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GENUS THEORY FOR FUNCTION FIELDS
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Abstract

We study the genus theory for function fields which is the analogue of the classical genus theory developed
by Hasse and Frohlich.

1991 Mathematics subject classification (Amer. Math. Soc): 11R58, 11R29.

0. Introduction

One of the important problems in number theory is to investigate ideal class groups.
In 1951, Hasse introduced genus theory of quadratic number fields [3]. Later, Frohlich
generalized the theory to arbitrary number fields [2].

In the theory of funtion fields, Clement started the study of genus theory of function
fields in the case of the cyclic extension of F?(T) of prime degree I dividing q — 1 [1].
In this note we try to generalize the results in [1] following the methods of Frohlich
[2]. To do this we have defined the Hilbert class field and narrow Hilbert class field of
a function field. Our definitions are somewhat different from those of [1]. Clement's
definition allow a constant field extension inside the Hilbert class field, but ours does
not. However they are essentially the same.

1. Notation and definitions

Let K be a global function field over a finite field F? with a fixed place oo of degree
d. Let £(oo) be the residue field at oo. Fix a sign function (see [5] for definitions)

sgn : K^ -* fc(oo)
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where AT̂  is the completion of K at oo and a n uniformizer at oo with sgn(7r) = 1.
In applications Kx replaces K, so we need an analog of the field of complex numbers
C. Define C = K^ ((—n)lKqd~X)). In the following we mean by an extension of K, a
separable extension of K for which any of its embeddings into K£ lies in C viewing
as a subfield of K£.

Let L be a finite Galois extension of K and 5 be the set of places of L lying
above oo. Denote by 6K (respectively @L) the set of elements of K (respectively L)
which are regular outside oo (respectively S); these form the ring of integers in K
(respectively L). For each v e S, the completion Lv of L at v is a finite extension of
Kx in C. Let Nv be the norm map from Lv to ^oo.

Define a sign map

sgn,, : L* —• *(t>)

by sgnl,(x) = sgn(Nv(jt)). We say that L is totally real if Lv = Kx for every v 6 5
and totally complex if Lv = C for every v e 5 .

REMARK 1.1. The reason for taking — n in the definition of C is to make the sign
of (-Tr)1^'"" equal to 1.

Define the Hilbert class field of L relative to 5 to be the maximal unramified abelian
extension of L where 5 splits completely. Similarly we define the narrow Hilbert
class field H£ to be the maximal abelian extension of L in C, unramified outside 5.
We call a place in S the infinite place.

Let J(L) be the idele group of L and

U{L) = {(xw) e J{L) : xw is a unit in Lw, w £ S),

U+(L) = {(xj eU(L): sgn^*,,) = 1 Vw e 5}.

Then by class field theory, HL corresponds to L* • U(L) and H£ to L* • U+(L).
An element x e L is called fota//v positive if sgn^x) = 1 for every v e S.

The ideal class group Cl(GL) is defined to be the group of fractional ideals modulo
principal ideals in 6L, and the narrow ideal class group Cl+(GL) is defined to be
the group of fractional ideals modulo principal ideals generated by totally positive
elements. Then one can readily see that

We define the genus field G(L/K) to be the maximal extension of L in HL which is
the composite of L and some abelian extension of K and, where necessary, abbreviate
the notation by setting G = G{L/K). Similarly, we can define the narrow genus
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field G+{L/K) replacing HL by H£- The genus group 6(L/K) is defined to be
J(L)/NG/L(J(G)) • L* = Gal(G/L). The principal genus ̂ >{L/K) is defined to be
the kernel of the Artin map

Cl(0L) -* <5(L/K).

The narrow genus group <E>+(L/K) and narrow principal genusTfi+(L / K) are defined
similarly.

EXAMPLE 1.2. (Compare with [1]) Let l\{q-\) be a prime number. Let A" = F,(r)
and L = K{4/T(T)) where P{T) is a polynomial in ¥9[T]. Write P(T) =
aPx{T) • • • PS{T) for the factorization of P{T) with Pt(T) monic irreducible polyno-
mial in ¥q[T] and a e F*. We fix sgn(l/7) = 1. The condition for L to be contained
in C is

(-a) € (F*)' if ^ t deg />(r) and I is even,

a € (F*)€ otherwise.

Then it can be easily seen that the class field Hi+) of [1] is just the field F,< • H^.
Thus the narrow genus field G+(L/K) is K(^/aiPx(T),...,^asPs{T)) with some
appropriate a, 's in F* ([1, Theorem 2.1]).

