Canad. Math. Bull. Vol. 58 (2), 2015 pp. 281–284 http://dx.doi.org/10.4153/CMB-2015-010-9 © Canadian Mathematical Society 2015

On the Relation of Real and Complex Lie Supergroups

Matthias Kalus

Abstract. A complex Lie supergroup can be described as a real Lie supergroup with integrable almost complex structure. The necessary and sufficient conditions on an almost complex structure on a real Lie supergroup for defining a complex Lie supergroup are deduced. The classification of real Lie supergroups with such almost complex structures yields a new approach to the known classification of complex Lie supergroups by complex Harish-Chandra superpairs. A universal complexification of a real Lie supergroup is constructed.

1 Introduction

The local differential operators on a real Lie supergroup have the structure of a Lie– Hopf superalgebra that can be algebraically constructed from a real Harish-Chandra superpair (see [6]). Conversely starting from a real Harish-Chandra superpair, Kostant [6] constructed a sheaf of superfunctions by dualising the associated Lie–Hopf superalgebra. This yields a real Lie supergroup and hence an equivalence of categories from real Harish-Chandra superpairs to real Lie supergroups. The described construction highly depends on the softness of the sheaf of smooth functions and cannot be transported directly to the complex setting.

A construction of complex Lie supergroups from complex Harish-Chandra superpairs using analytic continuation on Grassmann variables was given by Berezin (see [1]). Vishnyakova gave a rigorous proof of the equivalence of categories of complex Harish-Chandra superpairs and complex Lie supergroups (see [9]).

In this article complex Lie supergroups and complex Harish-Chandra superpairs are analyzed as real objects with integrable almost complex structure J (see [2]). Starting from a real Lie supergroup, we deduce the conditions that an integrable almost complex structure J has to satisfy in order to define a complex Lie supergroup. The correspondence of complex Lie supergroups and Harish-Chandra superpairs then follows from the real case in [6]. Existence of a universal complexification of a real Lie supergroup with underlying real analytic Lie group is finally derived in the language of Harish-Chandra superpairs. More details can be found in [4].

Received by the editors August 29, 2014.

Published electronically March 2, 2015.

Research supported by the SFB/TR 12, Symmetry and Universality in Mesoscopic Systems, of the Deutsche Forschungsgemeinschaft.

AMS subject classification: 32C11, 58A50.

Keywords: Lie supergroup, almost complex structure, Harish-Chandra pair, universal complexification.

2 Real Lie Supergroups with Almost Complex Structure

Let (G, \mathfrak{g}) be a real Harish-Chandra superpair; *i.e.*, G is a real Lie group and $\mathfrak{g} =$ $\mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$ is a real Lie superalgebra such that $\mathfrak{g}_{\bar{0}} = \text{Lie}(G)$ and the representation of $\mathfrak{g}_{\bar{0}}$ on \mathfrak{g}_i integrates to a representation of G. Further, let $\mathfrak{G} = (G, \mathfrak{C}_{\mathfrak{G}}^{\mathbb{R}})$ denote the real Lie supergroup associated with (G, \mathfrak{g}) by Kostant's construction (see [6]). The morphisms of multiplication, inverse, and unity induce the structure of a Lie-Hopf superalgebra on the local differential operators on $C_{q}^{\mathbb{R}}$. This Lie-Hopf superalgebra is isomorphic to $\mathbb{R}(G) \# E(\mathfrak{g})$ (see [6]). The first factor is the group ring of G, the second is the universal enveloping algebra of g, and # denotes the semidirect-type product defined via the adjoint action of *G* on $E(\mathfrak{g})$. An element g#X in $\mathbb{R}(G)#E(\mathfrak{g})$ represents the left-invariant operator X followed by evaluation at g. Now let J be an integrable almost complex structure on the supermanifold G. For $X \in \mathfrak{g}$ regarded as a left-invariant derivation on $\mathcal{C}_{\mathcal{G}}^{\mathbb{R}}$, we obtain for any $g \in G$ a well-defined element $J_g(X) \in \mathfrak{g}$ such that $g#J_g(X) = J(g#X)$ as derivations. The condition that the multiplication map (m, m^*) on \mathcal{G} is a morphism of complex supermanifolds, *i.e.*, preserves J, is translated to the Lie–Hopf superalgebra as $(h#1) \cdot J(g#X) = J((h#1) \cdot (g#X))$ for all $g, h \in G$ and $X \in \mathfrak{g}$. This yields for $h = g^{-1}$ that $J_g(X) = J_e(X)$. So J is supposed to map left-invariant derivations to left-invariant derivations and hence to restrict to a map $J_{\mathfrak{q}}:\mathfrak{g}\to\mathfrak{g}$. Furthermore, for homogeneous X_{\pm} in the $\pm i$ eigenspace of J, use on the left-hand side of

