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1. Introduction

A central trace on an order-unit Banach space A(K) is a centre-valued module
homomorphism invariant under the group of symmetries of A(K).

The concept of central traces has been crucial in the theory of types for convex
sets established in (4), (5). In von Neumann algebras, they are precisely the canonical
centre-valued traces and their existence hinges on a fundamental theorem (Dixmier's
approximation process) in von Neumann algebras. On the other hand, the existence of
central traces in finite dimensional spaces is an easy consequence of Ryll-Nard-
zewski's fixed point theorem (5).

The main objective of this note is to demonstrate, by means of the Bochner
integral, that if a group of symmetries is uniformly almost periodic, then there is a
positive operator on A(K) which resembles a central trace. In particular, if the group
of all symmetries is uniformly almost periodic as well as transitive and also, if K
satisfies St0rmer's axiom, then there is a central trace on A(K). The results proved
here for compact convex sets, extending some of those in (8) on topological dynamics
and C*-algebras, appear to be more unified and transparent.

2. Central traces and groups of symmetries

Let K be a compact convex subset of a locally convex space and let A(K) be the
Banach space of continuous affine functions on K with the constant 1-function e as
order-unit. We shall refer to (1) for undefined terminology.

K is said to satisfy St0rmer's axiom if the closed convex hull co L)aFa of a family
{Fa} of closed split faces of K is also a split face. The set of extreme points of K will
be denoted by dK. For each extreme point k, let Fk be the smallest closed split face of
K containing k. As usual, K will be identified, whenever it is convenient, with the
vaguely compact convex state space {<p e A{K)*: <p(e) = ||<p|| = 1} of A(K).

Let O(A) denote the set of all order-bounded linear operators on A(K), that is all
linear operators T: A(K)^> A(K) such that - ||T||/ =s T =s||r||/ where / is the identity
operator on A(K). The set Z = {Te: TG O(A)} is the centre of A(K). For each a in
A(K) and T in O(A), we have

(Ta)(k) = (Te)(k)a(k) (2.1)

where k is any extreme point of K.

(*) Work done at the University of Tripoli.
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A symmetry of A(K) is an isometric order-isomorphism a: A(K)->A(K) such that
o~(e) = e and crT = Ta for each T in O(A). A central trace on A(K) is a positive linear
operator T: A(*0-»Z such that F(e) = e, Tr = FT for each T in O(A) and, r<j = T
for each symmetry <r of A(K) (See (4) and (5)).

The set 5 of all symmetries of A(K) form a group with respect to function
composition. The identity of S is the identity operator I on A(K). For each a in S, we
let cr*: A(K)*->A(K)* be the dual of cr; then <r* restricts to an affine homeomor-
phism from K onto itself. We shall also denote by a* this restriction to K if no
confusion will arise.

Let G be a group of symmetries of A(K) and let AA denote the product space
A(K)MK) with the product topology so that a net {aa} in G C AA converges to an
element T in AA if and only if ||<ra(a)- r(a)||-»0 for each a in A(K). The uniform
boundedness principle shows that T: A(K)—* A(K) is a positive bounded operator with
||T|| « 1 and also T*K C K. Moreover, G is a topological group in the product topology.
In fact, it is easily seen that the group multiplication is continuous. Further, if <ra -* <r
in G, then by isometry, for each a in A(K), \\aZla - cr~la\\ = \\a2\a - aaO-'1 a)\\ =
\\a — (Ta(T~xa\\ - \\<T(<T~1 a) — o-a(a~^a)\\^>0. So the inverse operation is also continuous on
G.

Next the action K x G -+K: (k, a)^cr*(k) of G on K makes (K, G) into a
transformation group. We say that G acts transitively on K if for each extreme point
k, dFk is contained in the closure of {a*(k): crG G}, or equivalently, if Fk =
co{o-*(fc): or G G}.

Plainly, if every extreme point of K is a split face, then any group G of
symmetries is transitive since for each k in dK, Fk = {k} and for each <r in G, k = cr*x
for some x in dK.

Example 1. Let K be the state space of a C*-algebra A with identity. Then A{K)
can be identified with the self-adjoint part of A. It is evident that the inner automor-
phisms of A are symmetries. Indeed using a theorem of Kadison (9, Theorem 10), one
can show that the symmetries of A(K) are just (the real parts of) the automorphisms
of A leaving the centre of A fixed (see (5)). Moreover, it also follows from Kadison's
transitivity theorem (10) that S acts transitively on K.

