
Mathematical Structures in Computer Science (2022), 32, pp. 1028–1065
doi:10.1017/S0960129522000263

PAPER

Semantic analysis of normalisation by evaluation for
typed lambda calculus∗

Marcelo Fiore†

Department of Computer Science and Technology, University of Cambridge, Cambridge CB3 0FD, UK
Email: marcelo.fiore@cl.cam.ac.uk

(Received 18 August 2022; accepted 19 August 2022; first published online 22 November 2022)

Abstract
This paper studies normalisation by evaluation for typed lambda calculus from a categorical and algebraic
viewpoint. The first part of the paper analyses the lambda definability result of Jung and Tiuryn via Kripke
logical relations and shows how it can be adapted to unify definability and normalisation, yielding an
extensional normalisation result. In the second part of the paper, the analysis is refined further by consid-
ering intensional Kripke relations (in the form of Artin–Wraith glueing) and shown to provide a function
for normalising terms, casting normalisation by evaluation in the context of categorical glueing. The
technical development includes an algebraic treatment of the syntax and semantics of the typed lambda
calculus that allows the definition of the normalisation function to be given within a simply typedmetathe-
ory. A normalisation-by-evaluation program in a dependently typed functional programming language is
synthesised.

Keywords: Typed lambda calculus; normalisation by evaluation; lambda definability; Kripke logical relations; Artin-Wraith
glueing; algebraic type theory

1. Introduction
Normalisation by evaluation for typed lambda calculus was first considered by Berger and
Schwichtenberg (1991) from a type and proof theoretic viewpoint, and later investigated from the
point of view of logic (Berger, 1993), type theory (Coquand, 1994), category theory (Altenkirch
et al., 1995; C̆ubrić et al., 1997; Reynolds, 1998) and partial evaluation (Danvy, 1998; Filinski,
1999). This work gives a new categorical and algebraic perspective on the topic.
Outline. Normalisation by evaluation will be broadly viewed as the technique of giving seman-
tics in (metalanguages for) non-standard models from which normalisation information can be
extracted (cf. Martin-Lof 1975). In this light, we will investigate the following problems.

I. Extensional normalisation problem: To define normal terms and establish that every term
βη-equals one in normal form.
That is, writing Lτ (�) for the set of terms of type τ in context �, to identify a set of normal
terms Nτ (�)⊆ Lτ (�) and show that for every term t ∈ Lτ (�), there exists a normal term
N ∈ Nτ (�) such that t = βηN.

∗ This is a slight revision, with an implementation, of the full version, with proofs, of February 2003 for the extended
abstract (Fiore, 2002) published in October 2002.
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II. Intensional normalisation problem: To define, and prove the correctness of, a normalisation
function associating normal forms to terms.
More precisely, to construct functions

nfτ ,� : Lτ (�) ��Nτ (�)

satisfying the following three properties.
(1) For all normal terms N ∈ Nτ (�), the syntactic equality nfτ ,�(N) =N holds.
(2) For all terms t ∈ Lτ (�), the semantic equality nfτ ,�(t)= βηt holds.
(3) For all pair of terms t, t′ ∈ Lτ (�), if t = βηt′ then nfτ ,�(t)= nfτ ,�(t′).

In the context of normalisation by evaluation, the correctness condition (1) has seldom
been considered – the exception being (Reynolds, 1998). However, it is both natural and
interesting. For instance, together with the correctness condition (3) it implies that βη-
equal normal terms are syntactically equal, which in turn, together with the correctness
condition (2), entails the stronger version of extensional normalisation that every term
βη-equals a unique normal term.

These problems will be, respectively, dealt with in Parts I and II of the paper. Part I provides
a unifying view of definability and normalisation leading to an extensional normalisation result.
This analysis, besides unifying the two hitherto unrelated problems of definability and normali-
sation, motivates and elucidates the notions of neutral and normal terms, which are here distilled
from semantic considerations. Part II shows that an intensional view of Part I amounts to the
traditional technique of normalisation by evaluation. This development leads to a treatment of
normalisation by evaluation via the Artin–Wraith glueing construction, finally formalising the
observation that normalisation by evaluation is closely related to categorical glueing (Coquand
and Dybjer, 1997).

More in detail, the paper is organised as follows. Section 2.1 briefly recalls the syntax and cat-
egorical semantics of the typed lambda calculus. Section 2.2 presents an analysis of the lambda
definability result of Jung and Tiuryn via Kripke logical relations (Jung and Tiuryn, 1993) leading
to an extensional normalisation result. Section 3.1 describes the rudiments of a theory of typed
abstract syntax with variable binding which is used to put the typed lambda calculus in an alge-
braic framework. This algebraic view is exploited in Section 3.2 to structure the development of
an intensional version of Section 2.2 culminating in the technique of normalisation by evaluation.

Related work. The treatment of extensional normalisation presented here is similar to Tait’s
approach to strong normalisation via computability predicates (Girard, 1972; Tait, 1967) for the
typed lambda calculus and also to Krivine’s approach to normalisation (Krivine, 1993, Chapter III)
for the untyped lambda calculus. The precise relationships need to be investigated.

The analysis of normalisation by evaluation pursued here is categorical and, as such, is related
to Altenkirch et al. (2001); Altenkirch et al. (1995), C̆ubrić et al. (1997), Reynolds (1998).

The approach of C̆ubrić et al. (1997) is in the context of so-called P-category theory; which
is, roughly, a version of category theory equipped with an intensional notion of equality for-
malised by partial equivalence relations. The intensional information needed for the purpose of
normalisation will be captured here in the context of traditional category theory via Artin–Wraith
glueing.

In Altenkirch et al. (1995), normalisation by evaluation is reconstructed categorically in a
model obtained via an ad hoc twisted-glueing construction. This model embodies objects with
both syntactic and semantic components and translations between them essentially encoding a
correctness predicate. In contrast, we adopt a purely semantic view, working with intensional
logical relations in models given by the traditional categorical-glueing construction (Wraith,
1974).
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Figure 1. Well-typed terms.

Another important point of departure between this work and the other categorical ones is
the algebraic treatment of the subject, which led to a deeper understanding of the normalisation
function.

2. Part I
2.1 Typed lambda calculus
For the purpose of establishing notation, we briefly recall the syntax and semantics of the typed
lambda calculus. For details see, e.g., Lambek and Scott (1986), Crole (1994), Taylor (1999).

Syntax. The types of the simply-typed lambda calculus are given by the grammar

τ ::= θ | 1 | τ1 ∗ τ2 | τ1=>τ2 (1)

where θ ranges over base types. We write T̃ for the set of simple types generated by a set of base
types T.

The grammar for the terms is

t ::= x | 〈〉 | π1(t) | π2(t) | 〈t1, t2〉 | t(t′) | λ x : τ . t
where x ranges over (a countably infinite set of) variables. The notion of free and bound variables
are standard. As usual, we will identify terms up to the renaming of bound variables.

Typing contexts, with types in a set T , are defined as functions V �� T where the domain
of the context, V , is a finite subset of the set of variables. Under this view, for a variable x, a
type τ , and a context�, we let (x : τ ) ∈ � stand for x ∈ dom(�) and�(x)= τ . For distinct variables
xi (i= 1, n), we use the notation 〈xi : τi〉i=1,n for the context { x1, . . . , xn } �� T mapping xi to τi.
For a context �, a variable x, and a type τ , the notation �, x : τ presupposes x �∈ dom(�) and
denotes the context dom(�)∪ { x } �� T mapping every y ∈ dom(�) to �(y), and x to τ .

The well-typed terms � 
 t : τ in context (where � is a typing context, t is a term and τ is a
type) are given by the usual rules; see Figure 1.

Semantics. The appropriate mathematical universes for giving semantics to the typed lambda cal-
culus are cartesian closed categories (Crole, 1994; Lambek and Scott, 1986; Taylor, 1999); i.e., cat-
egories with terminal object, binary products and exponentials (for which we, respectively, use the
notation 1, ×, and ��).

