
J. Functional Programming 5: (4) 637-651, October 1995 © 1995 Cambridge University Press 637

Refining reduction in the lambda calculus*

FAIROUZ KAMAREDDINE*
Department of Computing Science, 17 Lilybank Gardens,

University of Glasgow, Glasgow G12 8QQ, Scotland
(e-mail: verb+f airouz®dcs.glasgou. ac.ukj

ROB NEDERPELT
Department of Mathematics and Computing Science,

Eindhoven University of Technology,
P.O.Box 513, 5600 MB Eindhoven, The Netherlands

(e-mail: verb+wsinrpnQwin. tue.nl)

Abstract

We introduce a A-calculus notation which enables us to detect in a term, more /?-redexes
than in the usual notation. On this basis, we define an extended ^-reduction which is yet
a subrelation of conversion. The Church Rosser property holds for this extended reduction.
Moreover, we show that we can transform generalised redexes into usual ones by a process
called 'term reshuffling'.

Capsule Review

The paper introduces a new notation for representing lambda terms which exposes more
redexes than the classical notation. The authors introduce a new notation of reduction which
allows redexes to be contracted out of order. Their notion of reduction is still a subrelation
of beta-convertibility and has the Church Rosser property. They show that terms in their
notation can be 'shuffled' so that classical beta-reduction can be used to achieve the same
effect as the new reduction relation. The paper is rigorous but well-motivated with examples.
The applications of this work in the study of reduction strategies is clear and is briefly
discussed in the concluding section. The authors have also considered other applications,
notably to explicit substitutions and generalising type systems.

t We are grateful for the discussions with Roel Bloo, Tijn Borghuis, Erik Poll and Phil
Wadler and for the helpful remarks received from them. In particular, we are grateful to
Phil Wadler who has recommended that we dispose of A's and <5's as in (x5)(Xy)y and write
MMy instead. We are also grateful to Peter Peters for his help concerning Latex and
e-mail which enabled us to keep exchanging drafts and corrections of the present paper.
Last but not least, we are grateful to the anonymous referees for their useful comments.

* Fairouz Kamareddine is grateful to the Department of Mathematics and Computing
Science, Eindhoven University of Technology for their financial support and hospitality
from October 1991 to September 1992, and during several short periods since 1993. This
work is supported by the EPSRC Grant GR/K 25014.

https://doi.org/10.1017/S0956796800001507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001507

638 Fairouz Kamareddine and Rob Nederpelt

1 Introduction

In the A-calculus as we know it, some redexes in a term may not be visible before
other redexes have been contracted. For example, in t = ((Xx.(Xy.Xz.zd)c)b)a, only
(Xy.Xz.zd)c, and (Xx.(Xy.Xz.zd)c)b are visible. Yet when reducing t to a normal form, a
third redex must be contracted; namely (Xz.zd)a. This third redex is not immediately
visible in t (assume for the sake of argument that none of x, y, z occur free in any
of a,b,c and d). To solve this problem we switch from the classical notation to
what we call item notation where the argument occurs before the function and where
parentheses are grouped in a novel way. In our item notation, t will be written as
(a)(b)[x](c)[y][z](d)z and we can provide t in this item notation with a bracketing
structure {{ }{ }} where (—) and [—] correspond to '{' and '}', respectively (ignoring
(d)z). We extend the notion of a redex from being any opening bracket'{' next to a
closing bracket '}', to being any pair of matching '{' and '} ' which are separated by
matching brackets. Figure 1 shows the possible redexes. That is, we see immediately
that the redexes in t originate from the couples (b)[x], (c)[y] and (a)[z]. This natural
matching was not present in the classical notation of t. We call items of the form
(a) and [x], application and abstraction items, respectively. With item notation, we
shall refine reduction in two ways:

1. We generalize ^-reduction so that any redex can be contracted and hence we
can contract the redex based on (a)[z] before we contract any of the redexes
based on (b)[x] and (c)[y]. That is, the /?-rule changes from (b)[v]a -*p a[v := b]
to (b)s[v]a -^>p s{a[v := b]} for s having a matching bracketing structure, i.e.
(b)sjV) is a redex in our generalized sense. (Here, { and } are used for grouping
purposes so that no confusion arises.) For example,

(a)(b)[x](c)[y][z](d)z ^
(b)[x](c)[y]{({d)z)[z :=a]} =
(b)[x](c)\y](d)a

We show moreover, that the Church Rosser property holds for ~»^
2. An alternative to the generalized notion of /9-reduction can be obtained by

keeping the old ^-reduction and by reshuffling the term in hand. So we can
reshuffle the term (a)(b)[x](c)[y][z](d)z to {b)[x]{c)\y]{a)[z](d)z, in order to
transform the bracketing structure {{ }{ }} into { }{ }{ }, where all the redexes
correspond to adjacent '{' and '}'. In other words, Figure 1 can be redrawn
using term reshuffling in Figure 2.
Such a reshuffling is more difficult to describe in classical notation, i.e. it
is hard to say what exactly happened when ((Ax.(Xy.Xz.zd)c)b)a, is reshuffled
to (Xx.(Xy.(Xz.zd)a)c)b. This is another attractive feature of our item notation
which we shall also describe in this paper (using TS) showing its correctness
and well-behavedness. In particular, we show that for any term a, in TS(a) all
the application items occur next to their matching abstraction items. We show
moreover, that if a^*p b then (3c)[(TS(a) ->p c)A TS(c) = TS(b)].