Let G be a group of symmetries of A(K). An element a in A(K) is called
G-invariant if <r(a) = a for all a in G. We shall denote by AG the set of G-invariant
elements in A(K). A subset F of K is called G-invariant if a*F C F for all a in G.
The set of all G-invariant elements in K will be denoted by KG which is clearly a
compact convex set.

Let Go = {cr G S: a** is a symmetry of A(K)**}. The following proposition
generalises a well-known result in C*-algebras concerning the invariant and split
faces.

Proposition 1. Let G be a subgroup of Go. Let F be a split face of K. Then F is
G-invariant. Conversely, if G is transitive and K satisfies St0rmer's axiom, then every
closed G-invariant face is a split face.

Proof. Let F be a split face of K. Then there is a central projection E:
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A(K)* such that F = EA(K)*nK. Let a EG. Then a**E* = E*a** since a** is a
symmetry of A(K)**. It follows that <r*E = Ea* and hence <r*FcF. So F is
G -invariant.

Conversely, suppose F is a closed G-invariant face. Let k G dF. Then, by
transitivity of G, Fk = co{er*(fc): a EG} which is contained in F as F is G-invariant.
Therefore F = co L)keiF Fk is a split face by St0rmer's axiom.

Example 2. Evidently, Go = S if K is finite dimensional. Let us take K to be a
square or a disc in the plane. Then it is not difficult to see that the centre of K is the
only element of Ks-

Example 3. Let K be the state space of a function algebra. Since each extreme
point of K is a split face, it follows from the above proposition and the Krein-Milman
Theorem that K = K^. Thus KGo need not be a Choquet simplex in general.

Example 4. Let K be the state space of a C*-algebra with identity and let U be
the group of all inner automorphisms of A. Then (A, U) form a [/-abelian system (see
(14, 3.1.11) for definition) and as U C Go, (A, Go) form a G0-abelian system as well. It
follows that KG<S is a Choquet simplex (see (11)). Note that if A is a type / von
Neumann algebra, then U = S (see (14; 2.9.32)).

It would be interesting to characterise those compact convex sets K for which KCo

are Choquet simplexes.
Let us observe that the centre of a C*-algebra is the set of elements which are

invariant under the inner automorphisms. This is a particular instance of the following
more general result in convexity.

Proposition 2. Let G be a transitive group of symmetries of A(K) and let Z be the
centre of A(K). Suppose K satisfies St0rmer's axiom. Then Z = AG.

Proof. Since, for each z in Z, there is an order-bounded operator T in O(A) such
that z = Te, we have az = aTe = Tae = Te = z for all a in G. So Z is contained in AG-

Let us recall that Z is identifiable with the space of facially continuous functions
on dK (see (1)). Now suppose a G A(K) is G-invariant. We show that a is facially
continuous on dK. Let r, t be any real numbers and let W = {w G dK: r =s a(w)*£ t}.
We prove that W is facially closed in dK. Let F = co Uwew Fw. Then F is a split face
by St0rmer's axiom. We assert that W = dF. Let us first prove that a is constant on
dFw for each w in W. In fact, if k is an element in dFw, then the transitivity of G gives
k G{a*w: crG G}~. But a is G-invariant, so aa*(w) = aa(w) = a(w) for all er in G.
Therefore a(k) = a(w) by continuity. Hence a is a constant on dFw and it follows that
dFw C W. Now the affineness and continuity of a give dF C W. Thus W = dF as
asserted. This proves that a is facially continuous on dK, that is, a G Z. As a G AG

was arbitrary, we conclude that Z = Ac.

3. Uniform almost periodicity

In this section, we shall apply some ideas from (8) to study the groups of
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symmetries of A(K) and to prove the existence of an analogue of central traces by
using the Bochner integral.

Let G be a group of symmetries of A(K). The transformation group (K, G) is said
to be uniformly almost periodic if for each / in C{K), f is almost periodic (with
respect to G), that is {fa*: <rE.G} has compact closure in C(K) (see (7)).

We first extend a result of Green in (8).

Proposition 3. The transformation group (K, G) is uniformly almost periodic if
and only if G has compact closure in A(K)MK) in the product topology. Under this
condition, the closure G~ is a topological group of symmetries of A(K).

Proof. First suppose (K, G) is uniformly almost periodic. For each a in A(K), let
[a] = {o-a: <rE G} be the orbit of a. Then, by uniform almost periodicity, [a]" =
{aa*: a E.GY is compact in C(K) and hence compact in A(K). So na G / , ( K ) [ar is
compact in AA in the product topology. Let T 6 G " C AA. Then there is a net {<ra} in G
such that \\craa - ra||->0 for each a in A(K). Therefore ra E [a]' for each a in A(K).
It follows that G~ C HasA(K) [a]~ is compact.

