*}\right)^{*}=x,(x-y)^{*}=x^{*}-y^{*}$, and $(x y)^{*}=y^{*} x^{*}$ for any $x, y \in R$. The involution $*$ also determines an involution of the ring $M_{n} R$ of all n by n matrices by $\left(x_{i j}\right)^{*}=x_{j i}^{*}$.

Let ϵ be an element of the center of R such that $\epsilon \epsilon^{*}=1$. Set $R_{\epsilon}=\left\{x-\epsilon x^{*}\right.$: $x \in R\}, R^{\epsilon}=\left\{x \in R: x=-\epsilon x^{*}\right\}$. We fix an additive subgroup Λ of R with the following properties:
(i) $r \Lambda r^{*} \subset \Lambda$ for all $r \in R$;
(ii) $R_{\epsilon} \subset \Lambda \subset R^{\epsilon}$.

Let Λ_{n} denote the set $\left\{\left(a_{i j}\right)_{n \times n}: a_{i j}=-\epsilon a_{j i}^{*}\right.$ for $i \neq j$ and $\left.a_{i i} \in \Lambda\right\}$.
As in [1], we define

$$
O_{2 n} R=\left\{\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in G L_{2 n} R: \alpha \delta^{*}+\epsilon \beta \gamma^{*}=I, \alpha \beta^{*}, \gamma \delta^{*} \in \Lambda_{n}\right\}
$$

and

$$
G O_{2 n} R=\left\{\left(\begin{array}{cc}
I & 0 \\
0 & \zeta I
\end{array}\right) \psi: \psi \in O_{2 n} R\right.
$$

ζ a unit in the center of R with $\zeta \Lambda=\Lambda$ and $\left.\zeta=\zeta^{*}\right\}$.
Set $\sigma k=k+n$ if $k \leq n, \sigma k=k-n$ if $k>n$. For $a \in R$, define

$$
\rho_{i j}(a)= \begin{cases}I_{2 n}+a E_{i j}-a^{*} E_{\sigma j, \sigma i} & (1 \leq i \neq j \leq n) \\ I_{2 n}+a E_{i, j}-\epsilon^{*} a^{*} E_{\sigma j, \sigma i} & (i \neq \sigma j, 1 \leq i \leq n, n+1 \leq j \leq 2 n) \\ I_{2 n}+a E_{i, j}-\epsilon a^{*} E_{\sigma j, \sigma i} & (i \neq \sigma j, n+1 \leq i \leq 2 n, 1 \leq j \leq n) \\ I_{2 n}+a E_{i, \sigma i} & \left(1 \leq i=\sigma j \leq n, a^{*} \in \Lambda\right) \\ I_{2 n}+a E_{i, \sigma i} & (n+1 \leq i=\sigma j \leq 2 n, a \in \Lambda)\end{cases}
$$

where $E_{i j}$ denotes the matrix with 1 in the i th row and the j th column and zeros elsewhere. We denote by $E O_{2 n} R$ the subgroup of $O_{2 n} R$ generated by the set of $\rho_{i j}(a)$ with $a \in R$.

A ring is said to satisfy the Λ-stable condition (see [3]) if when $R a+R b=R$, then there is an $x^{*} \in \Lambda$ such that $R(a+x b)=R$. If an associative ring R satisfies the Λ-stable condition, we can show that the ring $R^{\prime}=M_{n} R$ of n by n matrices satisfies the Λ_{n}-stable condition; that is, if $a, b \in R^{\prime}$ with $R^{\prime} a+R^{\prime} b=R^{\prime}$, then $a+x b$ is invertible for some $x^{*} \in \Lambda_{n}$ (see Lemma 6).

When $\Lambda=R$ (in which case $O_{2 n} R$ is the ordinary symplectic group), the Λ-stable condition is equivalent to the first Bass stable range condition. Some examples of rings satisfying the Λ-stable condition can be found in [3, pp. 218-223].

For a subset S of R, we denote by $J(S)$ the intersection of all left maximal ideals of R which contain S. We say a sequence $a_{0}, a_{1}, \ldots, a_{n}$ in R can be shortened if there are $t_{0}, t_{1}, \ldots, t_{n-1}$ in R such that $a_{n} \in J\left(a_{0}+t_{0} a_{n}, \ldots, a_{n-1}+t_{n-1} a_{n}\right)$.

If every sequence containing $n+1$ elements in R can be shortened, we say that the ring satisfies the $\operatorname{asr}(n)$ condition. When n is the least integer such that R satisfies the $\operatorname{asr}(n)$ condition, we say that n is the absolute stable rank of R, denoted by $\operatorname{asr}(R)=n$ (see [5]). In general, the stable rank of R (denoted by $\operatorname{sr}(R)$) is less than or equal to the absolute stable rank of R (see [5]).

EXAMPLES. (See [5]):
(i) If $R \neq 0$ is semilocal, then $\operatorname{asr}(R)=\operatorname{sr}(R)=1$.
(ii) If R is commutative and the maximal spectrum of R is Noetherian of finite dimension n, then any module-finite R-algebra A has absolute stable rank at most $n+1$.