2. Basic properties

Let CL denote the idele class group of L and CL its Pontryagin dual. Then the norm
map

NL/K :L-^K

induces conorm

NL/K : C(K) —> C(L).

Let <&(L/K) — KerNL/K. As in the number field case, taking [1, Lemma 2.2] into
account, it is easy to see that

(*) 6+a / t f ) = J{L)/U+{L) • N7JAK*).

<E>(L/K) = J(L)/U(L)

Hence

${L/K) = [(/> e Im ///./«• : </> is unramified and <j)v is trivial for v e 5},
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and

<&+(L/K) = {(p € lmNL/K : <p is unramified outside 5 and (pv(x) = 1

for u e S,sgnv(x) = 1}.

Consider the group

$*{L/K) = {<t> e C(K) : NL/K(j) is unramified and trivial on S}.

Then we get an exact sequence

1 -> <&(L/K) -+ <i>*(L/K) -* <&{L/K) -> 1.

Similarly we define

<$>*+(L/K) = {</>€ C(K) : NL/K4> is unramified on finite places and trivial on U+(L)}

and get an exact sequence

PROPOSITION 2.1. (a) <t>\L/K) = <i>(G(L/K)/K),<S>*+(L/K) = <i>(G+(L/K)/K).
(b) <$>*{L/K) {respectively <&*+{L/K)) is the subgroup ofC(K) of characters (p
with the following property: For each finite place v of K,<pv = <p^(pl2) where <p{

v
V) is

unramified and 4>f} e &(LW/Kv)for w lying above v, and

</>oo € ^(Lw/Koo) (respectively (podx) — 1 when sgn(x) = 1)

for any w e S.

PROOF, (a) follows from the definitions and (*). Exactly the same method as in [2]
would give (b). However the extra condition for ^ comes from the fact that ^oo is
nonarchimedean in contrast with the number field case.

COROLLARY 2.2. Suppose that Cl(&K) = 1. Let m be the exponent ofGal(L/K).
Then(5(L/K)m = 1.

PROPOSITION 2.3. G(L/K) is the maximal subfield ofG+(L/K) whose ramifica-
tion index at oo is the same as the ramification index of L at oo. In particular, if L
is totally complex, then G(L/K) = G+(L/K). The same is true ifCl(&K) = 1 and
[L : K] is prime to q — 1.
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PROOF. The first two statements follow immediately from the definitions. Since
Cl(0K) = 1, degree of oo is 1 and so Cl+(0K) = 1. Then U(L)q-x c U(L)+ c
£/(L),so

<6+(L/K)9-1 C <&{L/K) C ®+(L/K).

But by the above corollary, <&+(L/K)m c <5(L/K) for some integer m prime to q — 1.
Hence <&+(L/K) = <5{L/K).

PROPOSITION 2.4. Let L/K be cyclic with Gal(L/K) generated by an element a.
Then

(a) 10(L/K) = Cl(&L)[-°,thatis,<5(L/K) = Cl(0L)/Cl{0Ly-a. {Compare with
[1, Proposition 3.4].)
//, moreover, [L : K] is a power of a prime £ and Ae denotes the l-Sylow subgroup of
a group A, then
(b) <&(L/K)e = 1 if and only ifCl(0L)t = 1.
//, in addition, [L : K] = i and Cl{ffK) = 1, then
(c) dim\ft((5(L/K)e) = minimal number of generators ofCl(AL)t over 2[&].

PROOF. Exactly the same as the number field case.

REMARK 2.5. The referee noted that one can generalize part (a) of the above pro-
position to abelian extension L/K as follows:

Let L/K be an abelian extension with Galois group A. Let IA be the augmentation
ideal of Z[A]. Then^>(L/K) = IACl(&L).

This follows by looking at the Galois group E over K of the Hilbert class field H
of L and realizing that the genus field is the fixed field of the commutator subgroup
of £ . Then use the identification of Cl(6L) with Gal(///L).

3. Rational base field

In this section we assume that K — IF,(7) and oo is the place associated to (l/T).
Choose n to be — l/T and a sign function sgn so that sgn(—l/T) — 1. In this case,
C will be F, (((l/T)1^-")). Let tf+ = {x e K^ : sgn(x) = 1}. Then it is easy to
see that

J(K) = U,n(K) xK*x * + .

