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From geotechnical applications to space exploration, auger drilling is often used as a
standard tool for soil sample collection, instrument installation and others. Focusing on
granular flow associated with the rotary drilling process, we investigate the performance
of auger drilling in terms of sampling efficiency, defined as the mass ratio of the soil
sample collected in the coring tube to its total volume at a given penetration depth, by
means of experiments, numerical simulations as well as theoretical analysis. The ratio of
rotation to penetration speed is found to play a crucial role in the sampling process. A
continuum model for the coupled granular flow in both coring and discharging channels is
proposed to elucidate the physical mechanism behind the sampling process. Supported by
a comparison with experimental results, the continuum model provides a practical way
to predict the performance of auger drilling. Further analysis reveals that the drilling
process approaches a steady state with constant granular flow speeds in both channels.
In the steady state, sampling efficiency decreases linearly with the growth of the rotation
to penetration speed ratio, which can be well captured by the analytical solution of the
model. The analytical solution also suggests that the sampling efficiency is independent
of gravity in the steady state, which has profound implications for extraterrestrial sample
collection in future space missions.

Key words: dry granular material

1. Introduction

Granular materials can be considered as complex fluids with a finite yield stress that
is associated with the transition between solid- and liquid-like states (Jaeger, Nagel &
Behringer 1996; Andreotti, Forterre & Pouliquen 2013). Because of the highly dissipative
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and heterogeneous nature of granular materials, a generally applicable description of
granular materials as continuum is still lacking, despite continuous efforts over the
past decades (Jenkins & Savage 1983; Goldhirsch 2003; Forterre & Pouliquen 2008).
Concerning widespread examples of handling granular materials in nature, industrial
sectors and our daily lives (Duran 2000; Aguirre et al. 2021), it is essential to understand
the response of granular materials to disturbance by rigid objects such as an auger (Imole
et al. 2016). In this regard, there have been extensive investigations on, for instance, the
impact of a granular jet on a rigid plane (Müller, Formella & Pöschel 2014) or projectile
impact on granular media (Brzinski & Durian 2010; Colaprete et al. 2010; van der Meer
2017; Huang et al. 2020), crater formation (Ruiz-Suárez 2013) and on bio-mechanical
topics including drag reduction through self-propulsion used by organisms(Liu, Powers &
Breuer 2011; Jung et al. 2017; Texier, Ibarra & Melo 2017) and locomotion in granular
systems (Aguilar et al. 2016).

From the application perspective, drilling into granular media by means of helical
motion for sample collection, instrument installation or construction purposes finds
applications in civil and chemical engineering as well as conventional energy sectors. As
such, a wide variety of screw conveyors can be found in chemical and process engineering
industries to enhance the transport and mixing of granular materials (Xiong et al. 2015b;
Pang et al. 2018). In the new era of space exploration, the exploration of extraterrestrial
regolith in terms of granular sample collection leads to the deployment of various types
of granular samplers for exploring the geological evolution of extraterrestrial bodies, such
as the Luna probe project from the former Soviet Union and America’s Apollo project
(Zacny et al. 2008). Due to the advantages of auger transport, various drill samplers have
been developed for different space exploration projects, such as ESA’s MOONBIT project
(Poletto et al. 2015), NASA’s ExoMars project (Zacny, Quayle & Cooper 2004; Firstbrook
et al. 2017) and Japan’s LUNAR-A mission (Nakajima et al. 1996; Nagaoka et al. 2010).
China’s Chang’e lunar exploration project also used an auger drill sampler to collect and
return subsurface lunar regolith (Quan et al. 2017; Zhang & Ding 2017). Although auger
transport has been widely implemented in the applications, modelling auger conveyance
of granular materials is still a challenging subject (Imole et al. 2016).

In connection to the fundamental understanding of granular drag, continuous
investigations have been devoted to auger conveyance of granular materials by means of
constitutive models (Yu & Arnold 1997; Roberts 1999; Dai & Grace 2008), experiments
(Waje, Thorat & Mujumdar 2006; Ramaioli 2008; Imole et al. 2016) and numerical
simulations using either computational fluid dynamics (Xiong et al. 2015a; Duan et al.
2017) or discrete element methods (DEM) (Shimizu & Cundall 2001; Ramaioli 2008;
Owen & Cleary 2009) in the past decades. Most of the studies show that operating
conditions, such as the rotational speed of the auger, the inclination of the auger conveyor
and the initial filling fraction of the bulk materials, significantly affect the performance
of an auger conveyor. It was found that both the intruder’s configuration (Gravish,
Umbanhowar & Goldman 2010; Guillard, Forterre & Pouliquen 2014) and velocity
(Uehara et al. 2003; Katsuragi & Durian 2007) significantly affect the drag force. In
particular, recent experiments revealed configurations for a rotating cylinder to drill inside
granular materials with surprisingly low torque (Guillard, Forterre & Pouliquen 2013; Liu
et al. 2017). This is in agreement with the weakened resistance of soil against penetration
by a spinning cone (Jung et al. 2017) or a rotating helix (Liu, Powers & Breuer 2011) found
in experiments.

More recently, the drill used in China’s Chang’e lunar exploration project has been
a subject of series investigations, particularly on the interactions between the soil and
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the auger. Zhang & Ding (2017) numerically and experimentally investigated the
penetration force and rotational torque of the drill, and found that the penetration force can
be reduced due to self-propulsion. Quan et al. (2017) proposed an index to characterize
the condition for the occurrence of choking, a phenomenon in which the cuttings build up
in the auger flight and cause the rotational torque to increase sharply (Statham, Hanagud
& Glass 2012). Zhao et al. (2016) found a maximal removal capability for the cutting
conveyance. Tang et al. (2018a,b) illustrated the coupling between the granular flow in the
auger flight and that in the coring tube. Specifically, these experimental results revealed
that the coring results crucially depend on the drilling conditions, characterized by an
index called the penetration per revolution (PPR). If the PPR value is not suitable, the drill
may either enter into a failure mode due to choking or only sample a small amount of soil.
For a successful soil sampling, a proper PPR value should be selected according to the
physical properties of the soil.