We denote by B^{+}(respectively B^{-}) the subgroup of $O_{2 n} R$ consisting of the matrices of the form $\left(\begin{array}{cc}\alpha & \beta \\ 0 & \alpha^{*^{-1}}\end{array}\right)$ (respectively $\left(\begin{array}{cc}\alpha & 0 \\ \beta & \alpha^{*^{-1}}\end{array}\right)$) where α is an n by n upper (respectively lower) triangular matrix and $\alpha \beta^{*} \in \Lambda_{n}$ (respectively $\alpha^{*} \beta \in \Lambda_{n}$). The subgroup of B^{+}(respectively B^{-}) formed by the above matrices such that the diagonal entries of α are 1 is denoted by U^{+}(respectively U^{-}). We use the symbol $I_{2(n-k)} \oplus O_{2 k} R$ to denote the subgroup of $O_{2 n} R$ formed by the matrices

$$
\left(\begin{array}{cccc}
I & & & \\
& \alpha & & \beta \\
& & I & \\
& \gamma & & \delta
\end{array}\right), \text { where }\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in O_{2 k} R .
$$

In Section 2, we obtain two decomposition results involving B^{+}and B^{-}or U^{+}and U^{-}.

PROPOSITION 1. Assume that R satisfies the Λ-stable condition. Then every matrix $\theta \in E O_{2 n} R$ can be written in the form
(i) $\psi_{1} \lambda_{1} \psi_{2}$, where ψ_{i} are in B^{+}and λ_{1} is in B^{-},
(ii) $\psi_{1} \lambda_{1} \psi_{2} \lambda_{2}$, where ψ_{i} are in U^{+}and λ_{i} are in U^{-}.

Therefore any matrix $\theta \in E O_{2 n} R$ is similar to the product $\psi \lambda$, where ψ is in B^{+} and λ is in B^{-}.

PROPOSITION 2. Assume that $n \geq \operatorname{asr}(R)+2$. Then every matrix $\theta \in O_{2 n} R$ can be written in the form
(i) $\psi_{1} \lambda_{1} \theta_{1} \psi_{2}$, where ψ_{i} are in B^{+}, λ_{1} is in B^{-}, and $\theta_{1} \in I_{2(n-k)} \oplus O_{2 k} R$ for $k=\operatorname{asr}(R)+1$,
(ii) $\psi_{1} \lambda_{1} \theta_{1} \psi_{2} \lambda_{2}$, where ψ_{i} are in U^{+}, λ_{i} are in U^{-}, and $\theta_{1} \in I_{2(n-k)} \oplus O_{2 k} R$ for $k=\operatorname{asr}(R)+1$.
Therefore any matrix $\theta \in O_{2 n} R$ is similar to the product $\psi \lambda \theta_{1}$, where ψ is in B^{+}, λ is in B^{-}, and $\theta_{1} \in I_{2(n-k)} \oplus O_{2 k} R$. If R is commutative and $*$ is the trivial involution, the conclusions of (i) and (ii) hold also for $k=\operatorname{asr}(R)$.

We also obtain the following corollary to Proposition 2.

COROLLARY 3. For the ordinary orthogonal group, assume $\operatorname{asr}(R) \leq 1$ for a commutative ring R, and $n \geq 2$. Then every matrix $\theta \in E O_{2 n} R$ can be written in the form
(i) $\psi_{1} \lambda_{1} \psi_{2}$, where ψ_{i} are in B^{+}and λ_{1} is in B^{-},
(ii) $\psi_{1} \lambda_{1} \psi_{2} \lambda_{2}$, where ψ_{i} are in U^{+}and λ_{i} are in U^{-}.

Therefore any matrix $\theta \in E O_{2 n} R$ is similar to the product $\psi \lambda$, where ψ is in B^{+} and λ is in B^{-}.

In Section 3, we will use Propositions 1 and 2 and Corollary 3 to prove the following results.

THEOREM 4. Let R be a commutative ring with 1 satisfying the Λ-stable condition. Assume that either $n \geq 3$ or $n=2$ and 1 is the sum of two units in R. Then
(i) $c\left(E O_{2 n} R\right) \leq 4$, hence $c\left(O_{2 n} R\right) \leq 4$,
(ii) when the involution is trivial and $\Lambda=R^{\epsilon}, c\left(G O_{2 n} R\right) \leq 3$.

THEOREM 5. Let R be a commutative ring with 1 of absolute stable rank 1, and let $O_{2 n} R$ be the ordinary orthogonal group. Assume that either $n \geq 3$ or $n=2$ and 1 is the sum of two units in R. Then
(i) $c\left(E O_{2 n} R\right) \leq 3$, hence $c\left(O_{2 n} R\right) \leq 3$,
(ii) $c\left(G O_{2 n} R\right) \leq 2$.

2. Preliminary results

Lemma 6. If R satisfies the Λ-stable condition, then $R^{\prime}=M_{n} R$ satisfies the Λ_{n} stable condition.

PROOF. Let $a, b \in R^{\prime}$ with $R^{\prime} a+R^{\prime} b=R^{\prime}$. Our problem is to find $\zeta^{*} \in \Lambda_{n}$ such that $a+\zeta b \in G L_{n} R$. If we replace $\binom{a}{b}$ by $\left(\begin{array}{cc}\eta & \alpha \\ 0 & \eta^{*-1}\end{array}\right)\binom{a}{b}$ with $\eta \in G L_{n} R$ and $\eta \alpha^{*} \in \Lambda_{n}$, we obtain an equivalent problem.