Let Kab be the maximal abelian extension of K inside C. Then by class field theory
(see [4]),

S Gal(£a b//O.
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Let P be the projection of J(K) onto Ufa(K). If M is a finite extension of K inside
£ab, write

V{M/K) = Im(Gal(£ab/M) _ • £/fin(/O).

Let a be a generator of F*. Then we get the following proposition.

PROPOSITION 3.1. Let L/K be a Galois extension. Then

(a) P(NL/K(J(L)) • K*) = V(L'/K) where L' is the maximal abelian extension of
K in L,
(b) P(NL/K(U(L)+)-K*) = NL/K(Ufin(L)) and if the ramification index at oo is m,
(c) P(NL/K(U(L)) • K*) = NL/K(Ufin(L)){am)fin where (am) denotes the subgroup
of F* generated by am.

P gives rise to isomorphisms

<£>+(L/K) = V{L'/K)/NL/K{Ufin(L))-

<5{L/K) = V(L'K)/NL/K(Ufin(L)) • (am)fin.

PROOF. The proofs of (a) and (b) are the same as those of number field case. We
only prove (c). Since the ramification index at oo is m, the infinite component of
NL/K(U(L)) is <am)oo£C where U™ = {u e Ux : sgn(«) = 1} and (ctm) is the
subgroup of F* generated by am. But

(am)0O = am • (a-mhn e URn(K) x K*.

The rest is the same as in the classical case [2].

COROLLARY 3.2. The fallowings are equivalent,

(a) <£>+{L/K) = <b{L/K).
(b) The ramifications at oo of L and G+ are equal.
(c) am € NL/K(J(L)) where m is the ramification index of L at oo.

Now let S be a finite set of finite places of K including the ramified ones in L. Put

, Us = Yl U(KV).
veS vfS

Then £/fin(/O = Us x Us and Us C NL/K(U(L)+). Let Ps be the composition of P
and the projection

t/fin —> US.

Denote by V(L'/K)S the image of V(L'/K) under this projection. Then we have
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COROLLARY 3.3. Ps gives rise to isomorphisms

<5+{L/K) =

and ifm is the ramification index of L at oo,

<&(L/K) =

REMARK 3.4. The element a plays the role of —1 of Q, which is the generator of

the unit group.

Let L/K be abelian. Let C°(K) he the subgroup of C(K) consisting of the cp that
are trivial on K^ • K*. Let cpv denote its u-component. We may identify C°(K) with
Ufin(K). Given <p € Ufin(K), <t>w is the unique character of Uf\n(K) so that

where Uv is the group of units in Kv. For a finite subgroup <S> of C°(K), define

<*>(.) = {0<u) : <t> € ^J-

THEOREM 3.5. L^? L be an abelian extension of K. Then

<S>*+(L/K) =

If the ramification index of L at oo is m, then Q>*(L/K) is the subgroup of<t>*+(L/K)

of characters <j> with (j)(a%n) = 1.

PROOF. The first part of the theorem follows from exactly the same arguments as in
the number field case. Let m be the ramification index of L at oo and 4> € <&*+(L/K).
Then by Proposition 2.1, <p 6 <t>*(L/K) if and only if 0 ^ € ^(Loo/Koo). This is so
if and only if </>oo(*) = 1 for every x with sgn(x) e (am). Again this condition is
equivalent to

Since (j> is trivial on L*, we get the result.

COROLLARY 3.6. IfL/K isabelian, then$+(L/K) = \\Vikx $(L/K)W/Q(L/K).

REMARK 3.7. It follows easily from the definition that #<P(L/K) = [L : K] and
that #<t>(L/K)(v) is the ramification index of L/K at v.
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EXAMPLE 3.8. Let L = K(Am(T}) be the m(7)-th cyclotomic function field where
m is a monic polynomial in A = fq[T]. Then by Corollary 3.6 the genus number gK

is given by
Y\ epiT)(L/K)/[L : K],

p(T)\m(T)
monic irreducible

where ep(T)(L/K) is the ramification index of L/K at the place (p(T)). However the
pioduct equals 1 by the elementary theory of Carlitz modules. So L = G+{L/K).

THEOREM 3.9. Let L/K be abelian and S be the set of finite places which are

ramified in L.

(a) Then the fallowings are equivalent

(i) L = G+{L/K);

(iii) Gal(L/K) = ® U € S I \ o , where Tvfi is the inertia group at v;
(iv) L is the composite of fields with prime power discriminant.

(b) L = G(L/K) only in the following cases.

(i) L = G+(L/K);
(ii) L is the maximal subfield, with ramification index m at oo, of an abelian

extension M of K such that M = G+(M/K) and M/L is unramified at all finite
places.

