A NOTE ON THE ABSOLUTE NÖRLUND SUMMABILITY
OF CONJUGATE FOURIER SERIES

G. D. DIKSHIT

(Received 24 January 1968; revised 2 September 1969)
Communicated by E. Strzelecki

Introduction

Let \(\sum a_n \) be an infinite series, with sequence of partial sums \(\{u_n\} \). Let \(\{p_n\} \) be a sequence of constants, real or complex, and write

\[P_n = p_0 + p_1 + \cdots + p_n. \]

The sequence-to-sequence transformation

\[t_n = \sum_{k=0}^{n} \frac{p_{n-k}}{P_n} u_k, \quad P_n \neq 0, \]

defines the sequence \(\{t_n\} \) of Nörlund means of the sequence \(\{u_n\} \), generated by the sequence \(\{p_n\} \). The series \(\sum a_n \) is said to be summable \((N, p_n)\) to sum \(s \), if

\[\lim_{n \to \infty} t_n = s. \]

It is said to be absolutely summable \((N, p_n)\), or summable \(|N, p_n|\), if \(\{t_n\} \in BV \).

Necessary and sufficient conditions in order that the method \((N, p_n)\) be regular are

\[p_n = o(|P_n|), \quad n \to \infty, \]

and

\[\sum_{k=0}^{n} |p_k| = O(|P_n|), \quad n \to \infty. \]

For absolute regularity of the method, necessary and sufficient conditions are \(p_n = o(|P_n|) \) and

\[\sum_{n=k}^{\infty} \left| \frac{P_{n-k}}{P_n} - \frac{P_{n+1-k}}{P_{n+1}} \right| < K, \]

\(K \) being independent of \(k, k = 0, 1, 2, \cdots \) (cf. Mears [5] and Knopp and Lorentz [4]).

The object of this note is to establish a theorem on the summability \(|N, p_n|\) of the conjugate series \(\sum (b_n \cos nt - a_n \sin nt) \) of a Lebesgue integrable, \(2\pi \)-periodic function \(f(t) \). Before stating this theorem, we introduce the following notation:
We now state the main result of this paper.

Theorem. Let \(\{p_n\} \) be a sequence of numbers such that \(P_n^* = O(|p_n|) \), \(\{S_n\} \in B \) and \(\{R_n\} \in BV \). If \(\psi(t) \in BV(0, \pi) \) and \(\int_0^\pi |\psi(t)| \, dt/t \) exists, then the conjugate Fourier series of \(f(t) \) is summable \(N, p_n \) at \(t = x \).

For some of the existing results on the \(N, p_n \) summability, the reader is referred to Bosanquet and Hyslop [1, Theorem 4], Pati [6] and [7, Theorem 2], and Wang [8, Theorem 2]. Results in [1] pertain to the \(C, \alpha \) summability to which the \(N, p_n \) method reduces in the case where \(p_n = \left(\frac{n+\alpha-1}{\alpha-1} \right) \), \(\alpha > 0 \). These results are all special cases of the theorem proved here.

Preliminary lemmas

Lemma 1. If \(\{p_n\} \) defines a regular method of summation \((N, p_n) \) then \(\{S_n\} \in B \) if and only if \(\{\sigma_n\} \in B \).

This has been proved elsewhere [2, Lemma 1].

Lemma 2. If \(\{p_n\} \) defines a regular method of summation \((N, p_n) \), and if \(\{R_n\} \in BV \), then \(\{S_n\} \in B \) is sufficient for \(\{S_n\} \in BV \).

Proof. Noting that

\[
S_{n+1} = \frac{1}{P_{n+1}} \sum_{k=0}^{n+1} \frac{P_k}{k+1} \]

\[
= \frac{1}{n+2} + \frac{P_n}{P_{n+1}} S_n,
\]

we see that...
\[S_{n+1} - S_n = \frac{1}{(n+2)} - \frac{p_{n+1}}{P_{n+1}} S_n \]

\[= \frac{1}{(n+2)P_n} \left(P_n - R_{n+1} \sum_{k=0}^{n} \frac{P_k}{k+1} \right) \]

\[= \frac{1}{(n+2)P_n} \sum_{k=0}^{n} \frac{(k+1)p_k - R_{n+1} P_k}{(k+1)} \]

\[= \frac{1}{(n+2)P_n} \sum_{k=0}^{n} \frac{P_k R_k - R_{n+1} P_k}{(k+1)} \]

\[= \frac{1}{(n+2)P_n} \sum_{k=0}^{n} \frac{P_k}{k+1} \sum_{v=k}^{n} (\Delta R_v) \]

\[= \frac{1}{(n+2)P_n} \sum_{k=0}^{n} S_k P_k(\Delta R_k) . \]