Consider the first column of the matrix $(a, b)^{t}$. Since R satisfies the Λ-stable condition, R has stable rank 1 . Thus we may find a suitable matrix $\eta_{1} \in G L_{n} R$ and replace $(a, b)^{t}$ by $\operatorname{diag}\left(\eta_{1}, \eta_{1}^{*-1}\right)(a, b)^{t}$ such that b_{11} and the first column of a form a unimodular vector. By the hypothesis there is an $x^{*} \in \Lambda$ such that ($a_{11}+$ $\left.x b_{11}, a_{21}, \ldots, a_{n 1}\right)^{t}$ is unimodular. We multiply b_{11} by $x \in \Lambda^{*}$ and add $x b_{11}$ to a_{11}. Again, replacing $(a, b)^{t}$ by $\operatorname{diag}\left(\eta_{2}, \eta_{2}^{*^{-1}}\right)(a, b)^{t}$, we may assume that $a_{11}=1$, $a_{21}=$ $\cdots=a_{n 1}=0$, that is, we have

$$
\binom{a}{b}=\left(\begin{array}{cc}
1 & u \\
0 & a_{1} \\
* & * \\
v & b_{1}
\end{array}\right)
$$

where a_{1}, b_{1}, and $b_{1}-v u$ are $n-1$ by $n-1$ matrices. Note that the matrix ($a_{1}, *$, $\left.b_{1}-v u\right)^{t}$ is unimodular. In this matrix, we can add multiples of the n-th row to the $(n+1)$ th through $(2 n-1)$ th rows without changing a_{1}. Thus we can assume that $\left(a_{1}, b_{1}-v u\right)^{t}$ is unimodular.

Then we can use induction on n to complete the proof. When $n=1$, it is trivial. Assume it is true for $n-1$. Then there is an $x_{1}^{*} \in \Lambda_{n-1}$ such that $a_{1}+x_{1}\left(b_{1}-v u\right) \in$ $G L_{n-1} R$. We can take $x_{2}^{*}=\left(\begin{array}{cc}0 & 0 \\ 0 & x_{1}^{*}\end{array}\right) \in \Lambda_{n}$ such that the first n by n block in

$$
\left(\begin{array}{cc}
I & x_{2} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
1 & u \\
0 & a_{1} \\
* & * \\
0 & b_{1}-v u
\end{array}\right)
$$

lies in $G L_{n} R$, and thus we're done.
PROOF OF PROPOSITION 1. (i) Let $\theta=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in E O_{2 n} R$. By Lemma 6, there is $\zeta^{*} \in \Lambda_{n}$ such that $\eta=\alpha+\zeta \gamma \in G L_{n} R$ and $\eta^{*} \gamma \in \Lambda_{n}$. Then

$$
\left(\begin{array}{ll}
I & \zeta \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{cc}
\eta & \beta+\zeta \delta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
\gamma \eta^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
I & (\beta+\zeta \delta) \eta^{*} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
\eta & 0 \\
0 & \eta^{*^{-1}}
\end{array}\right)
$$

By [7, Theorem 1], $\eta=\psi_{1}^{\prime} \lambda_{1}^{\prime} \psi_{2}^{\prime}$, where the ψ_{i}^{\prime} are upper triangular matrices in $G L_{n} R$ and λ_{1}^{\prime} is a lower triangular matrix in $G L_{n} R$. Then

$$
\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{cc}
\psi_{1}^{\prime} & \omega_{1} \\
0 & \psi_{1}^{\prime^{-1}}
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1}^{\prime} & 0 \\
\omega_{2} & \lambda_{1}^{\mu^{-1}}
\end{array}\right)\left(\begin{array}{cc}
\psi_{2}^{\prime} & \omega_{3} \\
0 & \psi_{2}^{\prime^{-1}}
\end{array}\right)=\psi_{1} \lambda_{1} \psi_{2}
$$

(ii) The proof is similar, using the factorization $\eta=\psi_{1}^{\prime} \lambda_{1}^{\prime} \psi_{2}^{\prime} \lambda_{2}^{\prime}$ from Lemma 9 of [4].

Lemma 7. ([5]). For any ring R and positive integer $n, \operatorname{asr}(R) \leq n$ if and only if for every sequence $a_{0}, a_{1}, \ldots, a_{n}$ in R, there are $t_{0}, t_{1}, \ldots, t_{n-1}$ in R such that $R\left(1+h a_{n}\right)+R\left(a_{0}+t_{0} a_{n}\right)+\cdots+R\left(a_{n-1}+t_{n-1} a_{n}\right)=R$ for every h in R.