The assumption above that none of x, y, z occur free in any of a, b, c, d was only
for the sake of clarity in our particular example. We are not of course restricted to

https://doi.org/10.1017/S0956796800001507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001507

Refining reduction in the lambda calculus 639

(a) (b) [x] (c) [y] [z] (d) z

Fig. 1. Redexes in item notation.

(b) M (c) [y] (a) [z] (d)

Fig. 2. Term reshuffling in item notation.

terms with such trivial substitutions. As for variable renaming which results from
reductions and substitution, we decide not to let it blind us with details to the
point that the argument of the paper becomes unclear. For this reason, we identify
terms that differ only in the name of bound variables (i.e. we take terms modulo
a-conversion). For example [x]x = \y]y. Furthermore, we assume the Barendregt
variable convention which is formally stated as follows:

Definition 1.1 (BC Barendregt's convention)
Names of bound variables will always be chosen such that they differ from the free
ones in a term. Hence, we will not have (v)[v]v, but (v)[v']vr instead. We extend BC to
meta-terms like {[v']a}[v := b]. This avoids the danger of clash of variables, since we
assume that no free variable in b occurs bound in [v']a. Moreover, the extended BC
implies that v ^ v'.

1.1 The item notation and visible redexes

We shall devise a novel notation in this paper where the order in an application
is inverted and where the parentheses are grouped differently than those of the
classical notation. So that, if J translates classical terms into our notation, item
notation, then J{ab) is written as (Jr(fc))t/(a) and J(lv.a) is written as [v]J(a). Both
(a) and [v] are called items.

Example 1.2 J((Xxy.xy)z) = (z)[x]yx. The items are (z), [x], [y] and (y).

Note how the items (z) and [x] occur next to each other showing the /?-redex based
on applying Ax.body to z. In the classical calculus, the Xx and z are separated by body

https://doi.org/10.1017/S0956796800001507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001507

640 Fairouz Kamareddine and Rob Nederpelt

which may be very long. With our item notation, classical redexes and /^-reduction
take the following form:

Definition 1.3 (Classical redexes and ^-reduction in item notation)
In the item notation of the X-calculus, a classical redex is of the form {b)[v\a. We
call the pair {b)[v\, a reducible segment. Moreover, one-step ^-reduction —>p, is the
least compatible relation generated out of the classical ^-reduction axiom: {b)[v]a —>̂
a[v := b]. Many step ^-reduction —»p is the reflexive transitive closure of —>̂ .

Example 1.4 In the classical term t = ((Xx.(Xy.Xz .zd)c)b)a, we have the following
redexes (the fact that neither y nor x appear as free variables in their respective
scopes does not matter here; this is just to keep the example simple and clear):

1. (Xy.Xz.zd)c
2. (Xx.(Xy.Xz.zd)c)b

Written in item notation, t becomes (a)(fc)[x](c)[y][z](d)z. Here, the two classical
redexes correspond to (—)[—]-pairs as follows:

1. (Xy.Xz.zd)c corresponds to (c)[y]. We ignore [z](d)z as it is easily retrievable in
item notation. It is the maximal subterm of t to the right of [y].

2. (Xx.(Xy.Xz.zd)c)b corresponds to (b)[x]. Again (c)[v][z](d)z is ignored for the
same reason as above.

There is, however, a third redex which is not visible in the classical term. Namely,
(Xz.zd)a. Such a redex will only be visible after we have contracted the above two
redexes (we will not discuss the order here). In fact, assume we contract the second
redex in the first step, and the first redex in the second step, i.e.

Classical Notation Item Notation

((Xx.(Xy.Xz.zd)c)b)a -> , (a)(hM(c)[y][z](d)z - ,
({Xy.Xz.zd)c)a -> , (a)(cM[z](d)z ->„

(Xz.zd)a ^pad (a)[z](d)z ->„ (d)a

Now, even though all these redexes (i.e. the first, second and third) are needed to
get the normal form of t, only the first two were visible in the classical term at first
sight. The third could only be seen once we have contracted the first two reductions.
In item notation, the third redex (Xz.zd)a corresponds to (a)[z] but the ()-item and
the []-item are separated by the segment (6)[x](c)[y]. By extending the notion of
a redex and of /^-reduction, we can make this redex visible and we can contract it
before the other redexes.