Hence

\[\sum_{n=0}^{\infty} |\Delta S_n| \leq \sum_{n=0}^{\infty} \frac{1}{(n+1)|P_n|} \sum_{k=0}^{n} |S_k P_k(\Delta R_k)| \]

\[= \sum_{k=0}^{\infty} |(\Delta R_k)S_k P_k| \sum_{n=k}^{\infty} \frac{1}{(n+1)|P_n|} \]

\[= \sum_{k=0}^{\infty} |(\Delta R_k)| |S_k| |\sigma_k| \]

\[\leq K, \quad \text{by Lemma 1.} \]

Lemma 3. [8, Theorem 2]. Let \(\{p_n\} \) be any sequence of numbers such that

\[P_n^* = O(|P_n|), \{T_n\} \in B, \{R_n\} \in BV \text{ and } \{S_n\} \in BV. \]

If \(\psi(t) \in BV(0, \pi) \) and

\[\int_0^{\pi} |\psi(t)| \frac{dt}{t} \]

exists, then the conjugate Fourier series of \(f(t) \) is summable \(|N, p_n| \) at \(t = \pi \).

Lemma 4. If \(P_n^* = O(|P_n|) \) and \(\{R_n\} \in BV \), then \(\{T_n\} \in B. \)

Proof. We have

\[\Delta R_k = \frac{(k+1)\Delta p_k}{P_k} + \frac{(k+1)\Delta p_{k+1}}{P_{k+1}} \]

\[= \frac{(k+1)\Delta p_k}{P_k} + \frac{(k+2)p_k^2}{P_k P_{k+1}} - \frac{p_{k+1}}{P_k} \]

\[= \frac{1}{P_k} \{(k+1)\Delta p_k + p_{k+1} R_{k+1} - p_{k+1}\}. \]
Hence

\[
T_n = \frac{1}{|P_n|} \sum_{k=0}^{n-1} (k+1)|\Delta p_k|
\]

\[
\leq \frac{1}{|P_n|} \sum_{k=0}^{n-1} |P_k(\Delta R_k)| + \frac{1}{|P_n|} \sum_{k=0}^{n-1} |(1-R_{k+1})p_{k+1}|
\]

\[
\leq K \sum_{k=0}^{n-1} |\Delta R_k| + K
\]

Proof of the theorem

\(\{R_n\} = (n+1)p_n/P_n \in BV \) implies that \(p_n = o(|P_n|) \), so that the sequence \(\{p_n\} \) of the theorem satisfies the hypotheses of Lemma 2. We now use Lemmas 2, 3 and 4 to complete the proof.

Remarks

The method of proof used here furnishes an alternate proof for the theorem of [2].

One observes that in the light of Lemma 4, the condition \(\{T_n\} \in B \) in Lemma 3 can be omitted. A similar remark applies to the condition

\[n|p_n| < K|P_n| \]

assumed in some of the results of Hille and Tamarkin [3] on Fourier effectiveness of regular \((N, p_n)\) methods. This condition may be dropped since it is assumed that \(\{T_n\} \in B \).

We have

\[\{T_n\} = \left\{ \frac{1}{P_n} \sum_{k=1}^{n} k|p_{k-1} - p_k| \right\} \in B \]

and this implies that

\[\{Z_n\} = \left\{ \frac{1}{P_n} \sum_{k=1}^{n} k(p_{k-1} - p_k) \right\} \in B. \]

Furthermore

\[Z_n = \frac{P_{n-1} - np_n}{P_n} \]

and therefore, for a regular method of summation \((N, p_n)\), \(\{Z_n\} \in B \) if and only if \(n|p_n| < K|P_n| \) holds.
References

University of Biafra, Nsukka
University of Auckland, Auckland, New Zealand