For an interpretation s : T �� S of base types in a cartesian closed category, we let s[[ ]] :
T̃ �� S be the extension to simple types as prescribed by a chosen cartesian closed structure. That
is, s[[θ]]= s(θ) (for θ ∈ T), s[[1]]= 1, and s[[τ ∗ τ ′]]= s[[τ ]]× s[[τ ′]] and s[[τ=>τ ′]]= s[[τ ]] �� s[[τ ′]]
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(for τ , τ ′ ∈ T̃). As usual, the interpretation of types is extended to contexts by setting s[[�]]=∏
x∈dom(�) s[[�(x)]] for all contexts �. Finally, the semantics of a term � 
 t : τ as a morphism

s[[�]] �� s[[τ ]] in S is denoted s[[� 
 t : τ ]].

2.2 From definability to normalisation
Kripke relations were introduced by Jung and Tiuryn in (1993) for the purpose of character-
ising lambda definability. We will analyse this result and provide a corresponding extensional
normalisation result.

Kripke relations. For a functor σ :C �� S , a C-Kripke relation R of arity σ over an object A of
S is a family { R(c)⊆ S(σ (c),A) }c∈|C| satisfying the following condition.

(Monotonicity) For every ρ : c′ �� c inC and every a : σ (c) ��A in R(c), themap a ◦ σ (ρ) :
σ (c′) ��A is in R(c′).

In other words, a C-Kripke relation R of arity σ over an object A is a unary predicate
R � � �� S(σ ( ),A) over the C

op-variable set of A-valued morphisms S(σ ( ),A) :Cop �� Set in
the functor category SetCop of Cop-variable sets, referred to as presheaves.

The category of Kripke relations K〈σ 〉 of arity σ :C �� S has objects given by pairs (R,A)
consisting of an object A of S and a C-Kripke relation of arity σ over A, and morphisms
f : (R,A) �� (R′,A′) given by maps f :A ��A′ in S such that, for all a : σ (c) ��A in R(c), the
composite f ◦ a : σ (c) ��A′ is in R′(c). Composition and identities are as in S .
Example 1. The category of C-Kripke relations of arity the unique functor to the terminal category
is (isomorphic to) the complete Heyting algebra of subterminal objects of the presheaf topos SetCop .

The following proposition is well-known (see, e.g., Alimohamed 1995; Ma and Reynolds 1992).

Proposition 2. Let C be a small category and let S be a cartesian closed category. For a func-
tor σ :C �� S , the category of Kripke relations K〈σ 〉 is cartesian closed and the forgetful functor
K〈σ 〉 �� S : (R,A) � ��A preserves the cartesian closed structure strictly.

The cartesian closed structure of K〈σ 〉 is given as follows.

(Products) The terminal object is (�, 1) where 1 is terminal in S and where �(c)=
{ σ (c) �� 1 } for all c in C.

The product (R,A)× (R′,A′) of (R,A) and (R′,A′) is

(R,A) π�� (R∧ R′,A×A′) π ′
�� (R′,A′)

where A π�� A×A′ π ′
��A′ is the product of A and A′ in S , and where a : σ (c) ��

A×A′ is in (R∧ R′)(c) iff π ◦ a : σ (c) ��A is in R(c) and π ′ ◦ a : σ (c) ��A′ is in
R′(c).

(Exponentials) The exponential (R,A) �� (R′,A′) of (R,A) and (R′,A′) is

(R⊃ R′,A ��A′)× (R,A) ε �� (R′,A′)

where (A ��A′)×A ε ��A′ is the exponential of A and A′ in S , and where
f : σ (c) ��A ��A′ is in (R⊃ R′)(c) iff for every ρ : c′ �� c in C and a : σ (c′) ��A
in R(c′), the composite ε ◦ 〈f ◦ σ (ρ), a〉 : σ (c′) ��A′ is in R′(c′).

The Fundamental Lemma of logical relations is a consequence of Proposition 2.
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Lemma 3 (Fundamental Lemma (Plotkin 1973; Statman 1985)). For an interpretation of base
types I : T ��K〈σ 〉 : θ � �� (Rθ , I0(θ)), the interpretation

I0[[� 
 t : τ ]] : I0[[�]] �� I0[[τ ]] in S

of a term � 
 t : τ yields a morphism I[[�]] �� I[[τ ]] inK〈σ 〉; that is, for I[[�]]= (R� , I0[[�]]) and
I[[τ ]]= (Rτ , I0[[τ ]]), the following diagram

R� ��� �

��

Rτ� �

��
S(σ ( ), I0[[�]]) I0[[�
t:τ ]]◦

�� S(σ ( ), I0[[τ ]])

commutes in SetCop(for a necessarily unique natural map R�
��Rτ ).

Definability. The definability result of Jung and Tiuryn (1993) uses Kripke relations varying over
a poset of contexts ordered by context extension. Here, however, to parallel the development with
the one to follow in Part II, we will consider Kripke relations varying over a category of contexts
and context renamings.

Definition 4. For a set of types T , we let F↓T be the category with objects given by contexts �

with types in T , and with morphisms � �� �′ given by type-preserving context renamings; that is,
by functions ρ : dom(�) �� dom(�′) such that for all variables x ∈ dom(�), the types �(x), and
�′(ρx) are equal. We write F[T ] for (F↓T )op.

With respect to an interpretation s : T �� S of base types in a cartesian closed category,
we write s[[ ]] for the canonical semantic functor F[̃T] �� S interpreting contexts and their
renamings. This is explicitly given by

s[[ρ]] = 〈s[[�′ 
 ρx : τ ]]〉(x:τ )∈� = 〈πρx〉x∈dom(�) : s[[�′]] �� s[[�]]
for all ρ : � �� �′ in F↓T̃.

For every type τ ∈ T̃, the definability relation
Dτ (�)= { s[[� 
 t : τ ]] | � 
 t : τ } ⊆ S(s[[�]], s[[τ ]])

is an F[̃T]-Kripke relation of arity s[[ ]] : F[̃T] �� S over s[[τ ]], and the family of definability
relations { Dτ }τ∈T̃ has the following logical characterisation.

Lemma 5 (Definability Lemma (Alimohamed 1995; Jung and Tiuryn 1993)). Let s : T �� S be
an interpretation of base types in a cartesian closed category. Setting Rθ = Dθ for all base types
θ ∈ T and letting Rτ be given by the cartesian closed structure of the category of Kripke relations
K〈s[[ ]] : F[̃T] �� S〉 for the other types τ ∈ T̃, it follows that Rτ = Dτ for all types τ ∈ T̃.

The usual proof of the Definability Lemma is by induction on the structure of types using
the explicit description of the cartesian closed structure in categories of Kripke relations given
above; see Jung and Tiuryn (1993), Alimohamed (1995) (and Fiore and Simpson 1999 for the case
with sum types). However, there is a more conceptual argument based on establishing that the
definability relations satisfy the following closure properties:

D1 = �
Dτ ∗ τ ′ = Dτ ∧ Dτ ′

Dτ=>τ ′ = Dτ ⊃ Dτ ′

which is, in effect, what the usual calculations really amount to.
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The above analysis can be refined further. Indeed, the fact that neither of the following
inclusions

Dτ ⊆ Rτ ⊆ Dτ (2)
in isolation is strong enough to re-establish the inductive hypothesis in the Definability Lemma,
suggests considering a more general situation in which the Kripke logical relations Rτ are
bounded by possibly distinct Kripke relations (unlike the situation in (2)).

We are thus led to the following Basic Lemma. Notice the mixed-variance treatment of expo-
nentiation. This is akin to Krivine’s approach to normalisation for the untyped lambda calculus
using adapted pairs of subsets of lambda terms (Krivine, 1993, Chapter III, pp. 33–39).
Lemma 6 (Basic Lemma).Consider an interpretation I0 : T �� S of base types in a cartesian closed
category S .