Lemma 8.
(i)

$$
\prod_{j=n+1}^{2 n} \rho_{1, j}(*)\left(\begin{array}{cccc}
1 & & & \\
& I_{n-1} & & \\
& & 1 & \\
& \chi & & I_{n-1}
\end{array}\right)=\prod_{j=2}^{n} \rho_{1 j}(*)\left(\begin{array}{cccc}
1 & & & \\
& I_{n-1} & & \\
& & 1 & \\
& \chi & & I_{n-1}
\end{array}\right) \prod_{j=n+1}^{2 n} \rho_{1 j}(*)
$$

(ii)

$$
\prod_{j=1}^{n} \rho_{n+1, j}(*)\left(\begin{array}{ccc}
1 & & \\
& I_{n-1} & \\
& & 1 \\
& & \\
& & \\
I_{n-1}
\end{array}\right)=\prod_{j=2}^{n} \rho_{j 1}(*)\left(\begin{array}{cccc}
1 & & & \\
& I_{n-1} & & \\
& & 1 & \\
& & & I_{n-1}
\end{array}\right) \prod_{j=1}^{n} \rho_{n+1, j}(*)
$$

PROOF OF PROPOSITION 2. (i) Let $v=\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)^{t}$ be the first column of θ. Since $\operatorname{sr}(R) \leq \operatorname{asr}(R) \leq n-1$, we can find a matrix $\delta=\operatorname{diag}\left(\eta_{1}, \eta_{1}^{*^{-1}}\right) \in B^{+}$ such that $a_{1}, \ldots, a_{n-1}, b_{1}, \ldots, b_{n}$ in δv form a unimodular vector.

Suppose that $c_{n}^{\prime} b_{n}+\sum_{i=1}^{n-1}\left(c_{i} a_{i}+c_{i}^{\prime} b_{i}\right)=1$. Multiplying the equation by $1-a_{n}$ on the left and replacing v by $\prod_{i=1}^{n-1} \rho_{n, \sigma i}\left(\left(1-a_{n}\right) c_{i}^{\prime}\right) \prod_{i=1}^{n-1} \rho_{n i}\left(\left(1-a_{n}\right) c_{i}\right) v$, we get $a_{n}=1+x b_{n}$ for some $x \in R$.

Since $\operatorname{asr}(R) \leq n-2$, by Lemma 7 there exist $t_{i} \in R$ such that $R\left(1+h b_{1}\right)+$ $\sum_{i=2}^{n-1} R\left(a_{i}+t_{i} b_{1}\right)=R$. Replacing v by $\prod_{i=2}^{n-1} \rho_{i, n+1}\left(t_{i}\right) v$, we have $R\left(1+h b_{1}\right)+$ $\sum_{i=2}^{n-1} R a_{i}=R$ for every h in R.

Since $a_{n}=1+x b_{n}, R a_{n}+R b_{n}=R$, there exist $y_{1}, y_{2} \in R$ such that $y_{1} a_{n}+y_{2} b_{n}=$ $-a_{1}+1+h b_{1}$. Replacing v by $\rho_{1,2 n}\left(y_{2}\right) v$, we get $\sum_{i=1}^{n} R a_{i}=R$.

There exists a $\eta_{2} \in G L_{n} R$ such that $\operatorname{diag}\left(\eta_{2}, \eta_{2}^{*-1}\right) v=(1,0, \ldots, 0, *, \ldots, *)^{t}$. Then multiplying v by $\prod_{i=n+1}^{2 n} \rho_{i, 1}(*)$, we get $v=(1,0, \ldots, 0)^{t}$.

Summarizing this procedure, we have

$$
\begin{aligned}
& \prod_{i=n+1}^{2 n} \rho_{i 1}(*) \operatorname{diag}\left(\eta_{2}, \eta_{2}^{*-1}\right) \rho_{1,2 n}\left(y_{2}\right) \prod_{i=2}^{n-1} \rho_{i, n+1}(*) \prod_{i=1}^{n-1} \rho_{n, \sigma i}(*) \operatorname{diag}\left(\eta_{3}, \eta_{3}^{*-1}\right) \theta \psi_{4} \\
& \quad=\left(\begin{array}{ccc}
1 & & \\
& \alpha & \\
& & 1 \\
& \gamma & \\
& &
\end{array}\right),
\end{aligned}
$$

where $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in O_{2(n-1)} R$, and hence we can write θ as

$$
\theta=\left(\begin{array}{cc}
\eta_{4} & 0 \\
0 & \eta_{4}^{*-1}
\end{array}\right) \psi_{3} \prod_{i=n+1}^{2 n} \rho_{i 1}(*)\left(\begin{array}{cccc}
1 & & & \\
& \alpha & & \beta \\
& & 1 & \\
& \gamma & & \delta
\end{array}\right) \psi_{4}^{-1}
$$

where

$$
\begin{aligned}
& \psi_{3}=\operatorname{diag}\left(\eta_{2}, \eta_{2}^{*-1}\right) \prod_{i=1}^{n-1} \rho_{n, \sigma i}(*) \prod_{i=2}^{n-1} \rho_{i, n+1}(*) \rho_{1,2 n}\left(-y_{2}\right) \operatorname{diag}\left(\eta_{2}^{-1}, \eta_{2}^{*}\right) \in B^{+}, \\
& \psi_{4}=\prod_{i=1}^{n} \rho_{1 i}(*) \prod_{i=1}^{n} \rho_{1, \sigma i}(*) \in B^{+},
\end{aligned}
$$

and $\left(\begin{array}{cc}\eta_{4} & 0 \\ 0 & \eta_{4}^{*-1}\end{array}\right)=\operatorname{diag}\left(\eta_{3}^{-1}, \eta_{3}^{*}\right) \operatorname{diag}\left(\eta_{2}^{-1}, \eta_{2}^{*}\right)$.
Applying induction on n, we may assume that