Conversely, let G~ be compact in AA. Let us first prove that {a*: a EG~} is
compact in KK in the uniform topology, that is, for any net {a*}, there is a subnet {a$}
converging to T*, where T G. G~, in that

for each a in A(K). As G~ is compact in AA, there is a subnet {o-p} of {aa} converging
to an element T G G ~ in the product topology. It follows that sup \a%(k)(a) —
T*(fc)(a)| = sup|a>(a)(Jk)-T(a)(fc)|^||a-p(a)-T(a)||-»O. This proves that {a*: a G G~}
is compact in KK in the uniform topology and so it is equicontinuous (2; Corollary 3
p. 292). Hence {a*: a G G}is also equicontinuous in KK. It follows that{/cr*: a G G}has
compact closure in C(K) for e a c h / in C(K) (7; 4.4, 4.5). Therefore (K, G) is uniformly
almost periodic.

Finally we show that G~ is contained in the group S of all symmetries of A(K)
under this condition. Let T G G~ and let {<ra} be a net in G converging to T. We have
noted before that T is a positive bounded operator on A(K). Let us show that r has an
inverse. Indeed, by compactness of G", there is a subnet {o-̂ 1} of the net {o-̂ 1}
converging to some a in G~. Therefore ra= T limp a~p = limp orpa^1 = / = CTT. So T has
an inverse in G. Now it is routine to verify that T is a symmetry of A(K). The proof is
complete.

Corollary 4. Let (K, G) be uniformly almost periodic. Then K contains a G-
invariant element. In particular, if (K, S) is uniformly almost periodic and A(K) has
trivial centre, then there is a central trace on A(K).

Proof. Since {a*: crGG}C KK is an equicontinuous group of affine mappings,
Kakutani's fixed point theorem asserts that there is an element k in K such that
a*(k) = k for all a in G (see (6, p. 457)). Further, if the centre Z of A(K) is trivial, the
operator F: A(K)^>Z defined by F(a) = a(k)e is obviously a central trace.

https://doi.org/10.1017/S0013091500016126 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016126


ORDER UNIT BANACH SPACES 163

We now construct a Bochner integral on a uniformly almost periodic group of
symmetries.

Theorem 5. Let G be a group of symmetries of A{K) and let (K, G) be uniformly
almost periodic. Then there is a positive linear operator F: A(K)^ Aa satisfying the
following conditions:

(i) r(e) = e;
(ii) FT = Tr /o r each T in O(A);

(iii) Fa = F for each a in G.

Proof. By Proposition 3, G' is a compact topological group. Let /A be the
normalised Haar measure on G~. For each a in A(K), the continuous function
o-t-»<r(a): G~^>A(K) is separably-valued since G~ is compact. Also, it is clearly
weakly measurable. Furthermore, the real function cn-*||o-(a)|| is bounded and hence
/i-integrable on G~. It follows that o-^cr(a) is Bochner /A-integrable (16; Theorem 1,
p. 133). Let

f ) (a E A(K))F(a)=f
Jc

be the Bochner integral. Then, by (16; Corollary 2, p. 134), for each T in G, we have
r{Fa) = T Ja- a(a)dfi(a) = JV ra(a)dfi(a) = /G- o-(a)dp(o-) = F{a) by the invariance
of fi. This shows that F(a) is G-invariant, that is, F(a) £ Aa.

It is evident that F: A(K) -* AG is positive and linear. To complete the proof, it
remains to verify conditions (i), (ii) and (iii). First, condition (i) follows easily from the
fact that fji is normalised. Next, let T G O(A), then again by (16; Corollary 2, p. 134),
we have TF(a) = T / c - a(a)dfi(a) = Jo- Ta{a)dn.{a) = JG- cr(Ta)rf/Li(ar) = F(Ta). So
TF = FT. Finally, as before, the invariance of /A implies that Fa = F for each cr in G.
This concludes the proof.

Corollary 6. Let S be the group of all symmetries of A(K). Suppose that (K, S) is
transitive, uniformly almost periodic and also, K satisfies Stormer's axiom. Then there
is a central trace on A(K).

Proof. By Proposition 2, As is the centre of A(K) and so the operator F in
Theorem 5 is a central trace on A{K).

We shall give some examples at the end of the paper.