Here, we focus on auger conveyance of granular materials relevant to the drill tool
shown in figure 1. The drill tool consists of a drill bit, a helical and right-handed auger
and a hollow coring tube. In the drilling platform, soil is displaced in the following three
processes (Li et al. 2017; Zhang et al. 2017): (i) the cutting process, in which the stiff soil
is loosened by the drill bit (Perneder, Detournay & Downton 2012); (ii) the discharging
process, in which the cuttings are removed from the bottom of the borehole to the ground
surface; (iii) the coring process, in which the soil is sampled into the hollow coring tube.
Generally speaking, the three processes are coupled together to affect both drilling loads
and coring results. This investigation aims at modelling the latter two processes as the
efficiency of soil sampling relies predominantly on them.

Experimental results suggest the ratio between the penetration and rotation speeds to
be an important dimensionless parameter controlling sampling efficiency. Theoretically,
a one-dimensional continuum model is established to describe granular flow in both
coring and discharging channels. Quantitative comparisons with the experimental
results indicate that our model successfully captures the essential role played by
the ratio between the penetration and rotational speed in determining the coring
results. Finally, steady-state analysis of granular flow yields an analytical prediction of
sampling efficiency, providing a practical way to control sample collection with auger
drilling.

The remainder of this article is organized as follows: § 2 briefly introduces the
experimental set-up and presents the experimental results obtained from different drilling
conditions and different types of soils. The governing equations describing granular flows
in the coring and discharging channels are developed in § 3. We compare experimental
results with numerical ones from the theoretical model in § 4 and analyse the steady-state
solution of the model in § 5. Finally, we conclude with an outlook for further investigations
in § 6.

2. Experiment

As illustrated in figure 1, the experimental apparatus mainly consists of a drill platform, a
drill bit, a helical and right-handed hollow auger, a sampling device and a soil container.
The sampling device contains a coring tube inside the hollow auger. The cylindrical
container has a diameter and height of 0.52 m and 2.5 m, respectively. The geometric
profile of the auger can be defined by four parameters: auger flight radius ro = 1.75 cm,
coring tube radius ri = 1.55 cm, pitch b = 1.20 cm, blade thickness tc = 0.10 cm and
groove depth a = ro − ri = 0.20 cm. For sample collection, a soft bag is attached to the
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Figure 1. Schematic of the experimental apparatus (a) and the drill tool (b) with geometrical variables defined.
Inset of (a) is a snapshot of the drill bit detached from the coring tube used in the experiments. (c,d) Correspond
to the experimental set-up and snapshots of the two lunar simulants with their angles of repose marked. Note
that plot (b) is not to scale.

inner surface of the coring tube. Throughout the entire drilling process, the coring tube,
together with the sample collected, moves along with the auger without rotation.

Before drilling starts, the granular sample is compacted by vibration to create a
reproducible initial condition. More specifically, we incorporate a five-stage sample
filling and vibration process to ensure a dense initial packing. Based on the maximum
packing density of a specific sample, we add each time 1/5 of the total mass (note that
approximately one ton of sample is used in each experiment) into the container. Initially,
the whole container is vibrated in the vertical direction against gravity at 30 Hz for 5 min.
Subsequently, tri-axial vibrations are applied at the same frequency for 20 min to further
compact the sample. Based on a previous investigation Nowak et al. (1998), the number of
taps through this process (close to 105) is sufficient for the system to reach a steady state.
Finally, the height of the granular layer is monitored to check whether the desirable packing
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density is achieved or not. If not, 10 min tri-axial vibrations are applied additionally to
compact the sample, before the whole process repeats for the next batch of sample.

Subsequently, the drill tool rotates and penetrates synchronously into the granular
sample. The initially compacted soil surrounding the drill tool is then fluidized as the
drill bit cuts through. As shown in figure 1(a), the drill bit includes four cutting edges
organized symmetrically about the central axis. The diameter of the inner tube matches
that of the coring tube to facilitate sample flow from the drill bit to the coring tube. The
outer radius of the drill bit is slightly larger than that of the auger flight for effectively
fluidized lunar simulants to flow through the outer channel. After fluidization, the soil is
transported upwards through either the coring tube or the auger. Once the target depth
is reached, both penetration and rotational motions stop simultaneously, meanwhile the
coring tube is closed by a sealing device to complete the sample collection process.

Experiments have shown that the coring results are determined by the physical
properties of the soil and the kinematic parameters of the drill tool (Zhang & Ding
2017; Tang et al. 2018a,b). In the experiment, we use two types of simulated lunar soils
(Carrier 2003) with grey basaltic pozzuolana as the main component. The grain size in the
simulated Soil-I (SS-I) ranges from 0.1 to 1 mm, and that in the simulated Soil-II (SS-II)
ranges from 1 to 2 mm. The bulk densities of the two simulated soils are ρI = 2.13 g cm−3

and ρII = 1.85 g cm−3, respectively. The packing fractions of the two soils are ψI = 0.71
and ψII = 0.60. As shown in figure 1(d), their internal friction angles are φI = 35.7◦ and
φII = 31.0◦, respectively.

The motion of the drill is determined by two parameters: penetration speed v and
rotational speed ω. Feedback loop in motor control is employed to ensure constant v and
ω throughout the drilling process. The experiments are conducted under three different
rotational speeds: ω = 80, 120, 160 r.p.m. For each ω, the penetration speed ranges from
10 to 360 mm min−1. The target depth is set to H = 1.0 m for all experiments.

