A NOTE ON THE ABSOLUTE NÖRLUND SUMMABILITY OF CONJUGATE FOURIER SERIES

G. D. DIKSHIT
(Received 24 January 1968; revised 2 September 1969)
Communicated by E. Strzelecki

Introduction

Let $\sum a_{n}$ be an infinite series, with sequence of partial sums $\left\{u_{n}\right\}$. Let $\left\{p_{n}\right\}$ be a sequence of constants, real or complex, and write

$$
P_{n}=p_{0}+p_{1}+\cdots+p_{n} .
$$

The sequence-to-sequence transformation

$$
t_{n}=\sum_{k=0}^{n} \frac{p_{n-k}}{P_{n}} u_{k}, \quad P_{n} \neq 0,
$$

defines the sequence $\left\{t_{n}\right\}$ of Nörlund means of the sequence $\left\{u_{n}\right\}$, generated by the sequence $\left\{p_{n}\right\}$. The series $\sum a_{n}$ is said to be summable (N, p_{n}) to sum s, if $\lim _{n \rightarrow \infty} t_{n}=s$. It is said to be absolutely summable (N, p_{n}), or summable $\left|N, p_{n}\right|$, if $\left\{t_{n}\right\} \in B V$.

Necessary and sufficient conditions in order that the method (N, p_{n}) be regular are

$$
p_{n}=o\left(\left|P_{n}\right|\right), \quad n \rightarrow \infty,
$$

and

$$
\sum_{k=0}^{n}\left|p_{k}\right|=O\left(\left|P_{n}\right|\right), \quad n \rightarrow \infty
$$

For absolute regularity of the method, necessary and sufficient conditions are $p_{n}=o\left(\left|P_{n}\right|\right)$ and

$$
\sum_{n=k}^{\infty}\left|\frac{P_{n-k}}{P_{n}}-\frac{P_{n+1-k}}{P_{n+1}}\right|<K,
$$

K being independent of $k, k=0,1,2, \cdots$ (cf. Mears [5] and Knopp and Lorentz [4]).

The object of this note is to establish a theorem on the summability $\left|N, p_{n}\right|$ of the conjugate series $\sum\left(b_{n} \cos n t-a_{n} \sin n t\right)$ of a Lebesgue integrable, 2π-periodic function $f(t)$. Before stating this theorem, we introduce the following notation:

$$
\begin{aligned}
\psi(t) & =\frac{1}{2}\{f(x+t)-f(x-t)\} \\
P_{n}^{*} & =\sum_{0}^{n}\left|p_{k}\right| \\
R_{n} & =\frac{(n+1) p_{n}}{P_{n}} \\
S_{n} & =\frac{1}{P_{n}} \sum_{0}^{n} \frac{P_{k}}{(k+1)} \\
\sigma_{n} & =\left|P_{n}\right| \sum_{n}^{\infty} \frac{1}{(k+1)\left|P_{k}\right|} \\
\Delta q_{n} & =q_{n}-q_{n+1} \\
T_{n} & =\frac{1}{\left|P_{n}\right|} \sum_{1}^{n} k\left|p_{k-1}-p_{k}\right| .
\end{aligned}
$$

We now state the main result of this paper.
Theorem. Let $\left\{p_{n}\right\}$ be a sequence of numbers such that $P_{n}^{*}=O\left(\left|P_{n}\right|\right),\left\{S_{n}\right\} \in B$ and $\left\{R_{n}\right\} \in B V$. If $\psi(t) \in B V(0, \pi)$ and $\int_{0}^{\pi}|\psi(t)| d t / t$ exists, then the conjugate Fourier series of $f(t)$ is summable $\left|N, p_{n}\right|$ at $t=x$.

For some of the existing results on the $\left|N, p_{n}\right|$ summability, the reader is referred to Bosanquet and Hyslop [1, Theorem 4], Pati [6] and [7, Theorem 2], and Wang [8, Theorem 2]. Results in [1] pertain to the $|C, \alpha|$ summability to which the $\left|N, p_{n}\right|$ method reduces in the case where $p_{n}=\binom{n+\alpha-1}{\alpha-1}, \alpha>0$. These results are all special cases of the theorem proved here.

