CATEGORY OF SEQUENCES OF ZEROS AND ONES IN SOME FK SPACES

by ROBERT DEVOS

(Received 23 November, 1976)
Let s denote the space of all complex valued sequences and let E^{∞} be all eventually zero sequences. An $F K$ space is a locally convex vector subspace of s which is also a Fréchet space (complete linear metric) with continuous coordinates. A BK space is a normed $F K$ space. Some discussion of $F K$ spaces is given in [11]. Well-known examples of $B K$ spaces are the spaces m, c, c_{0} of bounded, convergent, null sequences respectively, all with $\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|$, and

$$
\ell^{p}=\left\{x \in s:\|x\|_{p}=\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p}<\infty\right\} \quad(1 \leq p<\infty) .
$$

Let N_{0} be all sequences of 0 's and 1 's. For each $t \in(0,1]$, write t in its nonterminating binary decimal expansion. $N_{0} \backslash E^{\infty}$ is equivalent to (0,1] and N_{0} contains only a countable number of eventually zero sequences; hence we can talk about subsets of N_{0} having category. This is the classical definition of the category of subsets of N_{0} given in [5]. The topology of $N_{0} \backslash E^{\infty}$ induced on it by its equivalence with $(0,1]$ is the same as the topology inherited as a subset of s.

All $F K$ spaces considered will contain E^{∞}. Let A be an infinite matrix, E an $F K$ space, $E_{A}=\{x \in s: A x \in E\}$ is well known to be an $F K$ space.

In 1945, J. D. Hill [5] proved that if A is a regular matrix, then $c_{A} \cap N_{0}$ is a first category subset of N_{0}. This result was extended by T. A. Keagy in [6], where he shows that if $c_{\mathrm{A}} \supseteq E^{\infty}$ then either $c_{\mathrm{A}} \supseteq m$ or $c_{\mathrm{A}} \cap N_{0}$ is a first category subset of N_{0}.
G. Bennett and N. Kalton in [1] have shown that if an $F K$ space E contains N_{0} then $E \supseteq m$. We conjecture that if an $F K$ space E contains a second category subset of N_{0} then it must contain m. We are able to prove the conjecture for some $F K$ spaces and certain summability domains.

Theorem 1. Let E be a separable $F K$ space, with $E \subseteq m$. Then $E \cap N_{0}$ is a countable subset of N_{0}.

This follows since the topology of E is stronger than that of m.
The β dual of a sequence x is defined by

$$
x^{\beta}=\left\{y \in s: \sum_{i=1}^{\infty} x_{i} y_{i} \text { converges }\right\} .
$$

Lemma 1. If $x \notin \ell^{1}$, then $x^{\beta} \cap N_{0}$ is of first category in N_{0}.
Proof. Let $O_{r}=\left\{y \in N_{0}: \exists m, \ell \geq r\right.$ such that $\left.\left|\sum_{i=m}^{e} x_{i} y_{i}\right|>1\right\}$.
Glasgow Math. J. 19 (1978) 121-124

By its definition O_{r} is a non-empty open subset of N_{0}. It is dense in N_{0}, for if we prescribe the first p slots, there is a sequence in O_{r} with those entries in the first p slots. $N_{0} \cap x^{\beta} \subseteq N_{0} \backslash \bigcap_{r=1}^{\infty} O_{r}$ and thus is of first category.

Since for any $F K$ space E, and any matrix $A, E_{A} \subseteq s_{A}$ and s_{A} is the intersection of the β duals of the rows of A, we have the following result.

Corollary 1. Let E be an $F K$ space, A a matrix with some row not in ℓ^{1}. Then $E_{A} \cap N_{0}$ is a first category subset of N_{0}.

Let $e=(1,1,1, \ldots), e^{j}=(0, \ldots 0,1,0, \ldots)$ (with 1 in rank j). We denote the nth section of an element $x \in E$ by $P_{n} x=\sum_{i=1}^{n} x_{i} e^{i}$ and say that x has $A K$ provided that $P_{n} x \rightarrow x$ in $E . S_{E}=\{x \in E: x$ has $A K\}$. E has $A K$ provided $S_{E}=E$.

Theorem 2. Let E be an $F K$ space such that $E \cap m \subseteq S_{\mathrm{E}}$. Then $E \supseteq m$ or $E \cap N_{0}$ is a first category subset of N_{0}.

