CATEGORY OF SEQUENCES OF ZEROS AND ONES IN SOME FK SPACES

by ROBERT DEVOS

(Received 23 November, 1976)

Let s denote the space of all complex valued sequences and let E^{∞} be all eventually zero sequences. An FK space is a locally convex vector subspace of s which is also a Fréchet space (complete linear metric) with continuous coordinates. A BK space is a normed FK space. Some discussion of FK spaces is given in [11]. Well-known examples of BK spaces are the spaces m, c, c₀ of bounded, convergent, null sequences respectively, all with $||x||_{\infty} = \sup_{k} |x_k|$, and

$$\ell^p = \left\{ x \in s : \|x\|_p = \left(\sum_{k=1}^{\infty} |x_k|^p \right)^{1/p} < \infty \right\} \qquad (1 \le p < \infty).$$

Let N_0 be all sequences of 0's and 1's. For each $t \in (0, 1]$, write t in its nonterminating binary decimal expansion. $N_0 \setminus E^\infty$ is equivalent to (0, 1] and N_0 contains only a countable number of eventually zero sequences; hence we can talk about subsets of N_0 having category. This is the classical definition of the category of subsets of N_0 given in [5]. The topology of $N_0 \setminus E^\infty$ induced on it by its equivalence with (0, 1] is the same as the topology inherited as a subset of s.

All FK spaces considered will contain E^{∞} . Let A be an infinite matrix, E an FK space, $E_A = \{x \in s : Ax \in E\}$ is well known to be an FK space.

In 1945, J. D. Hill [5] proved that if A is a regular matrix, then $c_A \cap N_0$ is a first category subset of N_0 . This result was extended by T. A. Keagy in [6], where he shows that if $c_A \supseteq E^{\infty}$ then either $c_A \supseteq m$ or $c_A \cap N_0$ is a first category subset of N_0 .

G. Bennett and N. Kalton in [1] have shown that if an FK space E contains N_0 then $E \supseteq m$. We conjecture that if an FK space E contains a second category subset of N_0 then it must contain m. We are able to prove the conjecture for some FK spaces and certain summability domains.

THEOREM 1. Let E be a separable FK space, with $E \subseteq m$. Then $E \cap N_0$ is a countable subset of N_0 .

This follows since the topology of E is stronger than that of m. The β dual of a sequence x is defined by

$$\mathbf{x}^{\boldsymbol{\beta}} = \left\{ \mathbf{y} \in s : \sum_{i=1}^{\infty} x_i y_i \text{ converges} \right\}.$$

LEMMA 1. If $x \notin \ell^1$, then $x^{\beta} \cap N_0$ is of first category in N_0 .

Proof. Let
$$O_r = \left\{ y \in N_0 : \exists m, \ell \ge r \text{ such that } \left| \sum_{i=m}^{\ell} x_i y_i \right| > 1 \right\}.$$

Glasgow Math. J. 19 (1978) 121-124

ROBERT DEVOS

By its definition O_r is a non-empty open subset of N_0 . It is dense in N_0 , for if we prescribe the first p slots, there is a sequence in O_r with those entries in the first p slots. $N_0 \cap x^{\beta} \subseteq N_0 \setminus \bigcap_{r=1}^{\infty} O_r$ and thus is of first category.

Since for any FK space E, and any matrix A, $E_A \subseteq s_A$ and s_A is the intersection of the β duals of the rows of A, we have the following result.

COROLLARY 1. Let E be an FK space, A a matrix with some row not in ℓ^1 . Then $E_A \cap N_0$ is a first category subset of N_0 .

Let e = (1, 1, 1, ...), $e^{i} = (0, ..., 0, 1, 0, ...)$ (with 1 in rank *j*). We denote the *n*th section of an element $x \in E$ by $P_n x = \sum_{i=1}^n x_i e^i$ and say that x has AK provided that $P_n x \to x$ in E. $S_E = \{x \in E : x \text{ has } AK\}$. E has AK provided $S_E = E$.

THEOREM 2. Let E be an FK space such that $E \cap m \subseteq S_E$. Then $E \supseteq m$ or $E \cap N_0$ is a first category subset of N_0 .