The idea is simple; we generalize the notion of a reducible segment {b)[v] to
a reducible couple being an item (b) and an item [v] separated by a segment s
which is a well-balanced segment. A well-balanced segment is a sequence of () -
and []-items which has the same structure as a matching composite of opening
and closing brackets, each ()-item corresponding to an opening bracket and each
[]-item corresponding to a closing bracket.

https://doi.org/10.1017/S0956796800001507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001507

Refining reduction in the lambda calculus 641

1.2 The system A

We construct the system A where a term is either a variable or is of the form
s\S2 • • snv for variable v and items s,, for 1 < i < n. An item is defined either as [vr]
for variable v' or as (a) for a being a term. The following definitions formalize our
system A.

Definition 1.5 (Terms in item notation A)

• We take "V = {x, y,z,...} to be the set of variables and let v, v', v", v\,i)2,-.- range
over "V.

• We write terms in item notation as: A ::= V | (A)A | [T^"]A. We use a,b,c,d,e,
t,... to range over terms in item notation.

Definition 1.6 ((main) items, (main, reducible) segment, body, weight)

• If a is a A-term and v G "V then (a) and [v] are (application resp. abstraction)
items. We use s, si,s,-, • • • as meta-variables for items.

• A concatenation of zero or more items is a segment. In de Bruijn (1993) an
item is called a wagon and a segment is called a train. We use s, s\, s,... as
meta-variables for segments.

• Each term a is the concatenation of zero or more items and a variable: a =
S1S2 • • • snv. These items s\, S2, • • •, sn are called the main items of a. We call the
segment s\S2"-sn, body(a). Also, for later use, we define body((a)) s a and
body([i>]) = 0.

• Analogously, a segment s is a concatenation of zero or more items s = S1S2 • • • sn.
These items s\,S2, • • • ,sn are called the main items, this time ofs.

• A concatenation of main items is a main segment.
• An important case of a segment is that of a reducible segment, being an appli-

cation item immediately followed by an abstraction item.
• The weight of a A-segment s, weight(s), is the number of main items that com-

pose the segment. The weight of a A-term a is the weight of body(a).

Example 1.7 Let the A-term a be defined as [x]((x)[y]_y)[z]z and let the segment s
be M((x)[y]y)[z]. Then the main items of both a and s are [x], ((x)[y]y) and [z],
being an abstraction, an application and an abstraction item, respectively.

With our BC of Definition 1.1, we define substitution as follows:

Definition 1.8 (Substitution in A with BC)
If a,b are A-terms and v e V and if BC is assumed, then we define the result of
substituting b for all the free occurrences of v in a as follows:

{
b ifa = v

v' ifa^v'^v

— Mi/Jr — K\\ -f — W

[v']c[v:=b] ifa=[v']c
With this implicit substitution, ^-reduction is given in Definition 1.3. Furthermore,

to avoid confusion, we sometimes group terms using { and }. For example, inhttps://doi.org/10.1017/S0956796800001507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001507

642 Fairouz Kamareddine and Rob Nederpelt

s{s'a[i; := b]}, s'a[v := b] is grouped between { and } so that one understands that
substitution takes place in s'a and not in s. It is obvious why we could not use ()
instead of { }. It is to be noted moreover that we do not face this problem if we use
(At,) instead of [v] and (ad) instead of (a).

2 Generalizing redexes and /^-reduction

As we have argued above, a term can contain an application item (a) and an
abstraction item [v] such that eventually the reduction based on the segment (a)[v]
should take place. This reduction, however, can only so far take place when (a) and
[v] are not separated by other items or segments. This makes it difficult to use the
A-calculus as a basis for many applications which depend heavily on manipulating
the order in which reduction and substitution take place in a term. Based on
this observation, we shall in this section introduce a general ^-reduction which
enables the manipulation of the order of reduction and substitution. This general
^-reduction will be an extension of the known ^-reduction in that not only the
reducible segments result in firing reductions, but a more general notion which we
call reducible couples.

2.1 Extending redexes from segments to couples

Why should we in the term (a)(fc)M(c)[y][z](d)z not allow that the reduction based
on (a)[z] gets fired? There is no reason why we should not carry out some reductions
before other ones. We ask the reader to convince himself of the fact that priority for
firing the redex (a)[z] does not affect the final result. If we look moreover at this term,
we find that what separates (a) and [z] is a segment with a particular structure. The
same holds for the segment (b)[v] separating (a) and [v1] in (a)(fc)[»][»']. These are
the 'well-balanced' structures as we discussed before and will define below. Basically,
the idea is that when one desires to start a /J-reduction on the basis of two items
(application and abstraction) occurring in one segment, the matching of these items
in question is the important thing, even when they are separated by other items,
i.e. the relevant question is whether they may together become a reducible segment
after a number of /?-steps. This depends solely on the structure of the intermediate
segment. If such an intermediate segment is well-balanced then the application item
and the abstraction item match and /^-reduction based on these two items may take
place. Here is the definition of well-balanced segments:

Definition 2.1 (well-balanced segments in A)

• The empty segment 0 is a well-balanced segment.
• Ifs is a well-balanced segment, then (a)s[i>] is a well-balanced segment.
• The concatenation of well-balanced segments is a well-balanced segment.