$$
\left(\begin{array}{cccc}
1 & & & \\
& \alpha & & \beta \\
& & 1 & \\
& \gamma & & \delta
\end{array}\right)=\psi_{3}^{\prime} \lambda_{1}^{\prime} \theta^{\prime} \psi_{4}^{\prime}
$$

where $\psi_{3}^{\prime}, \psi_{4}^{\prime}$ are in $B^{+}, \lambda_{1}^{\prime}$ is in B^{-}, and $\theta^{\prime} \in I_{2(n-k)} \oplus O_{2 k} R$, where $k=\operatorname{asr}(R)+1$.
Writing ψ_{3}^{\prime} as

$$
\left(\begin{array}{cccc}
1 & & & \\
& I_{n-1} & & \chi_{1} \\
& & 1 & \\
& & & I_{n-1}
\end{array}\right)\left(\begin{array}{cccc}
1 & & & \\
& \eta_{5} & & \\
& & 1 & \\
& & & \eta_{5}^{*-1}
\end{array}\right)
$$

and applying Lemma 8 , we can write θ as $\left(\begin{array}{cc}\eta & 0 \\ 0 & \eta^{*-1}\end{array}\right) \psi_{5} \lambda_{3} \theta_{1} \psi_{6}$, where $\psi_{5}=\left(\begin{array}{cc}I & \zeta_{1} \\ 0 & I\end{array}\right)$, $\lambda_{3}=\left(\begin{array}{ll}I & 0 \\ \zeta_{2} & 1\end{array}\right)$ and ψ_{6} is in B^{+}.

By decomposing η as $\psi_{7} \lambda_{4} \eta_{6} \psi_{8}$, where the $\psi_{i}\left(\lambda_{i}\right)$ are upper (lower) triangular matrices, $\eta_{6} \in I_{n-k} \oplus G L_{k} R$, and rearranging these matrices, we obtain $\theta=\psi_{1} \lambda \theta_{2} \psi_{2}$, where ψ_{i} are in B^{+}, λ is in B^{-}, and $\theta_{2} \in I_{2(n-k)} \oplus O_{2 k} R$ with $k=\operatorname{asr}(R)+1$.

In the case where R is commutative and $*$ is the trivial involution, the result can be improved by [5, p. 539].
(ii) Follows easily from Lemma 9 of [4] and (i).

REMARKS. (i) If necessary, we can make $\psi_{1} \in U^{+}$and $\lambda_{1} \in U^{-}$by including the diagonal entries in ψ_{2},
(ii) If R is commutative and $\operatorname{asr}(R) \leq 1$, we can write $\theta \in O_{2 n} R$ as $\theta_{1} \psi$, where $\theta_{1} \in O_{2} R$ and $\psi \in E O_{2 n} R$.

Proof of Corollary 3. (i) By Proposition 2, it suffices to show the result for $E O_{4} R$. From [7], we know that any matrix in $E_{2} R$ can be factored as a product of an upper triangular matrix, a lower triangular matrix, and an upper triangular matrix. The exact sequence

$$
1 \rightarrow\left\{\left(\left(\begin{array}{ll}
z & 0 \\
0 & z
\end{array}\right),\left(\begin{array}{ll}
z & 0 \\
0 & z
\end{array}\right)\right): z^{2}=1\right\} \rightarrow E_{2} R \times E_{2} R \rightarrow E O_{4} R \rightarrow 1
$$

allows us to obtain the conclusion.
(ii) Follows easily from Lemma 9 of [4] and (i).

3. Proof of the main results

To prove Theorems 4 and 5, we need the following three lemmas.
Lemma 9. Let R be a commutative ring with 1 and $n \geq 1$. Suppose that θ is in U^{+} and $\pi=\left(\begin{array}{cc}0 & \epsilon^{*} \\ I_{2 n-1} & 0\end{array}\right) \in O_{2 n} R$. Then there is $a \kappa$ in U^{+}such that $\kappa^{-1} \theta \pi \kappa$ is of the form

$$
U c\left(a_{1}, \ldots, a_{n}\right)=\left(\begin{array}{cccccccc}
0 & & & & & & & \epsilon^{*} \\
1 & 0 & & & & & & a_{1} \\
& \ddots & \ddots & & & & & a_{2} \\
& & 1 & 0 & & & & \vdots \\
& & & 1 & -\epsilon^{*} a_{1}^{*} & -\epsilon^{*} a_{2}^{*} & \cdots & a_{n} \\
& & & 1 & 0 & & \\
& & & & & \ddots & \ddots & \\
& & & & & & & 1
\end{array}\right) \quad 0 .
$$

Proof. Write θ in the form $\left(\begin{array}{cc}\alpha & \beta \\ 0 & \alpha^{*-1}\end{array}\right)$.
Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis of R^{n} and let $\eta=\left(e_{1}, \omega e_{1}, \ldots, \omega^{n-1} e_{1}\right)$, where $\omega=\alpha \mu, \mu=\left(\begin{array}{cc} & 0 \\ I_{n-1} & \end{array}\right)$.