In order to characterize the geometry and kinematics of the auger flights, we introduce
the geometry-dependent helical angle β and the elevation angle α of the velocity vector for
a point P on the auger flight. As shown in figure 2, the geometry dependent helical angle
β is defined as

tanβ = b
2πr

, (2.1)

with r the distance of P to the rotation axis. Once drilling starts, P undergoes a helical
motion with fixed radial distance and an elevation angle α, which can be estimated with

tanα = v

ωr
. (2.2)

Note that, for the special case of α = β, point P moves along the streamwise direction
(flight direction), reminiscent of inserting a straight hollow tube into the granular sample.
In this case, the grains in the auger remain static and cannot be discharged. Consequently,
the sample height in the coring tube equals the drilling depth. If β < α, the drill drives
granular particles downward and the enforced compaction may lead to chocking at the
bottom of the drill. When β > α, the drill drives the sample upward. As such, the relation
between α and β is crucial in the drilling process. Thus, we define the speed ratio γ as a
control parameter

γ = tanβ
tanα

= ωb
2πv

. (2.3)
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Figure 2. Granular flow in a segment of the external channel with two boundaries (dashed line). Here, us and
uξ are the components of the absolute flow velocity along the ŝ and ξ̂ directions, respectively; v and ωr are the
penetration and rotation velocities for the point on the auger at radius r, and α.

1.0

0.8

0.6

0.4

0.2

0 20 40 60 80 100

Speed ratio γ

S
am

p
li

n
g
 e

ff
ic

ie
n
cy

 ζ

SS-I, ω = 80 r.p.m.

SS-I, ω = 120 r.p.m.

SS-I, ω = 160 r.p.m.

SS-II, ω = 120 r.p.m.

Figure 3. Sampling efficiency as a function of speed ratio for two different types of soil used in experiments.
For Soil-I, there are three different rotational speeds of 80, 120 and 160 r.p.m. For Soil-II, there is only one
rotational speed of 120 r.p.m. We use the same marker to represent the experimental data collected at the same
ω but different v. Based on initial test runs, the uncertainty of the sampling efficiency is ∼10 %.

To quantify the sampling efficiency, we define another dimensionless number

ζ = mi

mmax
, (2.4)

where mi denotes the mass of the sampled soil in the coring tube as it reaches target depth
H, and mmax = πρHr2

i corresponds to the maximum mass of the soil at H with ρ bulk
density of the sample.

Figure 3 shows the relations between ζ and γ for two types of soils under different
configurations. It shows that: (i) for both types of soils, the sampling efficiency decreases
monotonically to 0 as γ grows; (ii) for sample II, a systematic variation of driving
conditions yields a master ζ–γ curve;(iii) each sample type has its own ζ–γ curve. The
experimental results suggest that the drilling process is determined by both properties of
the granular sample and speed ratio γ . Note that the lower bound of γ is higher for SS-I in
comparison with SS-II. This is because a highly compacted granular sample with smaller
particle sizes requires a higher torque to drill into than that with larger particle sizes,
particularly for small ω.
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Soft bag

Coring machine

Drill stem

Drill bit

v

∂Dt(t)

∂Db(t)

ui(t)

(a) (b)

Figure 4. Schematic of the internal channel. The dashed line represents the boundary ∂D of the domain D
filled by the particles in the internal channel. (b) Defines various components of the coring tube, including the
soft bag used to collect the soil sample.

3. Continuum model

In this section, we introduce a continuum model for granular flow in both internal (in
the coring tube) and external (on the auger flight) channels, in order to shed light on the
experimental results presented above. As the granular sample has to fluidize before being
displaced, it can be considered as a fluid. Because its flow in either internal or external
channel is confined to either the vertical or helical direction, we consider the sample
collection process as one-dimensional flows of incompressible fluids. The packing density
change during the fluidization process at the drill bit is not considered here, because the
model describes the flow of granular fluids in both internal and external channels. In the
future, further experimental analysis on the change of packing density during the initial
fluidization process is needed to incorporate compressibility of the granular sample into
the model.

In the subsequent parts of the section, we introduce the governing equations based
on mass and momentum balance for both internal and external channels, as well as the
coupling in between. Finally, we conclude with a summary of five governing equations to
numerically solve for the time-dependent mass and velocity in both channels as well as the
pressure at the bottom of the drill.

3.1. Flow dynamics in internal channel
The sampling process in the internal channel concerns a domain D with its two moving
boundaries: the bottom ∂Db and the top ∂Dt surfaces (see figure 4); ∂Db moves downward
with penetration velocity v, whereas ∂Dt takes the same velocity ui as the granular sample,
assuming collective motion of all grains in the internal channel. As sketched in figure 4(b),
one end of the soft bag is held firmly via an attached string. During the drilling process,
the sample is being collected in the soft bag as the coring tube penetrates deeper into
the lunar simulant. Since the normal stress between the granular material and the bag is
relatively small in comparison with that in the outer channel, we neglect the frictional
force between the granular sample and the inner tube. Granular flow in the inner channel
can be considered as a one-dimensional flow. More details on the functionality of the soft
bag can be found in Tang et al. (2018b).
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The mass sampled in the internal channel mi is also time dependent, and its rate of
change is governed by

dmi

dt
= d

dt

∫
D
ρ dV =

∮
∂D
ρvn dS = ρ(v − ui)Si, (3.1)

where vn is the velocity normal to the surface ∂D of the domain D, and Si = πr2
i denotes

the cross-sectional area of the internal channel.
As the rate of momentum change for fluid in volume D must be balanced by body force

and surface pressure, the integral momentum balance reads

d
dt

∫
D
ρui dV =

∫
D
ρg dV +

∮
∂D

pi dS, (3.2)

where pi is the normal pressure on the surface ∂D.
The left-hand side of (3.2) satisfies

d
dt

∫
D
ρui dV =

∫
D
ρ
∂ui

∂t
dV +

∮
∂D
ρuivn dS

= mi
dui

dt
+ ρSiui(v − ui). (3.3)

Here, P denotes the normal pressure exerted on boundary ∂Db. Note that the top boundary
∂Dt is a free surface. The second term of the right-hand side of (3.2) can be written as∮

∂D
pi dS = −PSi. (3.4)

Thus, (3.2) can be expressed as

mi
dui

dt
= mig − PSi − ρSiui(v − ui). (3.5)

In summary, granular flow in the internal channel is governed by the continuum equation
(3.1) and the momentum balance equation (3.2) with three time-dependent variables: mi,
ui and P.