A well-balanced segment has the same structure as a matching composite of opening
and closing brackets, each application (or abstraction) item corresponding with an
opening (resp. closing) bracket.

https://doi.org/10.1017/S0956796800001507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001507

Refining reduction in the lambda calculus 643

Example 2.2

1. (c)\y] forms a well-balanced segment as it corresponds to {}.
2. (b)[x] forms a well-balanced segment as it corresponds to { }.
3. (b)M(c)b>] forms a well-balanced segment as it corresponds to { }{ }.
4. (a)(fc)[x](c)[y][z] forms a well-balanced segment as it corresponds to {{ }{ }};

the reducible couples in this segment are (b)[x], (c)[y] and (a)[z].

Now we can easily define what matching reducible couples are. Namely, they are
an application item and an abstraction item separated by a well-balanced segment.
The abstraction item and the application item of the reducible couple are said to
match and each of them is called a partner or a partnered item. The items in a
segment that are not partnered are called bachelor items. The following definition
summarizes all this:

Definition 2.3 (match, reducible couple, partner, partnered item, bachelor item, bache-
lor segment)
Let a be a A-term. Let s = si • • • sn be a segment occurring in a.

• We say that the main items s,- and Sj match in s, when 1 < i < j < n, s, is an
application item, Sj is an abstraction item, and the sequence si+i • • -Sj-i forms a
well-balanced segment.

• When si and sj match, we call stSj a reducible couple.
• When Si and sj match, we call both st and Sj the partners in the reducible couple.

We also say that s,- and Sj are partnered items in s (or in a).
• All the application (or abstraction) items Sk that are not partnered in s, are

called bachelor application (resp. abstraction)items in s (or in a).
• A segment s consisting of only bachelor items (in s), is called a bachelor segment.
• The segment s,-, • • • s,m consisting of all bachelor main application (or abstraction)

items ofs is called the bachelor application (or abstraction) segment ofs

Example 2.4 Let s = [x][y](a)[z][x'](b)(c)(d)[y'][z'](e). Then:

• (a) matches with [z], (d) matches with [/] and (c) matches with [z']. The
segments (a)[z] and (d)[y'] are reducible segments (also reducible couples),
and there is another reducible couple in s, viz. the couple of (c) and [z'].

• (a), [z], (c), (d), [y1] and [z'], are the partnered main items of s. [x], [y], [x1],
(b) and (e), are bachelor items.

• MLv] and [x'](b) are bachelor segments. {c)(d)[y'] and (c)(rf)|>'][z'] are non-
bachelor segments, the latter also being a well-balanced segment.

Remark 2.5 Note that a reducible segment is a reducible couple and that the appli-
cation and abstraction items in a reducible couple are separated by zero or more
reducible couples.

2.2 Extending [3-reduction and the Church Rosser theorem

Having argued above that ^-reduction should not be restricted to the reducible
segments but may take into account other candidates, we can extend our notion

https://doi.org/10.1017/S0956796800001507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001507

644 Fairouz Kamareddine and Rob Nederpelt

of /9-reduction in this vein. That is to say, we may allow reducible couples to
have the same 'reduction rights' as reducible segments. That is, the ^-reduction of
Definition 1.3 changes to the following:

Definition 2.6 (Extended redexes and general ^-reduction ^*p in A)
An extended redex if of the form (b)s[v]a, where s is well-balanced. We call (b)s[v]a a
reducible couple. Moreover, one-step general j? -reduction ~~>p, is the least compatible
relation generated out of the following axiom:

(general /?) (b)s[v]a ~->p s{a[v := b]} ifs is well-balanced

Many step general ^-reduction *>p is the reflexive transitive closure of^*p.

Example 2.7 Take Example 1.4. As (&)[x](c)[y] is a well-balanced segment, then
(a)[z] is a reducible couple and

t = (a)(b)[x](c)\y][z](d)z ^

(b)[x](c)[y](d)a

The reducible couple (a)[z] also has a corresponding ('generalized') redex in
the traditional notation, which will appear after two one-step ^-reductions, leading
to (Xz.zd)a. With our generalized one-step /^-reduction we could reduce
{{Xx.(Xy.Xz.zd)c)b)a to (Xx.(Xy.ad)c)b. This reduction is difficult to carry out in the
classical A-calculus. The item notation enables a new and important sort of reduc-
tion which has not yet been studied in relation to the standard 2-calculus up to
date. We believe that this generalized reduction (introduced in Nederpelt, 1973) can
only be obtained tidily in a system formulated using our item notation. In fact, one
is to compare the bracketing structure of the classical term t of Example 1.4, with
the bracketing structure of the corresponding term in item notation:

Example 2.8 The 'bracketing structure' of the maximal main segment of t of Exam-
ple 1.4, (i.e. of {(Xx.{ky.kz.)c)b)a), is compatible with '{i {2 {3 }i }i }n\ where '{,'
and '}; ' match. In item notation, however, t has the bracketing structure {{}{}}.