Then the matrix $\left(\begin{array}{cc}\eta & 0 \\ 0 & \eta^{*-1}\end{array}\right)$ is in U^{+}and $\left(\begin{array}{cc}\eta^{-1} & 0 \\ 0 & \eta^{*}\end{array}\right) \theta \pi\left(\begin{array}{cc}\eta & 0 \\ 0 & \eta^{*-}\end{array}\right)=\theta_{1}$ has the form

$$
\theta_{1}=\left(\begin{array}{cccccccc}
0 & & & c_{11} & c_{12} & \cdots & c_{1 n} & \epsilon^{*} \\
1 & \ddots & & c_{21} & c_{22} & \cdots & c_{2 n} & 0 \\
& \ddots & 0 & \vdots & \vdots & & \vdots & \vdots \\
& & 1 & c_{n 1} & c_{n 2} & \cdots & c_{n n} & 0 \\
& & & 1 & 0 & 0 & \cdots & 0 \\
& & & & 1 & 0 & & \\
& & & & & \ddots & \ddots & \\
& & & & & & 1 & 0
\end{array}\right),
$$

where the matrix

$$
\gamma=\left(\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n n}
\end{array}\right) \in \Lambda_{n}^{*} .
$$

Then we can write θ_{1} as $\left(\begin{array}{cc}I & \gamma \\ 0 & I\end{array}\right) \pi$ which is similar to $\pi\left(\begin{array}{ll}I & \gamma \\ 0 & I\end{array}\right)=\theta^{\prime}$, where

$$
\theta^{\prime}=\left(\begin{array}{cccccccc}
0 & & & & 0 & \cdots & 0 & \epsilon^{*} \\
1 & 0 & & & c_{11} & c_{12} & \cdots & c_{1 n} \\
& \ddots & \ddots & & c_{21} & c_{22} & \cdots & c_{2 n} \\
& & 1 & 0 & \vdots & \vdots & & \vdots \\
& & & 1 & c_{n 1} & c_{n 2} & \cdots & c_{n n} \\
& & & & 1 & 0 & & \\
& & & & & \ddots & \ddots & \\
& & & & & & 1 & 0
\end{array}\right) .
$$

Let

$$
v=\prod_{i<\sigma j, 2 \leq i \leq n-1, n+3 \leq j \leq 2 n} \rho_{i j}\left(\sum_{k=1}^{i-1} c_{k, k+\sigma j-i}\right) \prod_{\sigma j=2}^{n} \rho_{\sigma j, j}\left(\sum_{l=2}^{\sigma j} c_{l-1, l-1}\right) .
$$

Then $v^{-1} \theta^{\prime} v=U c\left(a_{1}, \ldots, a_{n}\right)$, and $\kappa=\left(\begin{array}{cc}\eta & 0 \\ 0 & \eta^{*^{-1}}\end{array}\right)\left(\begin{array}{ll}I & \gamma \\ 0 & I\end{array}\right) v$ is in U^{+}.

LEMMA 10. Let R be a commutative ring with 1 , $*$ the trivial involution, and $\zeta \Lambda=$ Λ for any unit $\zeta \in R$. Suppose that $\theta \in O_{2 n} R$ for $n \geq 1$ is in B^{+}with diagonal entries $d_{1}, \ldots, d_{n}, d_{1}^{-1}, \ldots, d_{n}^{-1} \in G L_{1} R, \pi=\left(\begin{array}{cc}0 & \epsilon \\ I_{2 n-1} & 0\end{array}\right) \in O_{2 n} R$. Then there is a matrix $\mu=\left(\begin{array}{cc}I & 0 \\ 0 & z I\end{array}\right) \psi \in G O_{2 n} R$, where ψ is in B^{+}, such that $\mu^{-1} \theta \pi \mu=U c\left(a_{1}, \ldots, a_{n}\right)$.

Proof. $\theta \pi$ has the form

$$
\theta \pi=\left(\begin{array}{cccccccc}
* & & \cdots & * & * & & * & \epsilon d_{1} \\
d_{2} & * & & & & & * & 0 \\
0 & \ddots & \ddots & \vdots & \vdots & & \vdots & \vdots \\
& \ddots & d_{n} & * & * & \cdots & * & 0 \\
& & 0 & d_{1}^{-1} & 0 & \cdots & 0 & 0 \\
& & 0 & * & d_{2}^{-1} & 0 & & \\
& & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
& & 0 & * & \cdots & * & d_{n}^{-1} & 0
\end{array}\right) .
$$

Let $\beta=\operatorname{diag}\left(d_{1}, d_{1} d_{2}, \ldots, d_{1} d_{2} \cdots d_{n}, d_{1}^{-1}, d_{2}^{-1} d_{1}^{-1}, \ldots, d_{n}^{-1} \cdots d_{2}^{-1} d_{1}^{-1}\right)$, and take $z=d_{1} \cdots d_{n}$. Then by Lemma $9, \mu^{-1} \beta^{-1} \theta \pi \beta \mu$ is similar to the matrix $U c\left(a_{1}, \ldots, a_{n}\right)$, where $\mu=\left(\begin{array}{cc}I & 0 \\ 0 & z I\end{array}\right)$.