3.2. Flow dynamics in external channel
Figure 2 shows the central layer of the equivalent chute flow along the streamwise
direction. Note that the helical motion of the granular sample in the external channel is
similar to a granular chute flow with inclination angle β, considering the auger flight
being unwrapped. In the flowing layer, we establish a coordinate system with unit vectors
ŝ and ξ̂ representing the streamwise and normal directions, respectively. We assume that
the granular sample fills up the helix groove along the ξ̂ direction, but the flow thickness
η is smaller than the groove depth a (see figure 1b) to account for the loss of materials
due to mass exchange between the external channel and the surroundings. Therefore,
the central layer of the flow has a radial distance r̄ = ri + η/2, and an inclination angle
β = b/(2πr̄) = b/[π(2ri + η)]. Because the thickness of the coring tube is relatively
small in comparison with ri or η, it is neglected in the current investigation. The width
of the flowing layer is then computed as ξ = b cosβ, and the cross-sectional area of the
external channel is given by So = ξη = ηb cosβ.
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The discharging process of granular flow in the external channel is related to a
time-dependent domain R with two boundaries: the fixed boundary ∂Ru on the soil
surface, and a moving boundary ∂Rd on the bottom surface of the drilling hole (see
figure 2). Note that the boundary ∂Rd moves with the drilling velocity v and the area
of ∂Rd is So/ sinβ according to the geometrical relationship shown in figure 2. The mass
of grains flowing into the external channel is mo, and its rate of change is governed by

dmo

dt
= d

dt

∫
R
ρ dV =

∮
∂R
ρvn dS = ρv

So

sinβ
, (3.6)

which is a constant under the conditions of constant penetration velocity v, cross-sectional
area So and bulk density ρ. Thus, we have mo = ρSovt/ sinβ.

Similar to the case of the internal channel, we assume a homogeneous flow velocity us
along the streamwise direction in the external channel. Momentum balance can then be
expressed as

d
dt

∫
R
ρus dV = −

∫
R
ρg sinβ dV +

∮
∂R

to(s) dS, (3.7)

where to(s) is the surface stress exerted on the boundary ∂R. Note that the left-hand side
of (3.7) can be written as

d
dt

∫
R
ρus dV =

∫
R
ρ
∂us

∂t
dV +

∮
∂R
ρusvn dS

= mo
dus

dt
+ ρvus

So

sinβ
, (3.8)

with surface normal pressure P exerted on boundary ∂Rd. Hence, (3.7) can be rewritten
as

mo
dus

dt
= −mog sinβ − ρSovus

sinβ
+ PSo + Fr, (3.9)

where Fr is the frictional force exerted on the lateral surfaces of the flowing layer. It
plays an important role in determining the granular flow in the external channel, which
is discussed in detail in the following.

3.3. Frictional force on the flow in external channel
The flowing layer enclosed in the domain R of the external channel is subjected to gravity,
centrifugal force and surface stresses. We need to consider internal stress and lateral
friction in describing the flowing layer.

To analyse the frictional force on the lateral surfaces of the flowing layer, we select
an infinitesimal hexahedron element (ξ × η × ds), as illustrated in figure 5(b,c). There
are four lateral surfaces designated by dAj (j = 1, 2, 3, 4); dA1 and dA3 are the lateral
surfaces in touch with the surrounding static granular materials and the groove bottom,
respectively. Their areas are computed as dA1 = dA3 = ξ × ds. Also, dA2 and dA4 are the
lateral surfaces contacting the top and bottom surfaces of the auger flight, respectively, and
dA2 = dA4 = η × ds. The magnitudes of shear and normal stresses on each lateral surface
Aj, j = 1, 2, 3, 4, are denoted as τj(s) and σj(s), respectively.

As the sample in the external channel moves upwards with a fixed elevation angle β,
it is reminiscent of a chute flow with additional centrifugal force in the radial direction.

935 A26-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

17
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.17


Y. Feng, S. Huang, Y. Pang, K. Huang and C. Liu

s

l Free surface

Bottomp(s)

p(s) =P(t)

P(t)

C(B)

C′(B′)

A′

B

C

D ds

D′

B′
C′

(A)D

(A′)D′
Ŝ Ŝ
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Figure 5. (a) The profile of the pressure distribution along the external channel. (b) An infinitesimal element
of the flow on the auger flight. (c) The surfaces of the infinitesimal element plotted in a local coordinate frame
A − ŝξ̂ η̂, where η̂ = ŝ × ξ̂ .

In this configuration, assuming the shear stress on surface A1 satisfies the μ–I rheology
introduced in Jop, Forterre & Pouliquen (2006); MiDi (2004), we have

τ1(s) = μ(I)σ1(s), (3.10)

where μ(I) = μs + (μ2 − μs)/(I0/I + 1) with I0, μs and μ2 model parameters. Inertial
number I is estimated with I = γ̇sd/(σ1(s)/ρ)1/2, where d is the average grain diameter,

and γ̇s =
√

u2
s + u2

ξ /(Nd) denotes the shear rate for a shear band with thickness Nd.
The granular friction coefficient μ(I) starts with a critical value μs at zero shear rate,
increases with inertial number I and eventually converges to a finite value μ2. Note that
the variation of μ is not significant in the steady state because of the stable inertial number
for the parameter range explored here, thus one may also assume a constant μ as a first
approximation. Nevertheless, the fluctuation of μ with I can be significant in the initial
transient state. Here, the velocity of the flowing layer is u = usŝ + uξ ξ̂ .