We strongly believe that it is the item notation which enables us to extend
reduction smoothly beyond the existing —»£. Because a well-balanced segment may
be empty, the general /J-reduction rule presented above is really an extension of the
classical ^-reduction rule.

Lemma 2.9 Let a, b be A-terms. If a —*p b then a ~>^ b. Moreover, if a ^>p b comes
from contracting a reducible segment then a —>p b.

Proof: Obvious as a reducible segment is a reducible couple by Remark 2.5. D

The proof of the Church Rosser theorem is simple. The idea is to show that if
a *=>p b then a=p b (where =p is the least equivalence relation closed under —>p and
*>p the reflexive transitive closure of ~»^) and to use the Church Rosser property
for =p.

Lemma 2.10 If a^>p b then a =p b.

https://doi.org/10.1017/S0956796800001507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001507

Refining reduction in the lambda calculus 645

Proof: It suffices to consider the case a s s~i(d)s[v]c where the contracted redex is
based on (d)[v], b = sTs{c[i> := d]}, and s is balanced (hence weight(s) is even). We
shall prove the lemma by induction on weight(s).

• Case weight(s) = 0 then obvious as ~»/> coincides with —>p in this case.
• Assume the property holds when weight(s) = In. Take s such that weight(s) =

In + 2. Now, s = (e)s'[v']s" where s', s" are well-balanced.

— As s{c[v := d]} ̂ >p s'{s"{c[v := d]}[v' := e]}, we get by IH and compatibil-
ity that b =p ^{^{civ := d]}[v' := e]} = si?(s"[v' := e]}{c[v := d][v' :=

— Moreover, a = si(d)(e)s'[v']s"[v]c'^iisi(d)s'{s"[v]c[v' := e]} =BC

si(d)7^[v' := e]}[v]{c[v' := e]} = / . Hence by IH, a =p f.
— Now, / ~»p s-tf^iv' := e]}{c[v' := e][v := d]}. But by BC, v, v' $

FV(d)uFV{e). Hence, by IH and substitution, / =p sTs'{i"[u/ := e]}{c[v :=
d][v' :=e]}.

Therefore a=pb. •

Corollary 2.11 If a =>^ b then a =p b. •

Theorem 2.12 The general ^-reduction is Church-Rosser, i.e. If a =>̂ b and a *>p c,
then there exists d such that b *>p d and c «>^ d.

Proof: As a ^>p b and a =>^ c then by Corollary 2.11, a =p b and a =p c. Hence,
b =$ c and by the Church Rosser property for the classical lambda calculus, there
exists d such that b —»p d and c —»p d. But, by Lemma 2.9, a —»p b implies a =>£ b.
Hence the Church Rosser theorem holds for the general ^-reduction. a

3 Term reshuffling

Let us go back to the definition of reducible couples. Recall that if s = si • • • sm for
m > 1 where sism is a reducible couple then S2 • • sm_i is a well-balanced segment,
si = (a) is the abstraction item of the reducible couple and sm = [v] is its application
item. Now, we can move s\ in s so that it occurs adjacently to sm. That is, we may
rewrite s as S2 • • • sm_isism.

Example 3.1 In our item notation, the term (a)(b)[x](c)[y][z](rf)z can be easily rewrit-
ten as (fr)[x](c)|j](a)[z](d)z by moving the item (a) to the right. Hence, we can rewrite
(or reshuffle) a term so that all application items stand next to their matching ab-
straction items. This means that we can keep the old /S-axiom and we can contract
redexes in any order. Such an action of reshuffling is not easy to describe in the clas-
sical notation. That is, it is difficult to describe how ((Ax.(XyAz.zd)c)b)a, is rewritten
as {Xx{ly.(kz.zd)a)c)b. This is another advantage of our item notation.

Note, furthermore, that in A, the shuffling is not problematic due to the Barendregt
Convention which means that no free variable will become unnecessarily bound after
reshuffling due to the fact that names of bound and free variables are distinct.

Lemma 3.2 If v° is a free occurrence of v in sJf a, then v° is free in si's a.

https://doi.org/10.1017/S0956796800001507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001507

646 Fairouz Kamareddine and Rob Nederpelt

Proof: By BC as [v] does not occur in ssTa. •

Example 3.3 Note that in Example 3.1, reshuffling does not affect the 'meaning'
of the term. In fact, in t = (a)(b)[x](c)[y][z](d)z, the free variable a cannot be
captured by [x] or [y]. Moreover, t is equivalent, semantically and procedurally, to
(b)[x](c)[y](a)[z](d)z.