With respect to a functor σ :C �� S , let 〈(Aτ , I0[[τ ]])〉τ∈T̃ and 〈(Bτ , I0[[τ ]])〉τ∈T̃ be two families
of Kripke relations in K〈σ 〉 indexed by types such that

B1 = �
Aσ ∗ τ ⊆ (Aσ ∧ Aτ ) (Bσ ∧ Bτ ) ⊆ Bσ ∗ τ

Aσ=>τ ⊆ (Bσ ⊃ Aτ ) (Aσ ⊃ Bτ ) ⊆ Bσ=>τ

For a family of Kripke relations 〈(Rθ , I0[[θ]])〉θ∈T in K〈σ 〉 indexed by base types, let
〈(Rτ , I0[[τ ]])〉τ∈T̃ be the family of Kripke relations indexed by types induced by the cartesian closed
structure of K〈σ 〉.

If Aθ ⊆ Rθ ⊆ Bθ for all base types θ ∈ T, then

1. Aτ ⊆ Rτ ⊆ Bτ for all types τ ∈ T̃, and thus
2. for all terms � 
 t : τ (with � = 〈xi : τi〉i=1,n) and morphisms ai : σ (c) �� I0[[τi]] in

Aτi(c) (1≤ i≤ n, c ∈ |C|), we have that I0[[� 
 t : τ ]] ◦ 〈a1, . . . , an〉 : σ (c) �� I0[[τ ]] is in
Bτ (c).

PROOF: The proof of the first part is by induction on the structure of types. This uses the facts that

R⊆ � for all (R, 1) in K〈σ 〉
and that, for Kripke relations (Ri,Ai) and (R′

i,Ai) in K〈σ 〉 (i= 1, 2),

if R1 ⊆ R′
1 and R2 ⊆ R′

2 then (R1 ∧ R2)⊆ (R′
1 ∧ R′

2) and (R′
1 ⊃ R2)⊆ (R1 ⊃ R′

2)

which follows from the functoriality of binary products and exponentials using the observation
that, for (R,A) and (R′,A) in K〈σ 〉,

R⊆ R′ �� �� idA : (R,A) �� (R′,A) in K〈σ 〉.
The proof of the second part follows from considering the interpretation I : T ��K〈σ 〉 map-

ping a base type θ to the Kripke relation (Rθ , I0[[θ]]) and noticing that, by the first part and the
Fundamental Lemma of logical relations, the diagram below in SetCop

A�
� � ��� �

���
��

��
��

� R�� �

��

�� Rτ� �

��

� � �� Bτ��

����
��
��
��

S(σ ( ), I0[[�]]) I0[[�
t:τ ]]◦
�� S(σ ( ), I0[[τ ]])

(3)

commutes, where for � = 〈xi : τi〉i=1,n, A� = Aτ1 ∧ . . . ∧ Aτn and R� = Rτ1 ∧ . . . ∧ Rτn . �
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The Basic Lemma yields the Definability Lemma by considering Aτ = Dτ = Bτ in the cate-
gory of Kripke relations K〈s[[ ]] : F[̃T] �� S〉 for the given interpretation s : T �� S . We will now
see that the Basic Lemma can be also applied to obtain an extensional normalisation result (see
Lemma 9).

Normalisation. For an interpretation s : T �� S of base types in a cartesian closed category, we
aim at defining families { (DM τ , s[[τ ]]) }τ∈T̃ and { (DN τ , s[[τ ]]) }τ∈T̃ of F[̃T]-Kripke relations of
arity s[[ ]] : F[̃T] �� S of definable morphisms such that

(i) DN 1 = �
(ii) DM σ ∗ τ ⊆ (DM σ ∧ DM τ ) (iii) (DN σ ∧ DN τ ) ⊆ DN σ ∗ τ

(iv) DM σ=>τ ⊆ (DN σ ⊃ DM τ ) (v) (DM σ ⊃ DN τ ) ⊆ DN σ=>τ

(vi) DM θ ⊆ DN θ (θ ∈ T)

(vii) πx : s[[�]] �� s[[τ ]] ∈ DM τ (�) ((x : τ ) ∈ �)

so that, by the second part of the Basic Lemma, we get (setting Rθ = DM θ for all θ ∈ T, and
ai = πi : s[[�]] �� s[[τi]] for � = 〈xi : τi〉i=1,n) that, for all terms � 
 t : τ ,

s[[� 
 t : τ ]] : s[[�]] �� s[[τ ]] is in DN τ (�). (4)
The above will be achieved by distilling the semantic closure properties (i)–(vii) into two

syntactic typing systems 
M and 
N with respect to which the definitions
DM τ (�) = { s[[� 
M : τ ]] | � 
M M : τ } (5)

DN τ (�) = { s[[� 
N : τ ]] | � 
N N : τ } (6)
will provide the required Kripke relations (see Proposition 8). The conditions (i)–(vii) amount,
roughly, to the following properties.

• The system 
M should contain variables (condition (vii)), and be closed under projec-
tions (condition (ii)) and under the application to terms in the system 
N (condition (iv)).

• The system 
N should contain the unit (condition (i)) and should be closed under
pairing (condition (iii)) and under abstraction (condition (v)).

• Every term of base type in the system 
M should be in the system 
N (condition (vi)).

Formally, the systems are given by the rules in Figure 2.

Thus, from purely semantic considerations, we have synthesised the notions of neutral normal
forms (viz., those derivable in the system 
M ) and of long βη-normal forms (viz., those deriv-
able in the system 
N ), henceforth, respectively, referred to as neutral and normal terms, and
characterised as follows.

Proposition 7.

1. (Neutral terms)

� 
M t : τ �� �� [ ∃ (x : τ ) ∈ �. t = x ]

∨ [ ∃ � 
M M : τ ∗ τ ′. t = π1(M) ] ∨ [ ∃ � 
M M : τ ′ ∗ τ . t = π2(M) ]

∨ [ ∃ � 
M M : τ ′=>τ , � 
N N : τ ′. t =M(N) ]

https://doi.org/10.1017/S0960129522000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000263


Mathematical Structures in Computer Science 1035

Figure 2. Neutral and normal terms.

2. (Normal terms)
• � 
N t : 1 �� �� t = 〈〉
• � 
N t : τ1 ∗ τ2 �� �� [ ∃ � 
N N1 : τ1 , � 
N N2 : τ2. t = 〈N1,N2〉 ]
• � 
N t : τ=>τ ′ �� �� [ ∃ �, x : τ 
N N : τ ′. t = λ x : τ .N ]
• For θ a base type, � 
N t : θ �� �� � 
M t : θ .

Neutral and normal terms are closed under context renamings and thereby semantically induce
Kripke relations.

Proposition 8. Let s : T �� S be an interpretation of base types in a cartesian closed category. For
all types τ ∈ T̃, the definitions (5) and (6), respectively, yieldF[̃T]-Kripke relationsDM τ andDN τ

of arity s[[ ]] : F[̃T] �� S satisfying conditions (i)–(vii).

PROOF: The first part is a corollary of the facts that

� 
M M : τ �� �� ∀ ρ : � → �′ in F↓T̃. �′ 
M M[ρx/x]x∈dom(�) : τ (7)

and

� 
N N : τ �� �� ∀ ρ : � → �′ in F↓T̃. �′ 
N N[ρx/x]x∈dom(�) : τ . (8)

The second part follows by the construction of the systems 
M and 
N . �

From Proposition 8, we have (4) and therefore, from (6) and Proposition 7(2), we obtain the
following Extensional Normalisation Lemma.

Lemma 9 (Extensional Normalisation Lemma). Let s : T �� S be an interpretation of base types in
a cartesian closed category. For every term � 
 t : τ , there exists a long βη-normal term � 
N N : τ
such that

s[[� 
 t : τ ]] = s[[� 
N : τ ]] : s[[�]] �� s[[τ ]]

in S .
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Specialising the Extensional Normalisation Lemma for the canonical interpretation of types
in the free cartesian closed category generated by them, we obtain the following syntactic
result (cf. Streicher 1998).

Corollary 10. Every simply typed term is βη-equal to one in long βη-normal form.

The above does not give information about the long βη-normal form associated to a term
because Kripke relations are extensional predicates. What is needed instead for this purpose is
a notion of intensional Kripke relation in which the extension of the predicate is witnessed (or
realised). Technically, this amounts to revisiting the development in categories obtained by the
Artin–Wraith glueing construction (Wraith 1974). This will be done in Part II. To do it at an
appropriate abstract, syntax-independent level, we will first consider the typed lambda calculus
algebraically.