As the direction of the shear stress τ1(s) is opposite to that of u, we can decompose the
shear stress on surface A1 along the streamwise and normal directions as follows:

τ1(s) = τ s
1(s)ŝ + τ

ξ
1 (s)ξ̂ = −(cos θ ŝ + sin θ ξ̂)μ(I)σ1(s), (3.11)

with θ = tan−1(uξ /us).
The normal stress σ1(s) on lateral surface A1 arises from the hydrostatic pressure p(s)

and the pressure pc arising from the centrifugal force Fc

σ1(s) = p(s)+ pc. (3.12)

Note that the flow along the normal direction is constrained by the auger flight, which is
subject to a compound motion of penetration and rotation. This means that, as the flow is
considered to be incompressible, the component uξ equals the normal component of the
auger’s velocity v · ξ̂ . Hence, we have

uξ = ωr̄ sinβ − v cosβ, (3.13)

and uξ should be a constant when the auger’s motion is given. The circumferential speed
around the rotation axis of the flowing layer is expressed as uh = uξ sinβ − us cosβ.
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Granular dynamics in auger sampling

Therefore, the centrifugal force per mass dm reads

Fc = dm
u2

h
r̄

= dm
(uξ sinβ − us cosβ)2

r̄
, (3.14)

where dm = ρξηds and further pc = Fc/dA1.
Suppose that the region around the drill bit has isobaric pressure. The normal pressure

exerted on the boundary ∂Rb has the same surface pressure P as that on boundary ∂Db.
Noting that boundary ∂Ru corresponds to a free surface of the soil, its surface pressure
equals zero. Considering the Janssen effect (Duran 2000), we assume that the surface
pressure of the flowing layer along the streamwise direction is exponentially distributed
with s, namely, the hydrostatic pressure at position s is expressed as

p(s) = P
1 − e−((l−s)/b)

1 − e−(l/b) , (3.15)

where l is the total length of the external channel immersed in the soil at time t.
Figure 5(a) shows the distribution of hydrostatic pressure p(s), in which p(s = 0) = P and
p(s = l) = 0, at the bottom of the drill stem and at the free surface of the soil, respectively.

According to the equilibrium condition on surface A2, the normal stress σ2(s) can be
estimated with

σ2(s) = p(s)+ ρgb cos2 β + τ
ξ
1 (s)

ξ

η
. (3.16)

It is composed of hydrostatic-like pressure p(s), gravity and the normal component τ ξ1 (s)
of the friction force on surface A1.

The normal stresses on surfaces A3 and A4 are induced by the hydrostatic-like pressure
p(s), i.e. σ3 = σ4 = p(s). Note that the flowing layer takes a relative motion along the
streamwise direction ŝ with respect to the lateral surfaces A2, A3 and A4. Assuming that
the shear stresses on these three surfaces satisfy the Coulomb friction law, we have

τj(s) = −μ0σj(s), j = 2, 3, 4, (3.17)

where μ0 is the friction coefficient between granular materials and the drill stem surface.
Finally, we integrate the four shear stresses along the streamwise direction ŝ to obtain

the frictional forces exerted on the flowing layer

Fr =
∫ l

0
(τ s

1(s)+ τ3(s))ξ ds +
∫ l

0
(τ2(s)+ τ4(s))η ds. (3.18)

It shows that frictional force Fr primarily arises for the hydrostatic pressure, geometry
and friction coefficient μ that depend on the inertial number.

3.4. Coupling between internal and external channels
The granular material generated by the drill bit either flows into the internal channel or is
conveyed by the external channel. The mass increase rate is given by dmb/dt = Sbv, with
Sb the cross-sectional area at the bottom of the drill, where granular flow is generated by
the bit. Here, Sb is estimated with a summation of the bottom areas of both internal and
external channels

Sb = Si + So

sinβ
. (3.19)

The increased mass of granular materials in the internal and external channels are given
by (3.1) and (3.6), respectively. Meanwhile, part of the granular material is removed to
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the soil surface through the external channel. The velocity of the removed soil on the top
boundary ∂Ru of the flowing layer can be computed as uup = uξ cosβ + us sinβ. Thus,
the rate of mass removal by the external channel is given by dmrem/dt = ρSouup/ sinβ.
According to mass conservation in both channels, we have

Sbv = (v − ui)Si + v + uup

sinβ
So. (3.20)

Together with the definition of uξ , the second term can be written as known variables.
Subsequently, the above equation for the mass conservation in the two channels can be
transformed into the following form:

Sbv = So(v sinβ + ωr̄ cosβ + us)+ Si(v − ui). (3.21)

Equation (3.21) can also be considered as a kinematic constraint that couples the flow in
the internal and external channels.

3.5. Summary of the continuum model
The above analysis yields five governing equations with five time-dependent variables mi,
mo, ui, us and P. More specifically, there are two mass balance equations ((3.1) and (3.6)),
two momentum balance equations ((3.5) and (3.9)) and a coupling equation shown in
(3.20). Note that Fr can be represented as a function of P. Given certain model parameters
and initial conditions, the granular flow in both channels can be described numerically.

Differentiating (3.21) leads to
dus

dui
= Si

So
. (3.22)

Combining the above equation with (3.5) and (3.9) allows us to write an analytical
expression of the hydrostatic-like pressure P

P = miSoC1 + moSiC2

miS2
o + moS2

i
, (3.23)

where C1 ≡ mog sinβ + ρS0vus/ sinβ − Fr and C2 ≡ mig − ρSiui(v − ui).
Suppose mi(t0) = 0 and mo(t0) = 0 at time t0 = 0. The two continuum equations in

both channels can be written in the following integral forms:

mi = ρSi

(
vt −

∫ t

0
ui dt

)
,

mo = ρSov

sinβ
t.

⎫⎪⎪⎬
⎪⎪⎭

(3.24)

The dynamics of the granular flow in both channels is governed by (3.5) and (3.9), which
are reorganized here for clarity as

dui

dt
= g − P

mi
Si − ρSi

ui(v − ui)

mi
,

dus

dt
= −g sinβ − us

t
+ P sinβ

ρvt
+ Fr sinβ

ρSovt
.