4. Tensor products

We consider in this section the tensor products of uniformly almost periodic
groups. We shall use (13) and (15) as our references to tensor products of compact
convex sets. Let K\ and K2 be two compact convex sets and let Ki<S)K2 be their
injective tensor product. Let us recall that each extreme point of Kl®K2 is the
product k\ ® k2 of two uniquely determined extreme points kt of K\ and k2 of K2 (cf.
(13)). The injective tensor product of A{Ki) and A(K2) will be denoted by

which is identified as the space A(Ki®K2) of continuous affine
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functions on K\ 0 K2 with et 0 e2 as the constant 1-function where et is the order-unit
in A(Ki) and e2 the order-unit in A(K2).

Next if ov, A(Ki)-» A(Ki) and <T2: A(K2)^A(K2) are bounded operators, we define
crx®a2: A{K\)®A(K2)^> A(KX)®A(K2) to be the unique bounded operator on
A(Ki)®A(K2) such that (a-,® (r2)(fli® (J2) = ffi(fli) ® ^2(12) for fl,EA(JCi) and a2G
A(K2) (cf. 15).

Proposition 7. Let a\. A(Ki)^A(Ki) and a2: A(K2)^* A(K2) be symmetries. Then
<TI®(T2: A(Kl)®A(K2)^A(Ki)®A(K2) is a symmetry.

Proof. By the functorial property of the injective tensor products (15; p. 74),
o-i0er2 is an order-isometric isomorphism and also, (<ri®a2)(ei®e2) = cr\e\®cr2e2 =
e\ 0 e2. It remains to prove that <r} 0 <r2 commutes with the order-bounded operators.
Let T: A(Ki)®A(K2)^>A(K,)®A(K2) be an order-bounded operator. Then by (3,
Proposition 9), we may assume that there exist order-bounded operators Pn:
A(Ki) and Qn: A(K2)-*A(K2) such that

ll̂ n î 0 Qne2 — T(et ® e2)\\ -> O as n -» ».

Let / be an element of A(X, )0 A(K2). Then we have

sup

= sup \(Pn ® Qn)(et 0 e2)(ki
by (2.1)

= sup |(Pne, 0

«11/11 \\Pne,0 Qne2-

It follows that

, 0 k2)-
® e2)\\

2)f(kx ® k2) -

t® e2)(kt® k2)\\f(k,

, 0 a2)(Tf) = lim (o-, 0 o-2)(Pn® Qn)(f)
n

= lim (o-i-P* 0 <T2Qn)(f)
n

= lim (Pn<r, 0 Qno2)(j)
n

= lim (Pn 0

This proves that (<T\®<T2)T = n i r , ® ^ . Therefore at®cr2 is a symmetry.
Let (Ki, Gi) and (X2, G2) be uniformly almost periodic groups. Then G7 and

are compact topological groups by Proposition 3. Let

G = G,
2 = £ G,, a; £ G2}.

Then it follows from Proposition 7 that G is a group of symmetries of A(K{) 0 A(K2).
Let A = A(Kt)®A(K2). Define a map C[ x G2 ^ AA by (o-,, o-2)>-> o-i 0 o-2. Then a
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simple application of the uniform boundedness principle (6, p. 55) shows that the map
is continuous and its range is just (G\® G2)~ by compactness of G\ and G2. It follows
that (Gi®G2)~ is compact in the product topology. Thus we have proved the
following result.

Theorem 8. Let (Ku d ) and (K2, G2) be uniformly almost periodic groups. Then
(Ki (x) K2, G\ (x) G2) is a uniformly almost periodic group.

We conclude the paper with a few illustrative examples.

Example 5. Let K\ be a Bauer simplex. Then the group S, of symmetries of
A(Ki) consists of only one element, namely, the identity operator on A(Kt). So
(K\, SO is uniformly almost periodic.

Example 6. Let K2 be a square in the plane. Then, since there is no non-trivial
order-bounded operators on A(K2), the symmetries S2 of A(K2) are precisely the
order-isometric automorphisms. Therefore {a*: o~ E S2} consists of all the affine
autohomeomorphisms of K2 and is just the dihedral group of order 8 (see (12, p. 55)).
It follows that (K2, S2) is uniformly almost periodic.

Example 7. Let A be a UHF algebra and X3 its state space. Let {An} be its
denning sequence with An = Mi ® • • • ® Mn where each Mf is a finite dimensional
factor. Let U be the group of all unitaries in U"=|An which have the form
Mi ® • • • ® Uk where w, is a unitary in Afj. Let S3 be the group of (the real parts of) all
inner automorphisms of A induced by the elements of U. Then it was shown in (8)
that (K3, S3) is uniformly almost periodic.

Now we can use Theorem 8 to construct a few more uniformly almost periodic
groups.

Example 8. In the above examples, the groups (Kt ® Kh S, ® S,) ;, / = 1,2,3, are
uniformly almost periodic.
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