That is, the application items of reducible couples can occupy different positions
in a term, without disturbing the meaning of the term, both semantically and
procedurally. We call this process of moving application items of reducible couples
in a term to occupy positions adjacent to their abstraction partners, term reshuffling.
This term reshuffling should be such that all the application items of well-balanced
segments in a term are shifted to the right until they meet their partners. Before we
define term reshuffling, we need to understand better the structure of terms.

3.1 Partitioning terms into bachelor and well-balanced segments

With Definition 2.3 and Example 2.4, we may categorize the main items of a term t
into different classes:

1. The 'partnered' items (i.e. the application and abstraction items which are
partners, hence 'coupled' to a matching one).

2. The 'bachelors' (i.e. the bachelor abstraction items and bachelor application
items).

Lemma 3.4 Let s be the body of a term a. Then the following holds:

1. Each bachelor main abstraction item in s precedes each bachelor main application
item in s.

2. The removal from s of all bachelor main items, leaves behind a well-balanced
segment.

3. The removal from s of all main reducible couples, leaves behind [v\]... [vn](ai)...
(am), the segment consisting of all bachelor main abstraction and application
items.

4.1fs = s~\(b)s~2[v]s~i where [v] and (b) match, then sj is well-balanced.

Proof: 1 is by induction on weight(s') for s = s'[v]s" and [v] bachelor in s. 2 and 3
are by induction on weight(s). 4 is by induction on weight^). •

Note that we have assumed 0 well-balanced. Moreover, we assume it non-bachelor.

Corollary 3.5 For each non-empty segment s, there is a unique partitioning in segments
so, sT, • • •, s ,̂ such that

1. s = s3sT---s^,
2. For all 0 < i < n, s~, is well-balanced in s for even i and 1} is bachelor in s for

odd i.
3.IfTt and sj for 0 < i, j < n are bachelor abstraction resp. application segments,

then s~t precedes J] in s.
4. Ifi>l then sJi # 0. O

https://doi.org/10.1017/S0956796800001507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001507

Refining reduction in the lambda calculus 647

This is actually a very nice corollary. It tells us a lot about the structure of our
terms.

Example 3.6 s = [x][y](a)[z][x'](b)(c)(d)[y'][z'](e), has the following: partitioning:

• well-balanced segment So = 0,
• bachelor segment sj = [x][y],
• well-balanced segment si = (a)[z],
• bachelor segment S3 = [x'](b),
• well-balanced segment S4 = (c)(d)[/][z'],
• bachelor segment sj = (e).

3.2 The reshuffling procedure

Definition 3.7 TS and T are defined mutually recursively such that:

TS(0) =df 0
TS{sv) =df TS(s)v
TS(si-sn) =df TS(si)---TS(sn) if si ••• sn is bachelor
TS((a)) =df (TS(a))
TS([v]) =df [v]
TS(s) =df T(0,s) ifs is well-balanced
TS(sfj • • • s^) =df TS{s^) • • • TS%) Ifs^--s^, is the unique

partitioning of Corollary 3.5
T(s(a),lvW) =df (a)[v]T(s,J)_
T(s,(a)s') =df T(s(TS(a)),s')

T(0,0) =df 0

Note that in this definition, we use s bachelor to mean s bachelor in s.

Lemma 3.8

1. If~s is well-balanced, then T(sT,ss2) = TS(s)T(s7,S2).

2. If s is well-balanced and none of its binding variables are free in a, then

TS((a)s[v]?) = TSCsiaMs1).
3. If s contains no items which are partnered in a then TS(sa) = TS(s)TS(a).
4. If~s is well-balanced or is bachelor in sa then TS(la) = TS(s)TS(a).

Proof: 1: by induction on weight(s). Case weight(s) = 0 then obvious. Case s =
(a)s'[v]s" then s' and s" are well-balanced and

TS(sJT(s;(TS(a)),[v]s"sd = TS(sJ(TS(a))[v]T(sus"sl) ='H

TS(s')(TS(a))[v]TS(s")T(sl,sd = TS(s')T((TS(a)), [v]s")T(sT,sl) ='"
T((TS(a)),s'[v]s")T(si,sl) = TS((a)s'[v]s")T(sT,sl)

2: using 1. 3: let t = so • • • w and s = s'o • • • s'm be partitionings. Use cases on so being
empty or not and on s'm being bachelor or well-balanced. 4: This is a corollary of 3
above. •

The next lemma shows that TS(a) changes all reducible couples of a to reducible
segments.

https://doi.org/10.1017/S0956796800001507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001507

648 Fairouz Kamareddine and Rob Nederpelt

Lemma 3.9 For every subterm b of a term a, the following holds:

1. TS(b) is well-defined.
2.1fs = (c)s'[v] is a subsegment ofb and (c) matches [v], then

TS(s) = TS(V)(TS(c))[v].
3. If s = s\ • • • sn is a bachelor subsegment of b, then

TS{s) = TS(si) • • • TS(sn) is a bachelor subsegment of TS(b).
4.1fs is a subsegment ofb which is well-balanced, then TS{s) is well-balanced.

Proof: By induction on a.