3. Part II
3.1 Algebraic typed lambda calculus
We provide an algebraic setting for the syntax and semantics of the typed lambda calculus follow-
ing and extending the theory of Fiore et al. (1999). In particular, we describe the typed abstract
syntax of simply typed and of neutral and normal terms as initial algebras and show how the
usual semantics corresponds to unique algebra homomorphisms from the initial (term) algebras
to suitable semantic algebras.

3.1.1 Syntax
Categories of contexts, which we study next, play a crucial role in describing abstract syntax with
variable binding; see Fiore et al. (1999) for further details.
Free (co)cartesian categories. The category of untyped contexts and renamings F with objects
given by finite subsets of (the countably infinite set of) variables and morphisms given by all
functions is the free cocartesian category on one generator.

More generally, the free cocartesian category over a set T can be described as the comma cat-
egory F↓T of contexts with types in the set T and type-preserving context renamings. (That is,
F↓T is the category with objects given by maps � :V �� T where V is in F, and with morphisms
ρ : � �� �′ given by functions ρ : dom(�) �� dom(�′) such that � = �′ ◦ ρ.) The initial object
(0 �� T ) in F↓T is the empty context; whilst the coproduct in F↓T is

(V � �� T )+ (V ′ �′
�� T ) = (V +V ′ [�,�′] �� T )

As before, we write F[T ] for (F↓T )op. Further, we write 〈 〉 : T �� F[T ] for the universal
embedding (mapping τ to (1 τ �� T )) and exhibiting F[T ] as the free cartesian category over T .
Typed abstract syntax with variable binding. The semantic universe on which to consider
the algebras for the typed lambda calculus over a set of base types T is the functor category
SetF↓̃T of F↓T̃-variable sets, referred to as (covariant) presheaves. (Recall that SetF↓̃T has objects
given by functors F↓T̃ �� Set and morphisms ϕ : P �� P′ given by natural transformations; that
is, families of functions ϕ = { ϕ� : P(�) �� P′(�) }�∈|F↓̃T| such that ϕ�′ ◦ P(ρ)= P′(ρ) ◦ ϕ� for all
ρ : � �� �′ in F↓T̃.)

The structure of SetF↓̃T allowing the interpretation of variables and binding operators is
described below.

• The presheaf of variables of type τ ∈ T̃ is
Vτ = y〈τ 〉 (9)
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in SetF↓̃T where

F[̃T] � � y �� SetF↓̃T

�
� �� (F↓T̃)(�, )

is the Yoneda embedding.
Hence, Vτ (�)∼= { x | (x : τ ) ∈ � }.

• For every type τ ∈ T̃, the parameterisation functor × 〈τ 〉 : F[̃T] �� F[̃T] induces the
following situation

F[̃T]

Lan∼=

� � y ��

×〈τ 〉
��

SetF↓̃T

×y〈τ 〉
��
�

F[̃T] �
�

y
�� SetF↓̃T

Set( +〈τ 〉)
		

(10)

Thus, in SetF↓̃T, the exponential PVτ of the presheaf Vτ and a presheaf P can be explicitly
described as P( + 〈τ 〉).
Hence, PVτ (�)∼= P(� + 〈τ 〉).

A typed lambda algebra over a set of base types T is a T̃-sorted algebra with carrier given by a
family { Xτ }τ∈T̃ of presheaves in SetF↓̃T equipped with the following operations:

(Variables) Vτ
��Xτ

(Unit) 1 ��X1

(First Projection) Xτ∗τ ′ ��Xτ

(Second Projection) Xτ ′∗τ
��Xτ

(Pairing) Xτ × Xτ ′ ��Xτ∗τ ′

(Application) Xτ ′=>τ × Xτ ′ ��Xτ

(Abstraction) (Xτ ′)Vτ ��Xτ=>τ ′

Informally, one thinks of the sets Xτ (�) (τ ∈ T̃, � ∈ |F↓T̃|) as the τ -sorted elements of the alge-
braX in the context �. Note that under this interpretation the abstraction operation corresponds
to a natural family of mappings

Xτ ′(� + 〈τ 〉) ��Xτ=>τ ′(�)

associating an element of sort τ ′ in the context � + 〈τ 〉 (that is, the context � extended with a
fresh variable of type τ ) with an element of sort τ=>τ ′ in the context �.

In the tradition of categorical algebra, the category of typed lambda algebras can be defined
as the category of 
-algebras for a signature endofunctor 
 on (SetF↓̃T)T̃. This endofunctor is
induced by the above operations as follows, for θ ∈ T and τ , τ ′ ∈ T̃:
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(
X )θ = Vθ + Eθ (X )

(
X )1 = V1 + 1+ E1(X )

(
X )τ∗τ ′ = Vτ∗τ ′ + (Xτ × Xτ ′)+ Eτ∗τ ′(X )

(
X )τ=>τ ′ = Vτ=>τ ′ + (Xτ ′)Vτ + Eτ=>τ ′(X )

where

Eτ (X ) = ∐
τ ′∈T̃ Xτ∗τ ′ + Xτ ′∗τ + (Xτ ′=>τ × Xτ ′)

is the signature endofunctor corresponding to the projections and application operations onto τ .
The initial 
-algebra L = { Lτ }τ∈T̃ with its structure

Vθ + Eθ (L)
∼= �� Lθ

V1 + 1+ E1(L)
∼= �� L1

Vτ∗τ ′ + (Lτ × Lτ ′)+ Eτ∗τ ′(L)
∼= �� Lτ∗τ ′

Vτ=>τ ′ + (Lτ ′)Vτ + Eτ=>τ ′(L)
∼= �� Lτ=>τ ′

(11)

can be explicitly described as the family of presheaves of terms

Lτ (�)= { t | � 
 t : τ }
with presheaf action given by variable renaming (that is, by the mapping associating � 
 t : τ to
�′ 
 t[ρx/x]x∈dom(�) : τ for any ρ : � �� �′ in F↓T̃), and with operations

varτ : Vτ
��Lτ

unit1 : 1 ��L1

fst(τ
′)

τ : Lτ∗τ ′ ��Lτ

snd(τ
′)

τ : Lτ ′∗τ
��Lτ

pairτ∗τ ′ : Lτ × Lτ ′ ��Lτ∗τ ′

app(τ
′)

τ : Lτ ′=>τ × Lτ ′ ��Lτ

absτ=>τ ′ : (Lτ ′)Vτ ��Lτ=>τ ′

corresponding to the typing rules in Figure 1.
A full theory of typed abstract syntax with variable binding incorporating substitution along the

lines of Fiore et al. (1999) can be developed (see, e.g., Fiore andHur 2010; Fiore and Szamozvancev
2022). This is however not necessary for the purposes of the paper.

The notions of neutral and normal terms are given by mutual induction (see Figure 2) and, as
such, the associated algebraic notion corresponds to considering a signature endofunctor on the
product category (SetF↓̃T)T̃ × (SetF↓̃T)T̃. This endofunctor, with components 〈
1,
2〉, is defined

https://doi.org/10.1017/S0960129522000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000263


Mathematical Structures in Computer Science 1039

below:

{
(
1(X ,Y ))τ =Vτ + Eτ (X ,Y )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
2(X ,Y ))θ = Vθ + Eθ (X ,Y )

(
2(X ,Y ))1 = 1

(
2(X ,Y ))τ∗τ ′ = Yτ × Yτ ′

(
2(X ,Y ))τ=>τ ′ = (Yτ ′)Vτ

where

Eτ (X ,Y )= ∐
τ ′∈T̃ Xτ∗τ ′ + Xτ ′∗τ + (Xτ ′=>τ × Yτ ′)

for θ ∈ T and τ , τ ′ ∈ T̃.
We write (M,N) for the initial 〈
1,
2〉-algebra with structure, for θ ∈ T and τ , τ ′ ∈ T̃, as

follows:

{
Vτ + Eτ (M,N)