⎫⎪⎪⎬
⎪⎪⎭

(3.25)

Note that the two equations are subject to the kinematic constraint given by (3.21).
Therefore, the initial values of ui(t0) and us(t0) cannot be specified arbitrarily, but they
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Granular dynamics in auger sampling

Soil type ρ (g cm−3) μs μ0 μ2 η (cm) ξ (cm) β (deg.)

Soil-I 2.13 0.72 0.57 0.8 0.025 1.19 6.97
Soil-II 1.85 0.60 0.46 0.7 0.105 1.19 6.81

Table 1. Parameters used in the theoretical model are selected to match experimental conditions, including
β (◦) = 180b/(π2(2ri + η)), ri = 1.55 (cm), b = 1.2 (cm), ξ = b cosβ, Si = πr2

i , So = ξη.

should satisfy the kinematic condition. For instance, if we set ui(t0) = 0, then the value
of us(t0) should be computed by (3.21) such that the condition of mass conservation can
be satisfied at time t0. This clearly suggests that gravity plays an important role in ui, and
consequently in the sampling efficiency. Based on the initial values of ui(t0) and us(t0),
together with (3.23), (3.24) and (3.25), we can numerically obtain the solutions of ui, us,
mi, mo and P.

4. Validation of the continuum model

In this section, we verify the continuum model through a comparison with experimental
results shown in § 2. Parameters used to numerically solve the governing equations
described above are listed in table 1. They are chosen based on experimental conditions,
as discussed below.

The bulk density ρ is chosen to match the experimentally measured ratio of sample
weight over volume occupied. The internal friction coefficient μs = tanφ is determined
from the angle of repose φ of the granular sample obtained after the drilling process to
reflect properties of the granular sample in the fluidized state. We assume that the granular
flow satisfies the Mohr–Coulomb yield criterion (Kang et al. 2018; Feng, Blumenfeld &
Liu 2019). The frictional coefficient between the granular sample and the surfaces of the
auger groove, μo is measured using standard slip testing method (GB/T 22895-2008). In
order to estimate μ(I) with (3.10), we need three parameters: the asymptotic frictional
coefficient μ2, the thickness of shear band Nd and the material-dependent constant I0. We
set N = 10 and use I0 = 0.206/

√
ψ cosβ with 0.206 a material-dependent constant and

ψ the packing fraction of the granular sample to estimate the inertial number, following
previous investigations (Forterre & Pouliquen 2003; Jop, Forterre & Pouliquen 2005). For
Soil-I and Soil-II, we have I0 = 0.42 and 0.58, respectively.

Parameters ξ and η correspond to the width and thickness of the flowing layer in the
inclined external channel. Note that granular flow in the external channel is confined to
a shallow auger groove and presumably limited to a few grain diameters (MiDi 2004;
Jop et al. 2005; Wang et al. 2019). As the flow takes place at the interface between sample
being displaced by the drill and surrounding soil underground, it is challenging to measure
it experimentally. Instead, we obtain η through fits to the experimental data. As shown in
table 1, fitting shows that η is of the order of one or two particle diameters, in agreement
with the above analysis.

Based on the parameters listed in table 1, we employ (3.23), (3.24) and (3.25) to
simulate the process of the auger penetrating into the two types of soils under different
driving conditions. All the simulations are terminated at the time when the penetration
depth H = 1.0 m is achieved. Numerically, we obtain the mass mi of sampled granular
materials at the end of each drill process. Subsequently, (2.4) is used to estimate ζ . How
the sampling efficiency ζ varies as a function of γ is investigated by variations of the
penetration speed v and rotational speed ω following experimental conditions. As shown
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Figure 6. Comparison between the numerical and experimental results for the relationships between
sampling efficiency ζ and speed ratio γ when the auger drills in Soil-I (a), and Soil-II (b).

in figure 6(a), the ζ–γ curves for Soil-I under different rotational speeds overlap with
each other well, clearly demonstrating that the sampling efficiency ζ depends on the
speed ratio γ instead of specific rotational speeds. Figure 6 also shows good agreements
between numerical and experimental results for both types of soils within the parameter
range explored here. In the future, down-scaled experiments capable of exploring a wider
range of γ with finer steps are needed to further validate the model. Note that ζ decays
asymptotically to zero as γ grows to infinity for both types of lunar simulants. This extreme
case corresponds to infinitely large ω at given b and v, consequently the centrifugal
force induced by the rotation of the drill effectively enhances the normal forces applied
on the walls of the external channel. Thus, the effective friction is large to prohibit the
flow of granular sample, and the percentage of sample being filled in the inner tube
decreases asymptotically to 0. Nevertheless, it cannot reach 0 for the limited parameter
range explored here, and the pressure on the bottom of the drill P is always positive (see
figure 8b).

Based on the above comparison with experimental data, we further analyse the granular
flow dynamics in both the internal and external channels of the auger drill. As shown
in figure 7, numerical results for the case of drilling in Soil-II with a fixed ω and
three different penetration speeds v clearly suggest that both flow speeds in internal
and external channels converge to a constant value as the penetration depth h increases
(see figure 7), suggesting the existence of a steady state with constant granular flow
speeds in the internal and external channels as time evolves. Qualitatively, figure 7
also reveals that larger penetration speeds lead to quicker convergence into the steady
state.