• Case a = v then a is the unique subterm of a and all 1 • • • 4 hold.
• Assume a = sc where IH holds for body(s) and for c. Let b be a subterm of

a. If b is a subterm of body(s) or of c then use IH. If b = a then:

— Case s is bachelor then TS(a) =^m™ 3-8 TS(s)TS{c). Here all 1 - - 4 hold
by IH on body(s) and c.

— Case s = (d) matches [v] in a. I.e. a = (d)s[v]e then
TS(a) =Lemma 38 TS(s)(TS(d))[v]TS(e). Now use IH to show 1 • • -4. •

Lemma 3.10 For all variables v and terms a,b we have:
TS(a) == TS{TS(a)) and TS(a[v := b])= TS(TS(a)[v := TS{b)]).

Proof: By induction on a we show that for all subterms c of a, TS(c) = TS(TS(c))
and TS{c[v := b]) = TS(TS(c)[v := TS(b)]). •

Note that if a —^ b and if all the reducible couples in a are reducible seg-
ments, then it is not necessary that all the reducible couples of b are reducible
segments. Furthermore, if a ~^>p b then it is not necessary that TS(a) - ^ TS(b) (nor
even TS(a) ^p TS{b)). For example, d = (a)(b)[x]([y]y)[z]z ^p (a)(b)[x][y]y but
TS{d) = d-f*p (b)[x]{a)\y]y. Following this remark, we show that in a sense, term
reshuffling preserves /^-reduction.

Lemma 3.11 Ifa,beA and a-^p b then (3c)[{TS(a) -*p c) A TS(c) = TS(b)]. In
other words, the following diagram commutes:

a
TS\

fa)— — >» c
TS

TS(a)

TS(c) = TS(b)
I

Proof: By induction on the general -^p. As the compatibility case is easy, we will
only consider the case where a = s'(d)s[v]e - ^ b = s's{e[v := d]}. Here, we use
induction on the number n of bachelor application items of s' that are partnered in
e. Recall that s is well-balanced.

https://doi.org/10.1017/S0956796800001507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001507

Refining reduction in the lambda calculus 649

Case n = 0 then

TS(s'(d)s[v]e)
TS(s')TS((d)s[v])TS(e)
TS(s')TS(s)(TS(d))[v]TS(e)

TSWTSis^TSieftv := TS{d)]}
TS(c)

^Lemma 3.8 (4)

—-Lemma 3.8 (2,4)

= c.
—Lemmas 3.9, 3.10, 3.8(4)

TS(?)TS(s)TS{e[v := d])

• Assume the property holds for n and let us show it for the case where s'
contains n + 1 application items which match abstraction items of e. Let
(c) be the leftmost such application item of s'. Take s' = s'[(c)s'j' and e =
s'2[v']f where (c) matches [v1]. By Lemma 3.4, (c)s^'(d)s[i;]s^[i;'] is well-balanced.
Moreover, no item of s[has a partner in (c)s'1'(rf)s[i;]e. As sf{(d)s[v]s?2{c)[v']f ~~>p
^s{72(c)[v']f[v :=_d\}Lvni find by IH, g such that TS(sf(d)s[w]^(c)[»']/) -»/i
g A T S (g) ^ TSWs&icWmv := rf]}).
Now, TS(s'!)g is the wanted term because:
TS(a) =Um™ ^ ^ TS(Jl)TS{{c)7[(d)sW2[v']f) =^™J-8(2)
TS(s\)TSW(dys[v]s2(c)[v']f) ^p TS{s\)g and TS{TS{7{)g) =Umm° 31°
TS{^}TS{s'[s{^2{c)\v']f[v := d]}) =Umma 3-8(2),BC

^[iJ := d]}[»']{/[» := d\}) =Lemma 3 8 (4)

/ ^ := d]}) = TS(b). a

Corollary 3.12 If a *>p b then there exists ao,ai • • • an such that:

[(a = 00) A (rS(oo) -»/» ai) A (TS(ai) -»/, a2) A • • • A (TS(aB_i) ^ / j an) A (TS(aB) s

Proof: By induction on =>£.

• Case a^>p b use Lemma 3.11.

• Case a =>^ a then obvious (n = 1 A ao = a A a\ = TS(a)).

• Case a =>^ c Ac =>£ fc, then by IH, there exists ao,a\,- • • ,an,bo,b\,- • bm such

that

(a = ao)A(TS(ao) ^p ai)A(TS(ar) -*p a2)A- • -A(TS(an_i) -»fl an)A(TS(an) s
A (c = bo) A (TS(6o) -»/, fc,) A (TS(ft,) -»/, fe2) A • • • A (rS(fem_,) ^

= TS(6)). Hence, (a = ao)A(TS(ao) -»p a,)A- • • A(rS(an_,) -»^

flB) A (TS(an) ^pby) A • • • A (TS(fom_,) ^ 6m) A (TS(bm) = TS(b)).

• The compatibility case is easy.