∼= �� Mτ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vθ + Eθ (M,N)
∼= �� Nθ

1
∼= �� N1

Nτ × Nτ ′
∼= �� Nτ∗τ ′

(Nτ ′)Vτ
∼= �� Nτ=>τ ′

(12)

Note that we have an isomorphism

norm : Mθ
∼=Vθ + Eθ (M,N)∼= Nθ (13)

for all θ ∈ T.
Explicitly, the presheaves Mτ and Nτ can be, respectively, described as the neutral and normal

terms

Mτ (�) = { M | � 
M M : τ } Nτ (�) = { N | � 
N N : τ }
with presheaf action given by variable renaming (recall (7) and (8)), and with operations

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

varτ : Vτ
��Mτ

fst(τ
′)

τ : Mτ∗τ ′ ��Mτ

snd(τ
′)

τ : Mτ ′∗τ
��Mτ

app(τ
′)

τ : Mτ ′=>τ × Nτ ′ ��Mτ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

varθ : Vθ
��Nθ

fst(τ
′)

θ : Mθ∗τ ′ ��Nθ

snd(τ
′)

θ : Mτ ′∗θ
��Nθ

app(τ
′)

θ : Mτ ′=>θ × Nτ ′ ��Nθ

unit1 : 1 ∼= ��N1

pairτ∗τ ′ : Nτ × Nτ ′
∼= ��Nτ∗τ ′

absτ=>τ ′: (Nτ ′)Vτ
∼= ��Nτ=>τ ′

(14)

corresponding to the typing rules in Figure 2.
Note that every 
-algebra X induces a canonical 〈
1,
2〉-algebra structure on the pair

(X ,X ) and hence, by initiality, homomorphic interpretations (M,N) �� (X ,X ). Applying
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this observation to the initial 
-algebra L, we obtain the embeddings M �� ��L and N �� ��L
of neutral and normal terms into terms.

Structural induction. Initial algebras have the following associated structural induction princi-
ple (Lehmann and Smyth, 1981).

Let α : FA ��A be an initial algebra for an endofunctor F, if the subobject m : P �� ��A
satisfies the closure property of being a sub F-algebra of A, in the sense that the diagram

FP

Fm
��

����� P
��

m
��

FA
α

∼= �� A

(15)

commutes for a (necessarily unique) map FP �� P, then m : P �� ��A is an isomorphism.

For the initial
-algebraL (resp. the initial 〈
1,
2〉-algebra (M,N)), the structural induction
principle corresponds, in elementary terms, to proving a property of terms (resp. of neutral and
normal terms) by induction (resp. simultaneous induction) on their derivation. The structural
induction principle for the initial 〈
1,
2〉-algebra (M,N) features in the proof of Theorem 21.

3.1.2 Semantics
As we will see below, every interpretation of base types in a cartesian-closed category induces a
canonical semantic typed lambda algebra with respect to which the unique algebra homomor-
phism from the initial (term) algebra is the usual semantics of simply typed terms.

Nerve functor. Every functor σ :C �� S induces the following situation

C

σ⇓Lan

� � y ��

σ


�

��
��

��
��

� SetCop

S
〈σ 〉

������������

(16)

where 〈σ 〉(A)= S(σ ( ),A) and where (σ�)�′ = σ�′,� :C(�′, �) �� S(σ (�′), σ (�)). We refer to
〈σ 〉 : S �� SetCop as the σ -nerve functor and to the presheaf 〈σ 〉(A) as the σ -nerve of A.

Two important properties of nerve functors follow.

Proposition 11. For a functor σ :C �� S where C is small, the nerve functor 〈σ 〉 : S �� SetCop

preserves limits. Further, for σ and C cartesian and S cartesian closed, it also commutes with
exponentiation by representables in the sense that there is a canonical natural isomorphism

S
∼=〈σ 〉

��

σ (�) �� (__) �� S
〈σ 〉
��

SetCop

(__)y(�)
�� SetCop

for all � ∈ |C|.
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PROOF: The first part is well-known and follows from the canonical natural isomorphism

S(σ (�), L) ∼= lim�∈D S(σ (�),D(�))

f � �� 〈 π� ◦ f 〉�∈D
(� ∈C)

available for any diagram D :D �� S with limit 〈 π� : L ��D(�) 〉�∈D in S .
For the second part, note that for � ∈ |C| we have the following situation (generalising (10))

C

Lan∼=

� � y ��

×�

��

SetCop

×y(�)
��
�

C
� �

y
�� SetCop

Set( ×�)op

		

from which it follows that (Py(�))(�)∼= P(� × �) naturally in � ∈C. We thus obtain a canonical
isomorphism

(〈σ 〉A)y(�)(�) ∼= (〈σ 〉A)(� × �) = S(σ (� × �),A)

∼= S(σ (�)× σ (�),A)

∼= S(σ (�), σ (�) ��A) = 〈σ 〉(σ (�) ��A)(�)

natural in �,� ∈C and A ∈ S . �

Initial algebra semantics. Using the nerve functor 〈s[[ ]]〉 : S �� SetF↓̃T induced by the carte-
sian extension s[[ ]] : F[̃T] �� S of an interpretation s : T �� S of base types in a cartesian closed
category, the operations

π1 : s[[τ ]]× s[[τ ′]] �� s[[τ ]]

π2 : s[[τ ′]]× s[[τ ]] �� s[[τ ]]

ε : (s[[τ ]] �� s[[τ ′]])× s[[τ ]] �� s[[τ ′]]

in S can be lifted to SetF↓̃T to provide a semantic typed lambda algebra structure on the family
C = { S(s[[ ]], s[[τ ]]) }τ∈T̃ = { 〈s〉(s[[τ ]]) }τ∈T̃ (17)

The operations are as follows:

1. Vτ
s[[ ]] �� 〈s〉(s[[τ ]])

2. 1
∼= �� 〈s〉(s[[1]])

3. 〈s〉(s[[τ ∗ τ ′]]) 〈s〉(π1) �� 〈s〉(s[[τ ]])
4. 〈s〉(s[[τ ′ ∗ τ ]]) 〈s〉(π2) �� 〈s〉(s[[τ ]]) (18)
5. 〈s〉(s[[τ ]])× 〈s〉(s[[τ ′]])

∼= �� 〈s〉(s[[τ ∗ τ ′]])
6. 〈s〉(s[[τ ′=>τ ]])× 〈s〉(s[[τ ′]])

∼= �� 〈s〉((s[[τ ′]] �� s[[τ ]])× s[[τ ′]]) 〈s〉(ε) �� 〈s〉(s[[τ ]])
7. (〈s〉(s[[τ ′]]))Vτ

∼= �� 〈s〉(s[[τ=>τ ′]])

(Note that item 1 relies on diagram (16) while items 2, 5, 6, and 7 rely on Proposition 11. Similar
applications of this proposition will be used throughout without further reference.)
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By initiality, the semantic typed lambda algebra induces semantic homomorphic interpreta-
tions � : L ��C and (m, n) : (M,N) �� (C,C). These are related as shown below

M

m
���

��
��

��
�
�� �� L

�

��

N����

n


		
		
		
		

C

(19)

Indeed, by the initiality of (M,N), (19) directly follows from the fact that the homomorphism
property of � : L ��C amounts to the commutativity of the diagrams in Appendix A and that
the homorphism property of (m, n) : (M,N) �� (C, C) amounts to the commutativity of the
diagrams in Appendix B.

Explicitly, for τ ∈ T̃, the mapping �τ : Lτ
��Cτ is the standard semantic interpretation of

terms

t ∈ Lτ (�) � �τ �� s[[� 
 t : τ ]] ∈ S(s[[�]], s[[τ ]]) (20)

whilstmτ : Mτ
��Cτ and nτ : Nτ

��Cτ are, respectively, the semantic interpretations of neutral
and normal terms.