$$(e^{\#}X_{+}) \cdot (e^{\#}X_{-}) - (-1)^{|X_{+}||X_{-}|}(e^{\#}X_{-}) \cdot (e^{\#}X_{+}) = e^{\#}[X_{+}, X_{-}]$$

the compatibility with *J* first in the first, then in the second arguments of the products. This yields identical results with different signs. So $[X_+, X_-]$ vanishes. Now by the graded Newlander–Nierenberg theorem the supercommutator on vector fields continued \mathbb{C} -linearly to $\text{Der}(\mathcal{C}_{\mathcal{G}}^{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C})$ preserves the eigenspaces of *J* (see [7],[8] and arguments parallel to [5, chap. IX.2]). Altogether we obtain *J*-linearity in both arguments of the superbracket. These conditions are already sufficient.

Theorem 2.1 A real Lie supergroup G with almost complex structure J induces a complex Lie supergroup if and only if J preserves left-invariance of superderivations and the Lie superbracket is J-linear in both arguments; i.e., J comes from a complex structure on the Lie superalgebra g.

Proof If *J* satisfies the given conditions, then it is integrable due to the graded version of the Newlander–Nierenberg theorem. Furthermore, *J* is compatible with the adjoint action of *G* on \mathfrak{g} , so *J* can be continued to $\mathbb{R}(G)#E(\mathfrak{g})$ compatible with multiplication, inverse $(g#X \mapsto -g^{-1}#Ad(g)(X)$ for $g \in G$ and $X \in \mathfrak{g}$) and unity. Hence, the corresponding morphisms are morphisms of complex supermanifolds.

Corollary 2.2 ([9]) *The category of complex Lie supergroups is equivalent to the category of complex Harish-Chandra superpairs.*

282

Real and Complex Lie Supergroups

3 Universal Complexification of Real Lie Supergroups

A universal complexification of a real Lie supergroup \mathcal{G} is a complex Lie supergroup $\mathcal{G}^{\mathbb{C}}$ and a morphism of real Lie supergroups $\Gamma: \mathcal{G} \to \mathcal{G}^{\mathbb{C}}$ with the following universal property. For any morphism of real Lie supergroups $\Phi: \mathcal{G} \to \mathcal{H}$ into a complex Lie supergroup \mathcal{H} there exists a unique morphism of complex Lie supergroups $\Phi^{\mathbb{C}}: \mathcal{G}^{\mathbb{C}} \to \mathcal{H}$ such that $\Phi^{\mathbb{C}} \circ \Gamma = \Phi$. Note that existence of a universal complexification includes uniqueness up to isomorphisms of complex Lie supergroups.

From now on, let *G* be a real analytic group and set $\mathfrak{g}_{\bar{0}} := \operatorname{Lie}(G)$. Existence of a universal complexification $\gamma: G \to G^{\mathbb{C}}$ of *G* is stated in [3]. In detail there is an ideal $\mathfrak{p} \subset \mathfrak{g}_{\bar{0}}$ such that the complex Lie algebra $\mathfrak{g}_{\bar{0}}^{\mathbb{C}} := \operatorname{Lie}(G^{\mathbb{C}})$ is isomorphic to $(\mathfrak{g}_{\bar{0}} \otimes \mathbb{C})/(\mathfrak{p} \otimes \mathbb{C})$. The map γ is given on Lie algebra level by the real embedding emb_{$\bar{0}$}: $\mathfrak{g}_{\bar{0}} \to \mathfrak{g}_{\bar{0}} \otimes \mathbb{C}$ followed by projection. Approaching a universal complexification for Lie supergroups, we find the following lemma.

Lemma 3.1 Let $(G, \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}})$ be a real Harish-Chandra superpair, let $\gamma: G \to G^{\mathbb{C}}$ be the universal complexification of G and set $\mathfrak{g}_{\bar{0}}^{\mathbb{C}} := \text{Lie}(G^{\mathbb{C}})$. Then $\mathfrak{g}^{\mathbb{C}} := \mathfrak{g}_{\bar{0}}^{\mathbb{C}} \oplus (\mathfrak{g}_{\bar{1}} \otimes \mathbb{C})$ is a complex Lie superalgebra with respect to the inherited Lie superbracket. In particular, $(G^{\mathbb{C}}, \mathfrak{g}^{\mathbb{C}})$ is a complex Harish-Chandra superpair.