Lemma 11. Let R be a commutative ring with 1 . Then
(i) $U c\left(b_{1}, \ldots, b_{n}\right)^{-1} U c\left(a_{1}, \ldots, a_{n}\right)=\prod_{i=1}^{n} \rho_{i, 2 n}\left(a_{i}-b_{i}\right)$ where $a_{n}, b_{n} \in \Lambda^{*}$,
(ii) When $n \geq 3$, then $\prod_{i=1}^{n-1} \rho_{i, 2 n}\left(a_{i}\right) \rho_{n, 2 n}\left(a_{n}\right)$, where $a_{n} \in \Lambda^{*}$, can be written as a product of two commutators, and when $a_{n}=0$, it is a commutator,
(iii) When $n=2$ and 1 is the sum of two units in R, then $\prod_{i=1}^{n-1} \rho_{i, 2 n}\left(a_{i}\right) \rho_{n, 2 n}\left(a_{n}\right)$, where $a_{n} \in \Lambda^{*}$, can be written as a product of two commutators,
(iv) For any $\alpha \in O_{2 n} R, \alpha^{-1}$ is similar to α^{*}.

Proof. (i) is a direct calculation.
(ii) By the identity $\rho_{n, 2 n}\left(a_{n}\right)=\rho_{n, n+1}\left(-a_{n}\right)\left[\rho_{n 1}(1), \rho_{1, n+1}\left(a_{n}\right)\right]$, we can show

$$
\prod_{i=1}^{n-1} \rho_{i, 2 n}\left(a_{i}\right) \rho_{n, 2 n}\left(a_{n}\right)=\prod_{i=1}^{n-1} \rho_{i, 2 n}\left(a_{i}\right) \rho_{1,2 n}\left(\epsilon^{*} a_{n}^{*}\right) c
$$

where c is a commutator. But $\rho_{1,2 n}\left(a_{1}+\epsilon^{*} a_{n}^{*}\right) \prod_{i=2}^{n-1} \rho_{i, 2 n}\left(a_{i}\right)$ is similar to $\left(\begin{array}{cc}\eta & 0 \\ 0 & \eta^{*-1}\end{array}\right)$ where $\eta=\left(\begin{array}{ll}I & v \\ 0 & 1\end{array}\right)$, and $v=\left(a_{1}+\epsilon^{*} a_{n}^{*}, a_{2}, \ldots, a_{n-1}\right)^{t}$. When $n=3$, we can find an invertible matrix $\kappa_{n-1} \in E_{n-1} R$ such that $\kappa_{n-1}-I \in E_{n-1} R$ (see [7]). So

$$
\eta=\left[\left(\begin{array}{cc}
\kappa_{n-1} & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
I & u \\
0 & 1
\end{array}\right)\right],
$$

where $u=\left(\kappa_{n-1}-I\right)^{-1} v$. Then $\rho_{1,2 n}\left(a_{1}+\epsilon^{*} a_{n}^{*}\right) \prod_{i=2}^{n-1} \rho_{i, 2 n}\left(a_{i}\right)$ is a commutator.
(iii) Proceed as in (ii). It suffices to show that $\eta=\left(\begin{array}{cc}1 & \left(a_{1}+\epsilon^{*} a_{2}^{*}\right) \\ 0 & 1\end{array}\right)$ is a commutator. Write $1=u_{1}+u_{2}, b=a_{1}+\epsilon^{*} a_{2}^{*}$. Then as in [2],

$$
\eta=\left[\left(\begin{array}{cc}
u_{1} & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & -u_{2}^{-1} b \\
0 & 1
\end{array}\right)\right] .
$$

(iv) This follows directly from the observation that $\alpha^{-1}=\phi_{n} \alpha^{*} \phi_{n}^{-1}$, where $\phi_{n}=$ $\left(\begin{array}{cc}0 & I_{n} \\ \epsilon I_{n} & 0\end{array}\right)$.

Proof of Theorem 4. (i) By Proposition 1, in this case every matrix $\theta \in E O_{2 n} R=$ $\left[E O_{2 n} R, E O_{2 n} R\right]=\left[O_{2 n} R, O_{2 n} R\right]$ can be written as $\psi_{1} \lambda_{1} \psi_{2} \lambda_{2}$ where ψ_{i} are in U^{+} and λ_{i} are in U^{-}. Moreover,

$$
\theta=\psi_{1} \lambda_{1} \psi_{2} \lambda_{2}=\psi_{3} c_{1} \lambda_{3}=c_{2} \psi_{3} \lambda_{3}=c_{2}\left(\psi_{3} \pi\right)\left(\pi^{-1} \lambda_{3}\right)=c_{2} \psi \lambda
$$

where $c_{1}=\psi_{2}^{-1} \lambda_{1} \psi_{2} \lambda_{1}^{-1}, \psi=\psi_{3} \pi, \lambda=\pi^{-1} \lambda_{3}$, and π is defined as before.
By Lemmas 9 and 11, we have $\tau^{-1} \psi \tau=U c\left(a_{1}, \ldots, a_{n}\right), \omega^{-1} \lambda^{-1} \omega=U c\left(b_{1}, \ldots\right.$, b_{n}) for some $\tau, \omega \in E O_{2 n} R$, where $a_{n}, b_{n} \in \Lambda^{*}$. By Lemma 11, there is some $\zeta=\prod_{i=1}^{n} \rho_{i, 2 n}\left(a_{i}-b_{i}\right)$ such that $\tau^{-1} \psi \tau=\omega^{-1} \lambda^{-1} \omega \zeta$, so

$$
\psi=\tau \omega^{-1} \lambda^{-1} \omega \zeta \tau^{-1}
$$

and

$$
\psi \lambda=\tau \omega^{-1} \lambda^{-1} \omega \zeta \tau^{-1} \lambda=\tau \zeta \tau^{-1} \tau \zeta^{-1} \omega^{-1} \lambda^{-1} \omega \zeta \tau^{-1} \lambda=\tau \zeta \tau^{-1}\left[\tau \zeta^{-1} \omega^{-1}, \lambda^{-1}\right] .
$$