Preliminary lemmas

Lemma 1. If $\left\{p_{n}\right\}$ defines a regular method of summation $\left(N, p_{n}\right)$ then $\left\{S_{n}\right\} \in B$ if and only if $\left\{\sigma_{n}\right\} \in B$.

This has been proved elsewhere [2, Lemma 1].
Lemma 2. If $\left\{p_{n}\right\}$ defines a regular method of summation $\left(N, p_{n}\right)$, and if $\left\{R_{n}\right\} \in B V$, then $\left\{S_{n}\right\} \in B$ is sufficient for $\left\{S_{n}\right\} \in B V$.

Proof. Noting that

$$
\begin{aligned}
S_{n+1} & =\frac{1}{P_{n+1}} \sum_{k=0}^{n+1} \frac{P_{k}}{k+1} \\
& =\frac{1}{(n+2)}+\frac{P_{n}}{P_{n+1}} S_{n}
\end{aligned}
$$

we see that

$$
\begin{aligned}
S_{n+1}-S_{n} & =\frac{1}{(n+2)}-\frac{p_{n+1}}{P_{n+1}} S_{n} \\
& =\frac{1}{(n+2) P_{n}}\left\{P_{n}-R_{n+1} \sum_{k=0}^{n} \frac{P_{k}}{k+1}\right\} \\
& =\frac{1}{(n+2) P_{n}} \sum_{k=0}^{n} \frac{(k+1) p_{k}-R_{n+1} P_{k}}{(k+1)} \\
& =\frac{1}{(n+2) P_{n}} \sum_{k=0}^{n}\left(\frac{P_{k} R_{k}-R_{n+1} P_{k}}{(k+1)}\right) \\
& =\frac{1}{(n+2) P_{n}} \sum_{k=0}^{n} \frac{P_{k}}{k+1} \sum_{v=k}^{n}\left(\Delta R_{v}\right) \\
& =\frac{1}{(n+2) P_{n}} \sum_{v=0}^{n}\left(\Delta R_{v}\right) \sum_{k=0}^{v} \frac{P_{k}}{k+1} \\
& =\frac{1}{(n+2) P_{n}} \sum_{k=0}^{n} S_{k} P_{k}\left(\Delta R_{k}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left|\Delta S_{n}\right| & \leqq \sum_{n=0}^{\infty} \frac{1}{(n+1)\left|P_{n}\right|} \sum_{k=0}^{n}\left|S_{k} P_{k}\left(\Delta R_{k}\right)\right| \\
& =\sum_{k=0}^{\infty}\left|\left(\Delta R_{k}\right) S_{k} P_{k}\right| \sum_{n=k}^{\infty} \frac{1}{(n+1)\left|P_{n}\right|} \\
& =\sum_{k=0}^{\infty}\left|\left(\Delta R_{k}\right)\right|\left|S_{k}\right|\left|\sigma_{k}\right| \\
& \leqq K, \quad \text { by Lemma } 1 .
\end{aligned}
$$

Lemma 3. [8, Theorem 2]. Let $\left\{p_{n}\right\}$ be any sequence of numbers such that $P_{n}^{*}=O\left(\left|P_{n}\right|\right),\left\{T_{n}\right\} \in B,\left\{R_{n}\right\} \in B V$ and $\left\{S_{n}\right\} \in B V$. If $\psi(t) \in B V(0, \pi)$ and

$$
\int_{0}^{\pi}|\psi(t)| \frac{d t}{t}
$$

exists, then the conjugate Fourier series of $f(t)$ is summable $\left|N, p_{n}\right|$ at $t=x$.
Lemma 4. If $P_{n}^{*}=O\left(\left|P_{n}\right|\right)$ and $\left\{R_{n}\right\} \in B V$, then $\left\{T_{n}\right\} \in B$.
Proof. We have