Proof. Let q be the paranorm of E and suppose there exists an $x \in N_0 \setminus E$. Hence $P_r(x)$ is not a Cauchy sequence in E. So there exists an $\varepsilon > 0$ and increasing sequences of integers (m(n)) and $(\ell(n))$ such that $0 < m(1) < \ell(1) < m(2) \ldots$ and $q([P_{\ell(n)} - P_{m(n)}]x) > \varepsilon$. Let

 $O_r = \{z \in N_0 : (P_{\ell(n)} - P_{m(n)})(x - z) \text{ is the zero sequence for some } n \ge r\}.$

By definition each O_r is open and dense. $E \cap N_0 \subseteq N_0 \setminus \bigcap_{r=1}^{\infty} O_r$ and hence is of first category in N_0 .

THEOREM 3. Let E be an FK space with AK, $E \supseteq \ell^1$ and A a matrix. Then $E_A \supseteq m$ or $E_A \cap N_0$ is a first category subset of N_0 .

Proof. By Corollary 1, we may assume the rows of A are in ℓ^1 . Let q be the paranorm of E. Since $E \supseteq \ell^1$ we may assume for $x \in \ell^1$ that $q(x) \le ||x||_1$.

If $E_A \not\geq N_0$, then there exists an $x \in N_0$ such that $Ax \notin E$. Hence $P_r(Ax)$ is not a Cauchy sequence in E. So there exists an $\varepsilon > 0$ and increasing sequences of integers (m(n)) and $(\ell(m))$ such that $0 < m(1) < \ell(1) < m(2) \ldots$ and $q([P_{\ell(n)} - P_{m(n)}]Ax) > \varepsilon$. Let

$$O_r = \{z \in N_0 : q([P_{\ell(n)} - P_{m(n)}]Az) > \varepsilon/2 \text{ for some } n \ge r\}.$$

O, is open. Let $w \in O_r$. Then there exists an $n \ge r$ and a positive real number b such that $q([P_{\ell(n)} - P_{m(n)}]Aw) - b > \varepsilon/2$. Since the rows of A are in ℓ^1 , there exists a positive integer c such that

$$\sum_{j=m(n)+1}^{\ell(n)}\sum_{i=c+1}^{\infty}|a_{ji}| < \frac{b}{2}.$$

Hence, for each $v \in N_0$, $q([P_{\ell(n)} - P_{m(n)}]A(v - P_c v)) < \frac{b}{2}$. Let $u \in N_0$ with $P_c u = P_c w$. We

have

$$q([P_{\ell(n)} - P_{m(n)}]Au) \ge q([P_{\ell(n)} - P_{m(n)}]AP_{c}u) -q([P_{\ell(n)} - P_{m(n)}]A(u - P_{c}u)) \ge q([P_{\ell(n)} - P_{m(n)}]Aw) - q([P_{\ell(n)} - P_{m(n)}]A(w - P_{c}w)) - \frac{b}{2} > \frac{\varepsilon}{2}.$$

Hence O, is open.

Let $u \in N_0$ and $c \in \mathbb{Z}^+$. To show denseness, it suffices to show that there exists a $z \in O_r$ with $P_c z = P_c u$. Let α^n be the *n*th column of A. There exists a $t \ge r$ such that, for m, $\ell \ge t$, $\sum_{i=1}^{c} q([P_{\ell} - P_{m}]\alpha^{i}) < \frac{\varepsilon}{4}$. Let $z = P_{c}u + x - P_{c}x$. Then $q([P_{\ell(t)} - P_{m(t)}]Az) \ge -q([P_{\ell(t)} - P_{m(t)}]AP_{c}u) - q([P_{\ell(t)} - P_{m(t)}]AP_{c}x)$ $+q([P_{\ell(t)}-P_{m(t)}]Ax)$ $> \frac{-\varepsilon}{4} - \frac{\varepsilon}{4} + \varepsilon = \frac{\varepsilon}{2}.$

Hence O, is dense.

 $\bigcap_{r=1}^{\infty} O_r$ is a second category set in N_0 whose complement is of first category and $E_A \cap N_0 \subseteq N_0 \setminus \bigcap_{i=1}^{\infty} O_i$. Hence $E_A \cap N_0$ is a first category subset of N_0 .