In addition to granular flow along the streamwise direction us, (3.13) indicates the other
flow component uξ generated from the helical motion of the drilling tool. As shown in
figure 8(a), the direction of granular flow tan θ evolves quickly into a constant value as
h grows, despite of the peaks emerging at small h (see the inset). Within the parameter
range explored, tan θ is independent of the driving conditions and becomes steady at the
very initial stage of penetration (h ≤ 50 mm). Moreover, the corresponding evolution of
the bottom pressure P during the penetration process under different driving conditions
is plotted in figure 8(b). It shows that P grows linearly with the penetration depth in the
steady state, in which both us and θ become stable. In the steady state, the growth rate
increases at larger v.
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Figure 7. Dimensionless flow speed ui/v in the internal channel (a), as well as the corresponding
dimensionless velocity us/v in the external channel (b), as a function of the penetration depth h = vt. Here,
us/v is negative because the granular surface of the fluidized sample moves upwards along the external
channel, i.e. in a different direction from the drill. Simulations are performed for drilling into Soil-II with fixed
ω = 120 r.p.m. and three penetration speeds v = 72, 144 and 288 mm min−1. Inset of (b) shows a close-up view
of the velocity change at the very beginning of the penetration process.
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Figure 8. Direction of external flow velocity tan θ = uξ /us (a), and pressure P (b) as a function of penetration
depth h for the corresponding conditions shown in figure 7. Inset of (a) is a close-up view of the angle change
at small h.

According to (3.18), we analyse the friction force Fr exerted on the flowing layer in the
external channel as a function of drilling depth h under three different penetration speeds.
Figure 9(a) shows that the frictional force decays initially to a negative value as h increases,
owing to the non-monotonic behaviour of us in the initial stage of penetration. As the
system approaches the steady state with constant us, Fr grows approximately linearly with
penetration depth, in relation to the growth of P with h. Notably, frictional force decreases
with increasing penetration speed. From the previous analysis, we know that the granular
flow direction in the external channel is opposite to the vector ŝ (i.e. negative us) and tends
to be constant as h increases. From (3.9), we know that the right-hand side approaches 0
in the steady state. Consequently, the increase of both the second (−ρSovus/ sinβ) and
third terms PS0 with v in the steady state leads to the decrease of Fr as penetration speed
v grows.
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Figure 9. (a) The friction force Fr exerted on the flowing layer, and (b) the resistant torque arising from the
friction between the flowing layer and the surrounding static granular material, vary with the penetration depth
h. The same driving conditions as shown in the caption of figure 7 are employed in the simulations for drilling
into Soil-II.

As granular sample is being conveyed upwards through the external channel, there exists
a torque T arising from the frictional force between the sample and surrounding granular
materials

T =
∫ l

0
roη̂ × τ1b cosβ ds · k̂, (4.1)

where l is the length of granular layer in the external channel and k̂ is the axial unit vector
of the drill stem. As shown in figure 9(b), the torque T increases with the depth and the
penetration speed. Given a fixed ω, increasing v leads to the decrease of soil discharging
capacity, which in turn results in an increase in P and consequently larger τ1 and T .

5. Steady-state analysis

The above numerical investigations show that the drilling process converges to a steady
state, in which the internal and external granular materials flow with constant speeds. In
this section, we derive explicitly the relationship between ζ and γ in the steady state.
Additionally, we investigate how ζ is affected by the drill’s geometry and the properties of
the granular materials.

In the steady state with dui/dt = 0 and dus/dt = 0, (3.25) can be re-formulated as

P = ρhig − ρus
i (v − us

i ),

P = ρhg sinβ + ρvus
s

sinβ
− 1

So
Fr,

⎫⎬
⎭ (5.1)

where hi = mi/(ρSi) and h = l sinβ = vt represent the sampling height and the drilling
depth at time t, respectively. Also, us

i and us
s represent ui and us in the steady state. By

eliminating the term P, (5.1) yields

ρg(hi − h sinβ)−
[
ρus

i (v − us
i )+ ρvus

s

sinβ

]
= −Fr

So
. (5.2)

In the steady state, I remains unchanged so that μ(I) can be replaced by a constant μ̄.
Additionally, figure 8(a) shows that tan θ remains unchanged as the drill process enters the
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steady state. We denote θ s as the constant angle. According to (3.18), together with (3.11),
(3.16) and (3.17), the right-hand term of (5.2) can then be expressed as

− Fr

So
= k1

∫ l

0
p(s) ds + k2pcl + μ0ρgl cosβ, (5.3)

with

k1 ≡ μ0 + μ̄ cos θ s + μ̄μ0 sin θ s

η
+ 2μ0

b cosβ
,

k2 ≡ μ̄ cos θ s + μ̄μ0 sin θ s

η
.

⎫⎪⎪⎬
⎪⎪⎭

(5.4)

According to the pressure distribution p(s) shown in (3.15), we get

∫ l

0
p(s) ds = Pl

1 − e−(l/b) − Pb. (5.5)

Finally, combining (5.2), (5.3) and (5.5) leads to the criterion for the steady state

k1
Pl

1 − e−(l/2b) = G − C, (5.6)

where

G ≡ ρg(hi − h sinβ)− μ0ρgl cosβ + k1Pb − k2pcl,

C ≡ ρus
i (v − us

i )+ ρvus
s

sinβ
.

⎫⎬
⎭ (5.7)

Clearly, coefficients k1, k2 and C are constants in the steady state. We have G ∼ O(t)
because h, hi, l and P are all ∝ t. Similar scaling analysis shows that Pl/(1 − e−(l/b)) ∼
O(t2). For a steady state to be achieved, (5.6) needs to be always satisfied at large t. In
other words, it should be valid for all time in the steady state, or on the asymptotic limit of
t. This condition is true only if k1 = 0, i.e.

k1 ≡ μ0 + μ̄ cos θ s + μ̄μ0 sin θ s

η
+ 2μ0

b cosβ
= 0, (5.8)

which can be reformulated as

cos θ s + μ0 sin θ s = −μ0

μ̄

(
2η

b cosβ
+ 1

)
. (5.9)

Equation (5.9) shows that θ s depends on both geometric parameters of the auger drill
(b and β) and properties of the granular sample (η, μ̄ and μ0). It is irrelevant to the
driving conditions of the drilling tool, in agreement with the numerical results shown
in figure 8(a).
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Equation (3.21) also suggests a relationship between us
s and us

i

us
s = Sbv − Si(v − us

i )