Since ζ can be written as a product of two commutators by Lemma 11, we see that $\theta=c_{2} c_{3} c_{4} c_{5}$. So $c\left(E O_{2 n} R\right) \leq 4$ and $c\left(O_{2 n} R\right) \leq 4$.
(ii) By Proposition 1, in this case every $\theta \in E O_{2 n} R=\left[G O_{2 n} R, G O_{2 n} R\right]$ is similar to the product $\psi_{1} \lambda_{1}$, where ψ_{1} is in B^{+}and λ_{1} is in U^{-}. Then $\psi_{1} \lambda_{1}=$ $\left(\psi_{1} \pi\right)\left(\pi^{-1} \lambda_{1}\right)=\psi \lambda$, where π is defined as before. Then by Lemma 10 , there exists
$\tau \in G O_{2 n} R$ such that $\tau \psi \tau^{-1}=U c\left(a_{1}, \ldots, a_{n}\right)$, and there exists $\omega \in O_{2 n} R$ such that $\omega \lambda \omega^{-1}=U c\left(b_{1}, \ldots, b_{n}\right)$.

Continuing as in the proof of part (i), we obtain $\theta=c_{1} c_{2} c_{3}$, where the c_{i} are commutators. Hence $c\left(G O_{2 n} R\right) \leq 3$.

PROPOSITION 12. Let R be a commutative ring with 1 and $n \geq \max \{\operatorname{asr}(R)+1,3\}$. Then
(i) $c\left(O_{2 n} R\right) \leq 4+c\left(O_{2 k} R\right)$, where $k=\operatorname{asr}(R)$,
(ii) when $*$ is the trivial involution and $\Lambda=R^{\epsilon}$, thenc $\left(G O_{2 n} R\right) \leq 3+c\left(G O_{2 k} R\right)$, where $k=\operatorname{asr}(R)$.

Proof. Similar to the proof of Theorem 4 after Proposition 2 is applied to the decomposition of $\theta \in O_{2 n} R$.

PROOF OF THEOREM 5. (i) Note that $E O_{2 n} R=\left[E O_{2 n} R, E O_{2 n} R\right]=\left[O_{2 n} R, O_{2 n} R\right]$ $=\left[G O_{2 n} R, G O_{2 n} R\right]$ for $n \geq 2$ in this case (see [6] and Remark (ii)). Applying Corollary 3 to the decomposition of $\theta \in E O_{2 n} R$, we can write θ as $\psi_{1} \lambda_{1} \psi_{2} \lambda_{2}$, where ψ_{i} are in U^{+}and λ_{i} are in U^{-}. In this case, $\Lambda=0$, hence $a_{n}=0$ in the companion matrix $U c\left(a_{1}, \ldots, a_{n}\right)$. Then by Lemma $11, \zeta$ in the proof of Theorem 4 is a commutator. Thus we have $\theta=c_{1} c_{2} c_{3}$ where the c_{i} are commutators. So $c\left(E O_{2 n} R\right) \leq 3$ and $c\left(O_{2 n} R\right) \leq 3$.
(ii) Similar to the proof of (i) and Theorem 4(ii).

References

[1] A. Bak, K-theory of forms (Princeton University Press, Princeton, 1981).
[2] H. Bass, 'K-theory and stable algebra', Publ. Math. IHES 22 (1964), 5-60.
[3] —_, 'Unitary algebraic K-theory', in: Lecture Notes in Math., 343 (Springer, Berlin, 1973) pp. 57-265.
[4] R. K. Dennis and L. N. Vaserstein, 'On a question of M. Newman on the number of commutators', J. Algebra 118 (1988), 150-161.
[5] B. A. Magurn, W. van der Kallen and L. N. Vaserstein, 'Absolute stable rank and Witt cancellation for noncommutative rings', Inv. Math. 91 (1988), 525-542.
[6] L. N. Vaserstein, 'On normal subgroups of Chevalley groups over commutative rings', Tohôku Math. J. 38 (1986), 219-230.
[7] L. N. Vaserstein and E. Wheland, 'Commutators and companion matrices over rings of stable rank 1', Linear Algebra and its Applications 142 (1990), 263-277.
[8] H. You, 'Commutators and unipotents in symplectic groups', Acta Math. Sinica 10 (1994), 173-179.

Department of Mathematics
Youngstown State University
Youngstown, Ohio 44455
USA
Department of Mathematics The Pennsylvania State University
University Park, Pennsylvania 16802
USA
e-mail: vstein@math.psu.edu

Department of Mathematics
Northeast Normal University
Changchun 130024
People's Republic of China

[^0]: (C) 1995 Australian Mathematical Society 0263-6115/95 \$A2.00 + 0.00