PROOF. The equivalence of (iii) and (iv) can be derived easily from the theory of
Carlitz modules. The rest is exactly the same as in the number field case.

THEOREM 3.10. Let L/K be a cyclic extension of degree £", I a prime. Let v, be
the finite places, ramified in L, of ramification degree £"', nx > n2 > • • • > n, > 1.
Then <&+(L/K) is abelian of type {in\ ..., £"•)•

PROOF. Since L c C, L must be totally ramified, and the rest of the argument is
the same as in the number field case.

COROLLARY 3.11. Cl+(AL)t = 1 if and only if t = 1.

COROLLARY 3.12. ln*+-+n-\h+{L).

Now let t be a prime number dividing q — 1.

THEOREM 3.13. Let L/K be a cyclic extension of degree I". Let t be the rami-
fication index of L at oo and s be such that £r+s\q — 1. If h{L) is prime to t, then
either
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(a) precisely one finite place is ramified in L, or
(b) 5 > 1 and precisely two finite places V\ and v2 are ramified in L of ramification
degrees I" and V where 1 < t < min(s, n). Furthermore 0((ar)u2) ^ 1 where <p is a
generator of<t>(L/K).

PROOF. It follows from Proposition 2.4 that h{€L) is prime to I if and only if £ does
not divide [G(L/K) : L]. But this is equivalent to L = G(L/K) by Theorem 3.10.

Suppose that at least two finite places are ramified in L. Then G+(L/K) ^ L,
so G(LjK) = L implies that G+(L/K) is cyclic of order I' over L and totally
ramified at oo by Theorem 3.9. Hence / must satisfy the given condition and only
two finite places can ramify in L. Because G+(L/K) ^ G(L/K), we must have
a1' i NL/K(J(L)) by Corollary 3.2. If <P((ae')V2) ^ 1, then the last condition
holds. Assume that 4>((ue)n) = 1. Since lr is the ramification index of L at oo,
0((ar)oo) = 1- Moreover <p((ae')v) = 1 for v ^ vu v2. Hence cp((«*')„,) = 1 by the
product formula and so a1' e NL/K(J(L)). Therefore we get the result.

COROLLARY 3.14. Let LI K be a cyclic extension of degree £. Thenh(0L) is prime
to t if and only if one of the following conditions holds.

(a) precisely one finite place is ramified in L
(b) L is totally real, precisely two finite places vx and v2 are ramified in L and the
degree ofv2 is prime to I.

PROOF. Suppose that h{&L) is prime to I and exactly two finite places v{ and v2 are
ramified in L. Then G+(L/K) ^ G(L/K). Suppose that L is ramified at oo. Then
4>{(al)Vl) =£ 1 by Theorem 3.13. HoweverfL : K] = 1 implies that a1 e NL/K(J(L)),
which is a contradiction. Therefore L must be totally real and (j)((a)V2) / 1. This last
condition is equivalent to the one that the degree of v2 is prime to I.

Conversely, assume (b). Suppose h{GL) is not prime to I. Then G(L/K) j^ L.
Therefore G(L/K) = G+(L/K) because [G+(L/K) : L] = I a prime number.
Since L is totally real, a e NL/K(J(L)) by Corollary 3.2. This in turn implies that
cj>((a)V2) = 1, a contradiction.

REMARK 3.15. Unlike in the classical case, the converse of Theorem 3.13 does not
hold, because the ramification type at oo is not unique. One can prove the above
corollary using Example 1.2 in an explicit way, once we have Proposition 2.4.

COROLLARY 3.16. Let L, not necessarily a subfield of C, be a cyclic extension of
degree I of K with class number prime to £. Then L is one of the following, with

(i) L = K{J/ap{T)m), p(T) any irreducible monicpolynomial;
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(ii) L = K(*f/api(T)m'p2(T)m2), p\(T) and p2(T) are monic irreducible poly-
nomials with I | m\ deg px + m2 deg p2 and £ \ deg p2;

(iii) L = ¥ql(T).

PROOF. The condition that L is totally real is equivalent to the condition £ \
m i deg px + m2 deg p2 with some appropriate a' in the case that L is contained in
C. If we vary the sign function, then we can relax the condition on a so that L is either
ramified or splits completely at oo. Suppose that L is inert at oo, and L ^ frqt(T).
Then one can use [6, Lemma 4.1] to show that t \ h(£?L). Hence we have the result.
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