Proof The adjoint representation of $\mathfrak{g}_{\bar{0}}$ on $\mathfrak{g}_{\bar{1}}$ integrates to a Lie group action $G \to GL_{\mathbb{C}}(\mathfrak{g}_{\bar{1}} \otimes \mathbb{C})$. The universal complexification yields $G^{\mathbb{C}} \to GL_{\mathbb{C}}(\mathfrak{g}_{\bar{1}} \otimes \mathbb{C})$. So on Lie superalgebra level, $\mathfrak{p} \otimes \mathbb{C}$ acts trivially on $\mathfrak{g}_{\bar{1}} \otimes \mathbb{C}$; *i.e.*, it is an ideal in $\mathfrak{g} \otimes \mathbb{C}$.

Theorem 3.2 Let \mathcal{G} be a real Lie supergroup associated with the Harish-Chandra superpair (G, \mathfrak{g}) and let $\gamma: G \to G^{\mathbb{C}}$ be the universal complexification of G. Then the complex Harish-Chandra superpair $(G^{\mathbb{C}}, \mathfrak{g}^{\mathbb{C}})$ together with the morphism $(\gamma, \Gamma_*), \Gamma_* :=$ $D_e \gamma \oplus \operatorname{emb}_{\overline{1}}$ is associated with a universal complexification $\mathcal{G}^{\mathbb{C}}$ of \mathcal{G} .

Proof Let (H, \mathfrak{h}) be a complex Harish-Chandra superpair and let the pair of maps $(\phi, \Phi_*): (G, \mathfrak{g}) \to (H, \mathfrak{h})$ be a morphism of real Harish-Chandra superpairs. Let $\phi^{\mathbb{C}}: G^{\mathbb{C}} \to H$ be the underlying complexification and set $\Phi^{\mathbb{C}}_* := D_e \phi^{\mathbb{C}} \oplus \sigma$, where $\sigma: \mathfrak{g}_{\overline{1}} \otimes \mathbb{C} \to \mathfrak{h}_{\overline{1}}$ is the complex linear continuation of $\Phi_*|_{\mathfrak{g}_{\overline{1}}}$. Then $(\phi^{\mathbb{C}}, \Phi^{\mathbb{C}}_*)$ is unique with the required properties.

Acknowledgments The author wishes to thank A. Huckleberry for his advice and discussions.

References

- F. A. Berezin, *Introduction to superanalysis*. Mathematical Physics and Applied Mathematics, 9, Reidel Publishing Co., Dordrecht, 1987
- [2] P. Deligne and J. W. Morgan, Notes on supersymmetry (following Joseph Bernstein). In: Quantum fields and strings: a course for mathematicians, vol.1, American Mathematical Society, Providence, RI, 1999, pp. 41–97.
- [3] G. Hochschild, *The structure of Lie groups*. Holden-Day, Inc., San Francisco-London-Amsterdam, 1965.
- [4] M. Kalus, Complex analytic aspects of Lie Supergroups. Dissertation, Ruhr- Universität Bochum, Bochum, Germany, 2011.

- [5] S. Kobayashi and K.Nomizu, Foundations of differential geometry. II. Wiley-Interscience, 1969.
- [6] B. Kostant, Graded manifolds, graded Lie theory, and prequantization. In: Differential geometrical methods in mathematical physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), Lecture Notes in Math,, 570, Springer, Berlin, 1977, pp. 177–306.
- [7] A. McHugh, A Newlander-Nirenberg theorem for supermanifolds. J. Math. Phys. 30(1989), no. 5, 1039-1042. http://dx.doi.org/10.1063/1.528373
- [8] A. Yu. Vaintrob, Almost complex structures on supermanifolds. In: Problems in group theory and homological algebra (Russian), Yaroslav. Gos. Univ., Yaroslavl, 1985, pp. 139-142, 166.
- [9] E. G. Vishnyakova, On complex Lie supergroups and split homogeneous supermanifolds. Transform. Groups 16(2011), no. 1, 265–285. http://dx.doi.org/10.1007/s00031-010-9114-5

Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany e-mail: matthias.kalus@rub.de

284