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Let s denote the space of all complex valued sequences and let E" be all eventually
zero sequences. An FK space is a locally convex vector subspace of s which is also a
Frechet space (complete linear metric) with continuous coordinates. A BK space is a
normed FK space. Some discussion of FK spaces is given in [11]. Well-known examples
of BK spaces are the spaces m, c, c0 of bounded, convergent, null sequences respectively,
all with ||x||00 = sup|xk|, and
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Let No be all sequences of O's and l's. For each re(0,1], write t in its non-

terminating binary decimal expansion. N0\E°° is equivalent to (0,1] and No contains only
a countable number of eventually zero sequences; hence we can talk about subsets of No

having category. This is the classical definition of the category of subsets of No given in
[5]. The topology of N0\E°° induced on it by its equivalence with (0,1] is the same as the
topology inherited as a subset of s.

All FK spaces considered will contain E°°. Let A be an infinite matrix, E an FK
space, EA={xes:AxeE} is well known to be an FK space.

In 1945, J. D. Hill [5] proved that if A is a regular matrix, then cA D No is a first
category subset of No. This result was extended by T. A. Keagy in [6], where he shows
that if cA 2 E" then either cA 2 m or cA D No is a first category subset of No.

G. Bennett and N. Kalton in [1] have shown that if an FK space E contains No then
E 2 m. We conjecture that if an FK space E contains a second category subset of No then
it must contain m. We are able to prove the conjecture for some FK spaces and certain
summability domains.

THEOREM 1. Let E be a separable FK space, with E^m. Then EDN0 is a countable
subset of No.

This follows since the topology of E is stronger than that of m.
The /3 dual of a sequence x is defined by

V 1
= s: > *jVj converges>.

i-i J
LEMMA 1. If x&P, then xpflN0 is of first category in No.

Proof. Let Or = I y e No: 3m, £> r such that £ x,^ > 1 \.
I i = m )
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By its definition O, is a non-empty open subset of No. It is dense in No, for if we
prescribe the first p slots, there is a sequence in Or with those entries in the first p slots.

N o n x p s N o \ P) Or and thus is of first category.
\r = l

Since for any FK space E, and any matrix A, EA e sAand sA is the intersection of the
/3 duals of the rows of A, we have the following result.

COROLLARY 1. Let E be an FK space, A a matrix with some row not in €x. Then
EA n No is a first category subset of No.

Let c = (1 ,1 ,1 , . . . ) , e' = (0 , . . . 0 ,1 ,0 , . . . ) (with 1 in rank ;). We denote the nth
n

section of an element x e E by Pnx = £ x^e' and say that x has AK provided that Pnx —*• x
i = l

in E. SB = {xeE:x has AX}. E has AK provided SE = E.

THEOREM 2. Let E be an FK space such that £ n m g S E . Then E 2 m or EC\N0 is a
first category subset of No.

Proof. Let q be the paranorm of E and suppose there exists an xeN0\E. Hence
Pr(x) is not a Cauchy sequence in E. So there exists an e >0 and increasing sequences of
integers (m(n)) and (^(n)) such that 0 < m ( l ) < A l ) < ' " ( 2 ) . . . and q([P€M-Pm(n)]x)>e.
Let

Or = {zeN0: (P^(ri)-Pm(n))(x- z) is the zero sequence for some n ̂  r}.

By definition each Or is open and dense. EDN0^N0\ (~) Or and hence is of first
category in No.

THEOREM 3. Let E be an FK space with AK, E^€l and A a matrix. Then EA 2 m or
EA DN0 is a first category subset of No.

Proof. By Corollary 1, we may assume the rows of A are in i1. Let q be the
paranorm of E. Since E~5.tx we may assume for xe<" that qM^HxIlj.

If EA2N0, then there exists an xeN0 such that Ax£E. Hence Pr(Ax) is not a
Cauchy sequence in E. So there exists an e > 0 and increasing sequences of integers
(m(«)) and (t(m)) such that 0<m( l )<^ ( l )<m(2 ) . . . and q([P,(n)-Pm(n)]Ax)>e. Let

OT = {z e No: q([P((n) - Pm(n)]Az) > e/2 for some n > r}.

Or is open. Let we Or. Then there exists a n n ^ r and a positive real number b such that
<i([Pt<.n)-Pm(n)]Aw)- b > e/2. Since the rows of A are in €l, there exists a positive integer
c such that

I I Kl<|.
/ = m(n)+l i = c+l *•

Hence, for each veN0, q([P€M-Pm(n)]A(v-Pcv))<-. Let ueN0 with Pcu = Pcw. We
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have

- PmM]Au) > q([Pe(n) - PmM]APcu)

) - q([Pe(n) - PmM]A(W - Pcw))~

Hence Or is open.
Let ueN0 and c e 2+ . To show denseness, it suffices to show that there exists a z e Or

with Pcz = Pcu. Let a" be the nth column of A. There exists a t a r such that, for

m,£>t, I <?([P,-Pm]a')<7- Let z = Pcu + x - Pcx. Then
i=i 4

«0 " Pm(,)]Az) > - q([P,(() - Pmit)]APcu) - q([Pm - Pm(0]APcx)

+ q([Pm-Pm(l)]Ax)

- e e E

>T-4 + £ = 2-
Hence Or is dense.

oo

D Or is a second category set in No whose complement is of first category and
r = l

EAnN0S:No\ n Or Hence EA nNo is a first category subset of No.
\r=l

Keagy in [S] proved the same result for cA. A modification of our proof of Theorem 3
will give us his result and also the same result for bvA where bv is the set of all sequences
of bounded variation.

All FK spaces considered so far have been separable. The assumption is not
necessary, since we have the following result.

THEOREM 4. If mA 2 E", then mAsm or mAn No is a first category subset of No.
oo

Proof. Assuming the rows of A are in t1 and mA 2 m, we have sup X |anj| = °°. Hence
n i = l

there exists a sequence un —> 0 such that sup un[ X knil)= °°- Let D = d iag^ , u 2 . . . . ) and
n \i = l /

B = DA. mB2m and mB 3(co)B 2 mA. Theorem 3 implies that (co)B HNo is a first
category subset of No; hence mA DN0 is also a first category subset of No.

Let 2 + denote the set of positive integers. Using characteristic functions, the set of
subsets of Z+ is equivalent to No. Hence we can talk about the category of a set of subsets
of Z+. The following theorem improves results of Bennett and Kalton [2], Lorentz [7],
Mehdi [9], Peyeremhoff [8], and Zeller [11].
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THEOREM 5. Let l sp<oo, The following conditions are equivalent for any matrix A:
(i) A maps m into €p;

(ii) sup
Jest i - 1

which contains all finite sets;
p

<<» for si any second category subset of the set of subsets of

(iii) £ <°° for Jesi, where si is as in (ii).
jeJ

This follows easily from Theorem 3 and the fact that any matrix map between FK
spaces is continuous.

The author would like to thank G. Bennett, F. W. Hartmann, A. K. Snyder and A.
Wilansky for inspiration and many valuable conversations. He is also grateful to the
referee for his comments and corrections, especially for his simplification of the proof of
Theorem 4.
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