3.2 Normalisation by evaluation via categorical glueing
We will now see how, by working with intensional Kripke relations, the analysis of normalisa-
tion given in Section 2.2 amounts to normalisation by evaluation. As in that section, we will
work with semantic models of (covariant) presheaves in SetF↓̃T over nerves induced by inter-
pretations s of the set of base types T in arbitrary cartesian closed categories (see (24)). This
level of generality allows the definition of normalisation functions s-nfτ : Lτ

��Nτ (τ ∈ T̃) in
SetF↓̃T over the s[[ ]]-nerve of s[[τ ]] (Corollary 20) that are parametric on the interpretation s.
Crucially, the normalisation functions will be shown to be parametrically polymorphic, in the
sense of being interpretation independent (Corollary 22). This is methodologically important.
Firstly, as in Corollary 10, the consideration of the universal interpretation of base types into the
free cartesian closed category over them leads to our solution of the intensional normalisation
problem (see the discussions after Corollaries 20 and 22 in § Normalisation function below) stated
in Introduction. Secondly, the consideration of the trivial interpretation of base types in the trivial
cartesian closed category leads to a normalisation algorithm from which a normalisation program
is synthesised (see § Normalisation algorithm below).

Intensional Kripke relations. The category of intensionalC-Kripke relations of arity σ :C �� S
is defined as the glueing of SetCop and S along the nerve functor 〈σ 〉 : S �� SetCop . That is, as
the comma category SetCop↓〈σ 〉 of objects given by triples (P, p,A) with P ∈ |SetCop |, A ∈ |S|, and
p : P �� 〈σ 〉(A) in SetCop , and of morphisms (P, p,A) �� (P′, p′,A′) given by pairs

( ϕ : P �� P′ in SetCop , f :A ��A′ in S )

such that the diagram

P
p
��

ϕ �� P′

p′
��

〈σ 〉(A) 〈σ 〉(f )
�� 〈σ 〉(A′)

in SetCop

commutes.
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Example 12. The category of intensional C-Kripke relations of arity the unique functor to the
terminal category is (isomorphic to) the presheaf topos SetCop .

As it is well-known (see, e.g., Crole 1994; Lambek and Scott 1986; Taylor 1999), for S carte-
sian closed, the glueing category SetCop↓〈σ 〉 is also cartesian closed. Indeed, the cartesian closed
structure of SetCop↓〈σ 〉 is given as follows.

(Products) The terminal object is (1, t, 1) where t is the unique map 1
∼= �� 〈σ 〉(1).

The binary product (P, p,A)× (Q, q, B) of (P, p,A) and (Q, q, B) is (P ×Q, r,A× B)

where r is the composite P ×Q
p×q �� 〈σ 〉(A)× 〈σ 〉(B) ∼= �� 〈σ 〉(A× B).

(Exponentials) The exponential (P, p,A) �� (Q, q, B) of (P, p,A) and (Q, q, B) is
(R, r,A �� B) in the pullback diagram

R

pb

��

r
��

QP

qP
��

〈σ 〉(A �� B) �� (〈σ 〉B)(〈σ 〉A)
(〈σ 〉B)p

�� (〈σ 〉B)P
(21)

where the map 〈σ 〉(A �� B) �� (〈σ 〉B)(〈σ 〉A) is the exponential transpose of the composite

〈σ 〉(A �� B)× 〈σ 〉(A) ∼= �� 〈σ 〉((A �� B)×A)
〈σ 〉(ε) �� 〈σ 〉(B).

Explicitly, one may take R(c) to be⎧⎨
⎩ ( f : σ (c)→A �� B , ϕ : y(c)× P →Q )

∀ ρ : c′ → c. ∀ a ∈ P(c′).

qc′(ϕc′(ρ, a))= ε ◦ 〈f ◦ σ (ρ), pc′(a)〉

⎫⎬
⎭ (22)

with r projecting pairs onto their first component.

Proposition 13. Let C be a small category and let S be a cartesian closed category. For a func-
tor σ :C �� S , the glueing category SetCop↓〈σ 〉 is cartesian closed and the forgetful functor π :
SetCop↓〈σ 〉 �� S : (P, p,A) � ��A preserves the cartesian closed structure strictly.

Remark. The category of C-Kripke relations K〈σ 〉 is a full subcategory of the glueing category
SetCop↓〈σ 〉 via themapping (R,A) � �� (R, R � � �� 〈σ 〉(A),A). On the other hand, every glued object
(P, f ,A) has an associated Kripke relation given by the extension of the map f (as shown in the
diagram below, where im(f ) denotes the image of f )

P

f

��

�� ��







im(f )
	


�����
�

〈σ 〉(A)
and the mapping im : (P, f ,A) � �� (im(f ),A) exhibits K〈σ 〉 as a reflective subcategory of
SetCop↓〈σ 〉. For S cartesian closed, as can be readily seen from the explicit descriptions of finite
products in K〈σ 〉 and SetCop↓〈σ 〉, the reflection im :K〈σ 〉 → SetCop↓〈σ 〉 preserves the cartesian
structure and, therefore, K〈σ 〉 is an exponential ideal of SetCop↓〈σ 〉 (as can also be readily seen
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from the descriptions of exponentials in K〈σ 〉 and SetCop↓〈σ 〉). Thus, for (P, p,A) and (Q, q,A) in
SetCop↓〈σ 〉, there are inclusions

im( (P, p,A) ��(Q, q, B) )(c) ⊆ ( im(P, p,A)⊃ im(Q, q, B) )(c) ( c ∈ |C| )
where

im( (P, p,A) ��(Q, q, B) )(c)

=
⎧⎨
⎩ f : σ (c)→A �� B

∃ ϕ : y(c)× P →Q. ∀ ρ : c′ → c. ∀ a ∈ P(c′).

qc′(ϕc′(ρ, a))= ε ◦ 〈f ◦ σ (ρ), pc′(a)〉

⎫⎬
⎭

and

( im(P, p,A)⊃ im(Q, q, B) )(c)

=
⎧⎨
⎩ f : σ (c)→A �� B

∀ ρ : c′ → c. ∀ a ∈ P(c′). ∃ b ∈Q(c′).

qc′(b)= ε ◦ 〈f ◦ σ (ρ), pc′(a)〉

⎫⎬
⎭ .

These inclusions may be strict; as it happens, for instance, whenC
op = F (the category of untyped

contexts and renamings), σ is the unique functor to the trivial cartesian closed category, Q=
y(1) (for a singleton context 1), P = im(Q→ 〈σ 〉(1)), and c= 0 (the empty context). Indeed, in
this situation, (P ��Q)(c)∼= SetF(P,Q)= ∅ whilst (im(p)⊃ im(q))(c)= (P ⊃ P)(c)= { id }. Thus,
in general, the reflection im :K〈σ 〉 → SetCop↓〈σ 〉 does not preserve exponentials.

Now, note that (16) induces the embedding

C
� � y �� SetCop↓〈σ 〉

�
� �� ( y(�) , y(�)

σ � �� 〈σ 〉(σ�) , σ (�) )

extending both the Yoneda embedding y :C � � �� SetCop and the functor σ :C �� S

C��y

�����
���

���
� � �

y
��

σ

��
















SetCop SetCop↓〈σ 〉�� �� S
P (P, p,A)���� � π �� A

and satisfying the following extended form of the Yoneda Lemma (which we will use in
§ Normalisation function below).

Lemma 14 (Extended Yoneda Lemma). For a functor σ :C �� S where C is a small category, the
natural transformation

[y( ), (P, p,A)] �� P( ) : (ϕ, f ) � �� ϕ(id),

where [ , ] denotes the hom-functor of the glueing category SetCop↓〈σ 〉, is an isomorphismmaking
the following diagram
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[y( ), (P, p,A)] ∼= ��

π ����
���

���
�

P(__)

p����
��
��
�

S(σ ( ),A)

commute.

PROOF: Follows from the fact that, for ϕ : y(�) �� P in SetCop and f : σ (�) ��A in S , the diagram

y(�)

σ �

��

ϕ �� P
p
��

S(σ ( ), σ (�))
f ◦__

�� S(σ ( ),A)

commutes if and only if f = p�(ϕ�(id�)). �

Proposition 15. For a functor σ :C �� S where C is small, C and σ are cartesian, and S is
cartesian closed, we have that y :C � � �� SetCop↓〈σ 〉 preserves products and that the exponential
(P, p,A)y(�) in SetCop↓〈σ 〉 can be described as (Py(�), p′, σ (�)=>A) where p′ is the composite

Py(�)
py(�) �� (〈σ 〉A)y(�) ∼= �� 〈σ 〉(σ (�) ��A).