Keagy in [5] proved the same result for c_A . A modification of our proof of Theorem 3 will give us his result and also the same result for bv_A where bv is the set of all sequences of bounded variation.

All FK spaces considered so far have been separable. The assumption is not necessary, since we have the following result.

THEOREM 4. If $m_A \supseteq E^{\infty}$, then $m_A \supseteq m$ or $m_A \cap N_0$ is a first category subset of N_0 .

Proof. Assuming the rows of A are in ℓ^1 and $m_A \not\supseteq m$, we have $\sup_{n} \sum_{i=1}^{\infty} |a_{ni}| = \infty$. Hence

there exists a sequence $u_n \to 0$ such that $\sup_n u_n \left(\sum_{i=1}^{\infty} |a_{ni}| \right) = \infty$. Let $D = \operatorname{diag}(u_1, u_{21}, \ldots)$ and B = DA. $m_B \not\supseteq m$ and $m_B \supseteq (c_0)_B \supseteq m_A$. Theorem 3' implies that $(c_0)_B \cap N_0$ is a first category subset of N_0 ; hence $m_A \cap N_0$ is also a first category subset of N_0 .

Let \mathbb{Z}^+ denote the set of positive integers. Using characteristic functions, the set of subsets of \mathbb{Z}^+ is equivalent to N₀. Hence we can talk about the category of a set of subsets of \mathbb{Z}^+ . The following theorem improves results of Bennett and Kalton [2], Lorentz [7], Mehdi [9], Peyeremhoff [8], and Zeller [11].

ROBERT DEVOS

THEOREM 5. Let $1 \le p \le \infty$. The following conditions are equivalent for any matrix A: (i) A maps m into ℓ^p :

(ii) $\sup_{J \in \mathscr{A}} \sum_{i=1}^{\infty} \left| \sum_{j \in J} a_{ij} \right|^p < \infty$ for \mathscr{A} any second category subset of the set of subsets of \mathbb{Z}^+ which contains all finite sets;

(iii) $\sum_{i=1}^{\infty} \left| \sum_{i \in J} a_{ij} \right|^{p} < \infty$ for $J \in \mathcal{A}$, where \mathcal{A} is as in (ii).

This follows easily from Theorem 3 and the fact that any matrix map between FKspaces is continuous.

The author would like to thank G. Bennett, F. W. Hartmann, A. K. Snyder and A. Wilansky for inspiration and many valuable conversations. He is also grateful to the referee for his comments and corrections, especially for his simplification of the proof of Theorem 4.

REFERENCES

1. G. Bennett and N. J. Kalton, FK-spaces containing c₀, Duke Math. J. 39 (1972), 561-582.

2. G. Bennett and N. J. Kalton, Inclusion theorems for K-Spaces, Canad. J. Math. 25 (1973), 511-524.

3. R. DeVos, Subsequences and rearrangements of sequences in FK spaces, Pacific J. Math. 64 (1976), 129-135.

4. J. A. Fridy, Summability of rearrangements of sequences, Math. Z. 143 (1975), 187-192.

5. J. D. Hill, Summability of sequences of 0's and 1's, Ann. of Math. 64 (1945), 556-562.

6. T. A. Keagy, Summability of certain category two classes, to appear.

7. F. R. Keogh and G. M. Petersen, A universal Tauberian theorem, J. London Math. Soc. 33 (1958), 121-123.

8. G. G. Lorentz, Direct theorems on methods of summability II, Canad. J. Math. 3 (1951), 236-256.

9. A. Peyeremhoff, Über ein Lemma von Herrn H. C. Chow, J. London Math. Soc. 32 (1957), 33-36.

10. W. L. C. Sargent, Some sequence spaces related to the ℓ^p spaces, J. London Math. Soc. 35 (1960), 161-171.

11. A. Wilansky, Functional analysis (Blaisdell, 1964).

12. K. Zeller, Matrixtransformationen von Folgenraumen, Univ. Roma. 1st Naz. Alta. Mat. Rend. Mat. e Appl. (5) 12 (1954), 340-346.

VILLANOVA UNIVERSITY, VILLANOVA, PENNSYLVANIA 19085, U.S.A.