Proof. Let q be the paranorm of E and suppose there exists an $x \in N_{0} \backslash E$. Hence $P_{r}(x)$ is not a Cauchy sequence in E. So there exists an $\varepsilon>0$ and increasing sequences of integers $(m(n))$ and $(\ell(n))$ such that $0<m(1)<\ell(1)<m(2) \ldots$ and $q\left(\left[P_{\ell(n)}-P_{m(n)}\right] x\right)>\varepsilon$. Let

$$
O_{r}=\left\{z \in N_{0}:\left(P_{\ell(n)}-P_{m(n)}\right)(x-z) \text { is the zero sequence for some } n \geq r\right\}
$$

By definition each O_{r} is open and dense. $E \cap N_{0} \subseteq N_{0} \backslash \bigcap_{r=1}^{\infty} O_{r}$ and hence is of first category in N_{0}.

Theorem 3. Let E be an $F K$ space with $A K, E \supseteq \ell^{1}$ and A a matrix. Then $E_{A} \supseteq m$ or $E_{A} \cap N_{0}$ is a first category subset of N_{0}.

Proof. By Corollary 1, we may assume the rows of A are in ℓ^{1}. Let q be the paranorm of E. Since $E \supseteq \ell^{1}$ we may assume for $x \in \ell^{1}$ that $q(x) \leq\|x\|_{1}$.

If $E_{A} \nsupseteq N_{0}$, then there exists an $x \in N_{0}$ such that $A x \notin E$. Hence $P_{r}(A x)$ is not a Cauchy sequence in E. So there exists an $\varepsilon>0$ and increasing sequences of integers $(m(n))$ and $(\ell(m))$ such that $0<m(1)<\ell(1)<m(2) \ldots$ and $q\left(\left[P_{\ell(n)}-P_{m(n)}\right] A x\right)>\varepsilon$. Let

$$
O_{r}=\left\{z \in N_{0}: q\left(\left[P_{\ell(n)}-P_{m(n)}\right] A z\right)>\varepsilon / 2 \text { for some } n \geq r\right\} .
$$

O_{r} is open. Let $w \in O_{r}$. Then there exists an $n \geq r$ and a positive real number b such that $q\left(\left[P_{\ell(n)}-P_{m(n)}\right] A w\right)-b>\varepsilon / 2$. Since the rows of A are in ℓ^{1}, there exists a positive integer c such that

$$
\sum_{i=m(n)+1}^{e(n)} \sum_{i=c+1}^{\infty}\left|a_{i j}\right|<\frac{b}{2} .
$$

Hence, for each $v \in N_{0}, q\left(\left[P_{\ell(n)}-P_{m(n)}\right] A\left(v-P_{c} v\right)\right)<\frac{b}{2}$. Let $u \in N_{0}$ with $P_{c} u=P_{c} w$. We
have

$$
\begin{aligned}
q\left(\left[P_{\ell(n)}-P_{m(n)}\right] A u\right) \geq & q\left(\left[P_{\ell(n)}-P_{m(n)}\right] A P_{c} u\right) \\
& -q\left(\left[P_{\ell(n)}-P_{m(n)}\right] A\left(u-P_{c} u\right)\right) \\
\geq & q\left(\left[P_{\ell(n)}-P_{m(n)}\right] A w\right)-q\left(\left[P_{\ell(n)}-P_{m(n)}\right] A\left(w-P_{c} w\right)\right)-\frac{b}{2} \\
> & \frac{\varepsilon}{2} .
\end{aligned}
$$

Hence O_{r} is open.
Let $u \in N_{0}$ and $c \in \mathbb{Z}^{+}$. To show denseness, it suffices to show that there exists a $z \in O_{r}$ with $P_{c} z=P_{c} u$. Let α^{n} be the nth column of A. There exists a $t \geq r$ such that, for $m, \ell \geq t, \sum_{i=1}^{c} q\left(\left[P_{\ell}-P_{m}\right] \alpha^{i}\right)<\frac{\varepsilon}{4}$. Let $z=P_{c} u+x-P_{c} x$. Then

$$
\begin{aligned}
q\left(\left[P_{\ell(t)}-P_{m(t)}\right] A z\right) \geq & -q\left(\left[P_{\ell(t)}-P_{m(t)}\right] A P_{c} u\right)-q\left(\left[P_{\ell(t)}-P_{m(t)}\right] A P_{c} x\right) \\
& +q\left(\left[P_{\ell(t)}-P_{m(t)}\right] A x\right) \\
& >\frac{-\varepsilon}{4}-\frac{\varepsilon}{4}+\varepsilon=\frac{\varepsilon}{2} .
\end{aligned}
$$

Hence O_{r} is dense.
$\bigcap_{r=1}^{\infty} O_{r}$ is a second category set in N_{0} whose complement is of first category and $E_{A} \cap N_{0} \subseteq N_{0} \backslash \bigcap_{r=1}^{\infty} O_{r}$. Hence $E_{A} \cap N_{0}$ is a first category subset of N_{0}.