PROOF: The first part follows from the commutativity of

y(� × �)
∼= ��

σ �×�

��

y(�)× y(�)

σ �×σ�

��
〈σ 〉(σ�)× 〈σ 〉(σ�)

∼=
��

〈σ 〉(σ (� × �)) ∼=
�� 〈σ 〉(σ (�)× σ (�))

for all �,� ∈ |C|.
For the second part, since the exponential (P, p,A)y(�) is given by pulling back the map py(�) :

Py(�) �� (〈σ 〉A)y(�) along the composite

〈σ 〉(σ� ��A)
f �� (〈σ 〉A)〈σ 〉(σ�) (〈σ 〉A)σ �

�� (〈σ 〉A)y(�)

(recall (21)), where f is the exponential transpose of

〈σ 〉(σ� ��A)× 〈σ 〉(σ�)
∼= �� 〈σ 〉((σ� ��A)× σ�)

〈σ 〉(ε) �� 〈σ 〉(A),
it will be enough to show that the composite

(〈σ 〉A)y(�) ∼= �� 〈σ 〉(σ� ��A)
f �� (〈σ 〉A)〈σ 〉(σ�) (〈σ 〉A)σ �

�� (〈σ 〉A)y(�)
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is the identity. This is indeed the case as follows from the commutativity of the diagram below

〈σ 〉(σ� ��A)× y(�)
f × id ��

id× σ �

�����
���

���
���

��

∼= ×id

��

(〈σ 〉A)〈σ 〉(σ �) × y(�)

idσ � × id

����
���

���
���

�

id× σ �

��
(〈σ 〉A)y(�) × y(�)

∼= ×id
��������������

ε

��






















































∼= ×id �� (〈σ 〉A)( × �)× y(�)

∼= ×σ � ��

e

���
��

��
��

��
��

��
��

��
��

��
��

��
〈σ 〉(σ� ��A)× 〈σ 〉(σ�)

f × id ��

∼=
��

(〈σ 〉A)〈σ 〉(σ �) × 〈σ 〉(σ�)

ε

����
��
��
��
��
��
��
��
��
��
��
��
�

(〈σ 〉A)y(�) × y(�)

ε

�����
���

���
���

���
���

���
���

���
���

���
���

�

〈σ 〉((σ� ��A)× σ�)

〈σ 〉(ε)

��
〈σ 〉(A)

where

eP : P( × �)× y(�) �� P( ) : (x, ρ) � �� (P〈id, ρ〉)(x) (23)

denotes the counit of the adjunction × y(�)� Set( ×�)op : SetCop �� SetCop . �

Glueing syntax and semantics. Let s : T �� S be an interpretation of base types in a cartesian
closed category. The embedding y : F[̃T] � � �� SetF↓̃T↓〈s[[ ]]〉 restricted to types τ ∈ T̃ yields the
glued object

ντ = y〈τ 〉 = ( Vτ , Vτ
s[[ ]] ��Cτ , s[[τ ]] ) in SetF↓̃T↓〈s[[ ]]〉

glueing the syntax and semantics of variables. In the same spirit, glueing the syntax and semantics
of neutral and normal terms (see (19)), we obtain the glued objects

μτ = ( Mτ , Mτ
mτ ��Cτ , s[[τ ]] )

ητ = ( Nτ , Nτ
nτ ��Cτ , s[[τ ]] )

in SetF↓̃T↓〈s[[ ]]〉.
Having constructed the 〈
1,
2〉-algebra structure on (C,C) by lifting the semantic operations

in S (recall (17) and (18)), the homomorphism property of the semantic interpretation (m, n) :
(M,N) �� (C,C) (see Appendix B) entails the two propositions below, which show how the
algebraic operations on the initial 〈
1,
2〉-algebra (M,N) and on the semantic 〈
1,
2〉-algebra
(C,C) can be glued to yield operations in SetF↓̃T↓〈s[[ ]]〉 on the pair of families of glued objects
({ μτ }τ∈T̃ , { ητ }τ∈T̃).
Proposition 16. Let s : T �� S be an interpretation of base types in a cartesian closed category.

1. For τ , τ ′ ∈ T̃, the pair of maps

( varτ :Vτ
��Mτ , ids[[τ ]] )

constitute a map ντ
��μτ in SetF↓̃T↓〈s[[ ]]〉.

2. For τ , τ ′ ∈ T̃, the pair of maps

( fst(τ
′)

τ : Mτ∗τ ′ ��Mτ , π1 : s[[τ ]]× s[[τ ′]] �� s[[τ ]] )

constitute a map μτ∗τ ′ ��μτ in SetF↓̃T↓〈s[[ ]]〉.
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3. For τ , τ ′ ∈ T̃, the pair of maps

( snd(τ
′)

τ : Mτ ′∗τ
��Mτ , π2 : s[[τ ′]]× s[[τ ]] �� s[[τ ]] )

constitute a map μτ ′∗τ
��μτ in SetF↓̃T↓〈s[[ ]]〉.

4. For τ , τ ′ ∈ T̃, the pair of maps

( app(τ
′)

τ : Mτ ′=>τ × Nτ ′ ��Mτ , ε : (s[[τ ′]] �� s[[τ ]])× s[[τ ′]] �� s[[τ ]] )

constitute a map μτ ′=>τ × ητ ′ ��μτ in SetF↓̃T↓〈s[[ ]]〉.
PROOF: Items 1, 2, 3, and 4, respectively, follow from (B1), (B2), (B3), and (B4) in Appendix B.�

Proposition 17. Let s : T �� S be an interpretation of base types in a cartesian closed category.

1. For a base type θ ∈ T, the pair of isomorphisms

( Mθ
∼=Vθ + Eθ (M,N)∼= Nθ , ids(θ) )

constitute an isomorphism μθ
∼= ηθ in SetF↓̃T↓〈s[[ ]]〉.

2. The pair of isomorphisms

( unit1 : 1 ∼= ��N1 , id1 )

constitute an isomorphism 1
∼= �� η1 in SetF↓̃T↓〈s[[ ]]〉.

3. For τ , τ ′ ∈ T̃, the pair of isomorphisms

( pairτ∗τ ′ : Nτ × Nτ ′
∼= ��Nτ∗τ ′ , ids[[τ ]]× s[[τ ′]] )

constitute an isomorphism ητ × ητ ′
∼= �� ητ∗τ ′ in SetF↓̃T↓〈s[[ ]]〉.

4. For τ , τ ′ ∈ T̃, the pair of isomorphisms

( absτ=>τ ′ : Nτ ′Vτ
∼= ��Nτ=>τ ′ , ids[[τ ]] �� s[[τ ′]] )

constitute an isomorphism ητ ′ντ
∼= �� ητ=>τ ′ in SetF↓̃T↓〈s[[ ]]〉.

PROOF: Items 1, 2, 3, and 4, respectively, follow from (B1–B8), (B9), (B10), and (B11) (relying on
Proposition 15) in Appendix B. �

Note that the above operations on glued objects are given by pairs of syntactic operations together
with their associated semantic meaning in the case of neutral terms (Proposition 16) and together
with the identity in the case of normal terms (Proposition 17).