Note that in the basic case and the reflexive case we get n = 1 for sure. In the
transitive case, this may not be the case. For example, a = [x\{[y)[z]x)[u]{x){x)u
?=>p b = x[y]x and does not satisfy Lemma 3.11. There are, however, ao,a\
and ai such that ao = a, a\ = x(x)[xl[z]x and ai = b such that TS(ao) -*p

and TS{a2) = TS(b). D

https://doi.org/10.1017/S0956796800001507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001507

650 Fairouz Kamareddine and Rob Nederpelt

4 Conclusion

Classical reduction is in certain respects unattractive, not only because we should
be able to discuss the existing redexes in a term at first sight, but also for at least
two more reasons:

1. It may be the case that in some applications, we may want to contract a
certain redex before other ones. This is the case for example in lazy evaluation
where we may be interested in freezing some redexes but in working with the
term as usual. That is for example, in the term t = ((Xx.(Xy.Xz.zd)c)b)a, we may
want to substitute a for z in (Xx.(Xy.zd)c)b before c has been substituted for y
and b has been substituted for x, i.e. we need to carry out the reduction which
substitutes a for z while the other two reductions which substitute c and b for
y and x, respectively, are frozen.

2. Having a term like t above, we want to be able to discuss its needed redexes
for reasons that are explained in Barendregt et al. (1987). In fact, the needed
redexes in a term a as introduced in that paper are those redexes that are
contracted in every reduction of a to normal form. Now, Barendregt et al.
(1987) provide many results which are important especially for the implementor
in that it frees him from having to stick to either an inefficient but terminating
normal order strategy, or an efficient but non terminating applicative strategy.
Our approach enhances the work of Barendregt et al. (1987).

In this paper, we presented a notation which enables us to extend the classical
notion of a redex and of ^-reduction. This extension helps us to see more needed
redexes than in classical calculus. The notation moreover allows us to reshuffle the
term in hand so that more redexes can become visible and be contracted even using
the old ^-reduction. Both the generalized reduction and the reshuffling of the term
are difficult to describe in the classical notation. Another attractive feature of our
notation, is the ability to partition terms into bachelor and well-balanced segments
(see Corollary 3.5). Such a partitioning, we believe, can play an important role in
the study of reduction strategies. This is under investigation at present.

The notation presented in this paper has further advantages than generalizing
reduction and term reshuffling. These advantages are studied in our articles men-
tioned in the bibliography. Of these advantages however, we mention the ability to
describe substitution explicitly as in Kamareddine and Nederpelt (1993) and of gen-
eralizing type systems as in Kamareddine and Nederpelt (1994). There is, moreover,
the advantage of being able to make normal order reduction more efficient than in
the classical calculus. The reason for this being that when searching for the left-most
outermost redex in a term, we need to make less recursive calls in item notation than
in classical notation because in item notation, a term has a more linear structure.
This and other advantages are investigated further in Kamareddine and Nederpelt
(1994).

Finally, our discussion of reduction in this paper has been in terms of Curried
functions. One could also explain the main idea using multi-argument functions and

https://doi.org/10.1017/S0956796800001507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001507

Refining reduction in the lambda calculus 651

Currying/unCurrying. More specifically, one could transform an application by:

{lxlrXz.e)abc = (l<x^>.e) < a,b,c>= {X<z^y>.e) < c,a,b>= (lz.lx.Xy.e)cab.

This idea is based on isomorphisms (discussed in Rittri, 1991) such as:

Of course, it would be nice to re-explore our approach in terms of multi-argument
functions. This will also lead to the concept of simultaneous substitution which
deserves attention.

References

Barendregt, H. P., Kennaway, J. R., Klop, J. W. and Sleep M. R. (1987) Needed reduction
and spine strategies for the i-calculus. Information and Computation, 75(3) :1191-231.

de Bruijn, N. G. (1993) Algorithmic definition of lambda-typed lambda calculus. In: Huet, G.

and Plotkin, G. (eds.), Logical Environments, pp. 131-146. Cambridge University Press.

Kamareddine, F. and Nederpelt, R. P. (1993) On stepwise explicit substitution. International

Journal of Foundations of Computer Science. 4(3):197-240.

Kamareddine, F. and Nederpelt, R. P. (1994) A unified approach to type theory through a

refined A-calculus. Theoretical Computer Science, 136:183-216.

Kamareddine, F. and Nederpelt, R. P. (1995) The beauty of the A-calculus. In preparation.

Nederpelt, R. P. (1973) Strong normalisation in a typed lambda calculus with lambda structured
types. PhD thesis, Eindhoven University of Technology, Department of Mathematics and
Computer Science. (Also in Nederpelt, R. P., Geuvers, J. H. and de Vrijer, R. C , eds. (1994)
Selected Papers on Automath. North Holland.)

Rittri, M. (1991) Using types as search keys in function libraries. Journal of Functional
Programming, l(l):71-90.

https://doi.org/10.1017/S0956796800001507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001507