$$
\begin{aligned}
\Delta R_{k} & =\frac{(k+1) \Delta p_{k}}{P_{k}}+p_{k+1}\left(\frac{k+1}{P_{k}}-\frac{k+2}{P_{k+1}}\right) \\
& =\frac{(k+1) \Delta p_{k}}{P_{k}}+\frac{(k+2) p_{k+1}^{2}}{P_{k} P_{k+1}}-\frac{p_{k+1}}{P_{k}} \\
& =\frac{1}{P_{k}}\left\{(k+1) \Delta p_{k}+p_{k+1} R_{k+1}-p_{k+1}\right\} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
T_{n} & =\frac{1}{\left|P_{n}\right|} \sum_{k=0}^{n-1}(k+1)\left|\Delta p_{k}\right| \\
& \leqq \frac{1}{\left|P_{n}\right|} \sum_{k=0}^{n-1}\left|P_{k}\left(\Delta R_{k}\right)\right|+\frac{1}{\left|P_{n}\right|} \sum_{k=0}^{n-1}\left|\left(1-R_{k+1}\right) p_{k+1}\right| \\
& \leqq K \sum_{k=0}^{n-1}\left|\Delta R_{k}\right|+K \\
& \leqq K
\end{aligned}
$$

Proof of the theorem

$\left\{R_{n}\right\}=(n+1) p_{n} / P_{n} \in B V$ implies that $p_{n}=o\left(\left|P_{n}\right|\right)$, so that the sequence $\left\{p_{n}\right\}$ of the theorem satisfies the hypotheses of Lemma 2. We now use Lemmas 2, 3 and 4 to complete the proof.

Remarks

The method of proof used here furnishes an alternate proof for the theorem of [2].

One observes that in the light of Lemma 4, the condition $\left\{T_{n}\right\} \in B$ in Lemma 3 can be omitted. A similar remark applies to the condition

$$
n\left|p_{n}\right|<K\left|P_{n}\right|
$$

assumed in some of the results of Hille and Tamarkin [3] on Fourier effectiveness of regular (N, p_{n}) methods. This condition may be dropped since it is assumed that $\left\{T_{n}\right\} \in B$.

We have

$$
\left\{T_{n}\right\}=\left\{\frac{1}{P_{n}} \sum_{k=1}^{n} k\left|p_{k-1}-p_{k}\right|\right\} \in B
$$

and this implies that

$$
\left\{Z_{n}\right\}=\left\{\frac{1}{P_{n}} \sum_{k=1}^{n} k\left(p_{k-1}-p_{k}\right)\right\} \in B
$$

Furthermore

$$
Z_{n}=\frac{P_{n-1}}{P_{n}}-\frac{n p_{n}}{P_{n}}
$$

and therefore, fcr a regular method of summation $\left(N, p_{n}\right),\left\{Z_{n}\right\} \in B$ if and only if $n\left|p_{n}\right|<K\left|P_{n}\right|$ holds.

References

[1] L. S. Bosanquet and J. M. Hyslop, 'On the absolute summability of the allied series of a Fourier series', Math. Zeitschr. 42 (1937), 489-512.
[2] G. D. Dikshit, 'On the absolute Nörlund summability of a Fourier series', Indian Journ. Math. 9 (1967), 331-342.
[3] E. Hille and J. D. Tamarkin, 'On the summability of Fourier series', Trans American Math. Soc. 34 (1932), 757-784.
[4] K. Knopp and G. G. Lorentz, 'Beiträge zur absolute Limitierung', Arch. der Math. 2 (1949), 10-16.
[5] F. M. Mears, 'Absolute regularity and Nörlund means', Annals of Math. 38 (1937), 594-601.
[6] T. Pati, 'On the absolute Nörlund summability of the conjugate series of a Fourier series', Journ. London Math. Soc. 38 (1963), 204-214.
[7] T. Pati, 'On the absolute summability of a Fourier series by Nörlund means', Math. Zeitschr. 88 (1965), 244-249.
[8] Si-lei Wang, 'On the absolute Nörlund summability of a Fourier series and its conjugate series', Chinese Math. Acta, 7 (1965), 281 -295; (English translation of the original paper published in Acta Mathematica Sinica 15 (1965), 559-573).

University of Biafra, Nsukka
University of Auckland, Auckland, New Zeàland