So
− (ωr̄ cosβ + v sinβ). (5.10)

Noting that uξ = ωr̄ sinβ − v cosβ, together with the definition tan θ s ≡ uξ /us, we get

cot θ s =
Sb

So cosβ
− Si

So cosβ
v − us

i
v

−
(
ωr̄
v

+ tanβ
)

ωr̄ tanβ
v

− 1
. (5.11)

We know from (3.1) that dmi = ρπr2
i (v − ui) dt. Therefore, the sampling efficiency ζ

becomes

ζ = 1 − 1
H

∫ H

0

ui

v
dh. (5.12)

In the steady state with constant ui, (5.12) can be simplified as

ζ s = 1 − us
i
v
. (5.13)

Plugging in γ = ωb/2πv = (ωr̄ tanβ)/v and Sb = Si + So/ sinβ, (5.11) can be written
as

ζ s = −So cosβ
Si

(
cotβ + cot θ s) (γ − 1)+ 1 ≡ Γ. (5.14)

This equation provides a convenient way to predict analytically the sampling efficiency
under different conditions. It suggests that ζ s decreases linearly as γ increases, in
agreement with figure 6. Moreover, we find a fixed point (γ = 1, ζ s = 1), which is
consistent with our aforementioned speculation for α = β that it is similar to inserting
a straight tube into a granular material. In this case, the materials in the auger flight will
not be discharged and the sampling efficiency will be 100 %.

Figure 7(a) indicates that a higher penetration velocity leads to a faster convergence of ui
to the steady-state value us

i , and consequently a faster convergence of ζ to ζ s because ζ ∝
ui/v. That means a higher penetration speed, or a smaller γ , yields a better agreement with
the analytical prediction of the ζ–γ relation shown in (5.14). Therefore, the ζ–γ relation
in figure 6 becomes closer to the line predicted by (5.14) as γ decreases. Reciprocally, as γ
becomes larger, convergence of ζ takes more time (or larger depth), thus a deviation of the
ζ–γ curve from a straight line, as illustrated in both experimental and numerical results,
can be expected.

Finally, we compare the analytical model with experimental data directly. The
right-hand term of (5.14) is denoted by Γ ; Γ for the experimental data is computed
after the parameters presented in table 1. We plot the experimental and numerical results
together in figure 10 for a direct comparison.

Equation (5.14) indicates that the linear relation between ζ s and γ depends on
parameters (e.g. μ, μ0, η, b and ri) that are gravity independent. In other words, despite
the fact that the evolution of ui into the steady state is gravity dependent (see (3.25)), the
sampling efficiency ζ s in the steady state is independent of gravitational acceleration,
clearly suggesting that auger drilling yields the same sample collection efficiency,
regardless of whether we are drilling on Earth, Moon or another extraterrestrial object.
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Figure 10. The ζ s–Γ relation of the prediction model in the steady state (dashed line) and the experimental
results (markers).

This can be understood through an analysis on the evolution of the gravity-dependent
terms. For instance, we know that the frictional term in the governing equations increases
with drilling depth quadratically, while the gravitational acceleration term is linear with
drilling depth. Therefore, as the depth increases, the role of the gravitational acceleration
term becomes increasingly weaker, whereas the friction term dominates the dynamics.

6. Conclusions

To conclude, we experimentally investigate the sampling efficiency of a standard auger
drill tool under different drilling conditions and soil properties. The experimental results
show that the sampling efficiency decreases monotonically with the growth of the ratio
between the rotational and penetration speeds. In addition, the sampling efficiency of the
drilling tool is found to be sensitive to the soil properties, such as the granular internal
friction angle, packing fraction, size distribution and grain scale. We speculate that the
influence of granular friction dominates that arising from other relevant properties, or
the influence of granular friction contains that from other soil properties, as previously
demonstrated in Kang et al. (2018).

In the drilling process, under the cutting effect of the drill bit and the rotation of the drill
tool, the soil around the drill tool is fluidized. Therefore, we assume the flowing soil is an
incompressible fluid and build the governing equations based on the mass conservation
and momentum equations of fluid dynamics. Because the flowing soils in the external
channel cannot be completely discharged to the ground surface, we introduce an effective
thickness of the flowing layer η that is smaller than the geometrical groove depth a. The
numerical solutions of the governing equations show the same features as the experimental
results: the sampling efficiency decreases with the ratio of the rotation to penetration speed
and does not depend on their specific values. By setting a smaller η for Soil-I with higher
granular friction than Soil-II, the theoretical results of both types of soils can agree well
with the experimental results.

Note that the numerical solutions of the theoretical model converge as drilling deepens,
leading to a steady state under which the governing equations can be solved analytically.
Consequently, we analyse the theoretical model in the steady state and find that the ratio of
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the normal and streamwise velocity components of granular flow in the external channel
is a constant being independent of the penetration speed, explaining why the sampling
efficiency is independent of v and ω individually. Moreover, we obtain an analytical
prediction for the sampling efficiency. The outcome shows that the sampling efficiency
decreases linearly with the speed ratio γ and it goes through (γ, ζs) = (1, 1), consistent
with the qualitative analysis in § 2. Importantly, this prediction shows that the sampling
efficiency is irrelevant to gravity in the steady state, which has important significance for
widespread applications. Note that gravity indeed plays a role before the steady state is
established.

Future work will be devoted to using DEM simulations for further analysis on
granular flows in both channels, particularly the pathway towards steady states, along
with a characterization of the pressure distribution in both channels to assist in further
development of the model, as well as in guiding verification experiments. In addition, it
is also important to investigate the granular flow profile in the helical external channel
during the drilling process within the framework of the μ–I rheology and to explore the
possibility of instabilities induced by shear flow (Börzsönyi, Ecke & McElwaine 2009;
Cortet et al. 2009; Brodu, Richard & Delannay 2013).
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