Keagy in [5] proved the same result for c_{A}. A modification of our proof of Theorem 3 will give us his result and also the same result for $b v_{A}$ where $b v$ is the set of all sequences of bounded variation.

All $F K$ spaces considered so far have been separable. The assumption is not necessary, since we have the following result.

Theorem 4. If $m_{\mathrm{A}} \supseteq E^{\infty}$, then $m_{\mathrm{A}} \supseteq m$ or $m_{\mathrm{A}} \cap N_{0}$ is a first category subset of N_{0}.
Proof. Assuming the rows of A are in ℓ^{1} and $m_{A} \nsupseteq m$, we have $\sup _{n} \sum_{i=1}^{\infty}\left|a_{n i}\right|=\infty$. Hence there exists a sequence $u_{n} \rightarrow 0$ such that $\sup _{n} u_{n}\left(\sum_{i=1}^{\infty}\left|a_{n i}\right|\right)=\infty$. Let $D=\operatorname{diag}\left(u_{1}, u_{2}, \ldots\right)$ and $B=D A . \quad m_{B} \nsupseteq m$ and $m_{B} \supseteq\left(c_{0}\right)_{B} \supseteq m_{A}$. Theorem 3 implies that $\left(c_{0}\right)_{B} \cap N_{0}$ is a first category subset of N_{0}; hence $m_{A} \cap N_{0}$ is also a first category subset of N_{0}.

Let \mathbb{Z}^{+}denote the set of positive integers. Using characteristic functions, the set of subsets of \mathbb{Z}^{+}is equivalent to N_{0}. Hence we can talk about the category of a set of subsets of \mathbb{Z}^{+}. The following theorem improves results of Bennett and Kalton [2], Lorentz [7], Mehdi [9], Peyeremhoff [8], and Zeller [11].

Theorem 5. Let $1 \leq p<\infty$. The following conditions are equivalent for any matrix A :
(i) A maps m into ℓ^{p};
(ii) $\sup _{J \in \mathscr{A}} \sum_{i=1}^{\infty}\left|\sum_{j \in J} a_{i j}\right|^{p}<\infty$ for \mathscr{A} any second category subset of the set of subsets of \mathbb{Z}^{+} which contains all finite sets;
(iii) $\sum_{i=1}^{\infty}\left|\sum_{j \in J} a_{i j}\right|^{p}<\infty$ for $J \in \mathscr{A}$, where \mathscr{A} is as in (ii).

This follows easily from Theorem 3 and the fact that any matrix map between $F K$ spaces is continuous.

The author would like to thank G. Bennett, F. W. Hartmann, A. K. Snyder and A. Wilansky for inspiration and many valuable conversations. He is also grateful to the referee for his comments and corrections, especially for his simplification of the proof of Theorem 4.

REFERENCES

1. G. Bennett and N. J. Kalton, FK-spaces containing c_{0}, Duke Math. J. 39 (1972), 561-582.
2. G. Bennett and N. J. Kalton, Inclusion theorems for K-Spaces, Canad. J. Math. 25 (1973), 511-524.
3. R. DeVos, Subsequences and rearrangements of sequences in FK spaces, Pacific J. Math. 64 (1976), 129-135.
4. J. A. Fridy, Summability of rearrangements of sequences, Math. Z. 143 (1975), 187-192.
5. J. D. Hill, Summability of sequences of 0's and 1's, Ann. of Math. 64 (1945), 556-562.
6. T. A. Keagy, Summability of certain category two classes, to appear.
7. F. R. Keogh and G. M. Petersen, A universal Tauberian theorem, J. London Math. Soc. 33 (1958), 121-123.
8. G. G. Lorentz, Direct theorems on methods of summability II, Canad. J. Math. 3 (1951), 236-256.
9. A. Peyeremhoff, Über ein Lemma von Herrn H. C. Chow, J. London Math. Soc. 32 (1957), 33-36.
10. W. L. C. Sargent, Some sequence spaces related to the ℓ^{p} spaces, J. London Math. Soc. 35 (1960), 161-171.
11. A. Wilansky, Functional analysis (Blaisdell, 1964).
12. K. Zeller, Matrixtransformationen von Folgenraumen, Univ. Roma. 1st Naz. Alta. Mat. Rend. Mat. e Appl. (5) 12 (1954), 340-346.

Villanova University, Villanova, Pennsylvania 19085, U.S.A.