Normalisation by evaluation. Let s : T �� S be an interpretation of base types in a cartesian
closed category. Consider the interpretation

T s �� SetF↓̃T↓〈s[[ ]]〉
θ

� �� μθ

(24)

By Proposition 13, the semantics of terms induced by s in SetF↓̃T↓〈s[[ ]]〉 extends the semantics
induced by s in S ; that is, the denotation s[[� 
 t : τ ]] is a pair of the form

( s′[[� 
 t : τ ]] , s[[� 
 t : τ ]])
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such that, letting
s[[τ ]] = (Sτ , στ , s[[τ ]] ) ,

the diagram
∏

i=1,n Sτi∏
i=1,n στi

��

s′[[� 
 t : τ ]] �� Sτ

στ

��

∏
i=1,n S(s[[__]], s[[τi]])

∼=
��

S(s[[__]], s[[�]])
s[[� 
 t : τ ]] ◦ __

�� S(s[[__]], s[[τ ]])

commutes for all � = 〈xi : τi〉i=1,n.
We now aim at defining maps Mτ

�� Sτ
�� Nτ (τ ∈ T̃) such that

Mτ
��

mτ ����
���

���
� Sτ

��

στ ��

Nτ

nτ�����
���

���

S(s[[__]], s[[τ ]])
(25)

commutes; so that, for all terms � 
 t : τ (� = 〈xi : τi〉i=1,n), the diagram below
∏

i=1,n Mτi

∏
i=1,n mτi ����

���
���

��
�� ∏

i=1,n Sτi∏
i=1,n στi

��

s′[[� 
 t : τ ]] �� Sτ
��

στ

��

Nτ

nτ

����
��
��
��
��
��
��
�

∏
i=1,n S(s[[__]], s[[τi]])

∼=
��

S(s[[__]], s[[�]])
s[[� 
 t : τ ]] ◦ __

�� S(s[[__]], s[[τ ]])

will commute (cf. diagram (3) of the Basic Lemma (Lemma 6)) and, hence, the evaluation of the
horizontal top composite at the tuple 〈varτi(xi)〉i=1,n of the variables in the context � will yield a
normal term in Nτ (�) with the same semantics as the given term t (compare the Extensional
Normalisation Lemma (Lemma 9) and see Corollary 20 below). Moreover, as we will show
below (see Corollary 19), the long βη-normal forms associated to two βη-equal terms will be
the same.

The abstract way to define the maps in (25) – which in the literature on normalisation by
evaluation are either referred to as unquote and quote or as reflect and reify – is by defining maps

μτ
uτ �� s[[τ ]]

qτ �� ητ in SetF↓̃T↓〈s[[ ]]〉
that project in S onto identities (see Proposition 18 below). The definition of these maps is by
induction on the structure of types relying on Propositions 16 and 17 as follows:

1. For a base type θ ∈ T, we define uθ = idμθ and qθ = (μθ

∼= �� ηθ ).

2. We let u1 = (μ1 �� 1) and q1 = (1 (unit1,id)
∼=

�� η1).

3. For types τ , τ ′ ∈ T̃, we define
uτ∗τ ′ : μτ∗τ ′ �� s[[τ ]]× s[[τ ′]]
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as the pairing of the maps

μτ∗τ ′
(fst(τ

′)
τ ,π1) �� μτ

uτ �� s[[τ ]] and μτ∗τ ′
(snd(τ )

τ ′ ,π2)
�� μτ ′

uτ ′ �� s[[τ ′]],

and let qτ∗τ ′ : s[[τ ]]× s[[τ ′]] �� ητ∗τ ′ be the composite

s[[τ ]]× s[[τ ′]]
qτ ×qτ ′ �� ητ × ητ ′

(pairτ∗τ ′ ,id)
∼=

�� ητ∗τ ′ .

4. For types τ , τ ′ ∈ T̃, we define

uτ=>τ ′ : μτ=>τ ′ �� s[[τ ′]]s[[τ ]]

as the exponential transpose of the map

μτ=>τ ′ × s[[τ ]]
id×qτ ��μτ=>τ ′ × ητ

(app(τ )
τ ′ ,ε) ��μτ ′

uτ ′ �� s[[τ ′]] ,
and let qτ=>τ ′ : s[[τ ′]]s[[τ ]] �� ητ=>τ ′ be the composite

s[[τ ′]]s[[τ ]]
qτ ′ uτ vτ �� ητ ′ντ

(absτ=>τ ′ ,id)
∼=

�� ητ=>τ ′

where vτ = (varτ , id) : ντ
��μτ .

Proposition 18 below yields (25) as a corollary.

Proposition 18. For every type τ ∈ T̃, we have the identities
π(uτ ) = ids[[τ ]] = π(qτ )

for π the forgetful functor SetF↓̃T↓〈s[[ ]]〉 �� S .

PROOF: The proof is by induction on the structure of types.

(1) For a base type θ ∈ T, π(uθ )= π(qθ )= ids[[θ]] by definition of uθ and qθ .
(2) π(u1)= π(q1)= id1 by definition of u1 and q1.
(3) For types τ , τ ′ ∈ T̃,

π(uτ∗τ ′) = 〈 π(uτ ) ◦ π1 , π(uτ ′) ◦ π2 〉 , by definition of uτ∗τ ′

= 〈 π1 , π2 〉 , by induction

= ids[[τ ]]×s[[τ ′]]

and

π(qτ∗τ ′) = π(qτ )× π(qτ ′) , by definition of qτ∗τ ′

= ids[[τ ]] × ids[[τ ′]] , by induction

= ids[[τ ]]×s[[τ ′]].

(4) For types τ , τ ′ ∈ T̃,

ε ◦ (π(uτ=>τ ′)× ids[[τ ]])

= π(uτ ′) ◦ ε ◦ (ids[[τ ]] ��s[[τ ′]] × π(qτ )) , by definition of uτ=>τ ′

= ε , by induction
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and hence

π(uτ=>τ ′) = ids[[τ ]] ��s[[τ ′]] ;

further

π(qτ=>τ ′) = (π(uτ ) ◦ π(vτ )) �� (π(qτ ′)) , by definition of qτ=>τ ′

= ids[[τ ]] �� ids[[τ ′]] , by induction and definition of vτ

= ids[[τ ]] ��s[[τ ′]]. �

Normalisation function. Every interpretation s : T �� S of base types in a cartesian closed
category, induces a normalisation function s-nfτ : Lτ

��Nτ in SetF↓̃T defined as the composite

Lτ
�τ �� [s[[ ]], s[[τ ]]] [uv,qτ ] �� [y( ), ητ] ∼= ��Nτ

where � denotes the semantics of terms induced by the interpretation s : T �� SetF↓̃T↓〈s[[ ]]〉
of (24) and where

(uv)� = y(�) v� ��μ[[�]] u� �� s[[�]]

for

μ[[�]] = ∏
(x:τ )∈� μτ ,

v� = y(�)
∼= ��∏

(x:τ )∈� ντ

∏
(x:τ )∈� vτ �� μ[[�]] ,

u� = ∏
(x:τ )∈� uτ .

Explicitly,
s-nfτ ,�(t) = (qτ s[[� 
 t : τ ]] (uv)�)(id�) ∈ Nτ (�)

for all terms t ∈ Lτ (�).
Having the same denotation, βη-equal terms are identified by the normalisation function.

Corollary 19. Let s : T �� S be an interpretation of base types in a cartesian closed category. For
every pair of terms t, t′ in Lτ (�), if t = βηt′ then s-nfτ ,�(t)= s-nfτ ,�(t′) in Nτ (�).

Further, as a consequence of Proposition 18 (see also (25)), we have that a term and its
associated normal form have the same semantics.

Corollary 20. For every interpretation s : T �� S of base types in a cartesian closed category, the
diagram

Lτ

�τ ��
















s-nfτ �� Nτ

nτ�����
���

���
��

S(s[[__]], s[[τ ]])

commutes for all types τ ∈ T̃.

Considering the universal interpretation f : T ��Fccc[T] of the set of base types T into the free
cartesian closed category Fccc[T] over them, by Corollary 20, we have that

t = βηf-nfτ ,�(t) (26)
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and hence, by Corollary 19, that
s-nfτ ,�(t)= s-nfτ ,�(f-nfτ ,�(t))

for all terms t ∈ Lτ (�). Thus, the normalisation function f-nfτ is idempotent and therefore fixes
some normal terms. In fact, as we will see below (see (29) in Theorem 21), all normalisation
functions s-nfτ fix all normal terms: that is,

for all N ∈ Nτ (�), s-nfτ ,�(N)=N. (27)
This fixed-point property is important: from it and Corollary 19 it follows that

• for all terms t ∈ Lτ (�) and normal terms N ∈ Nτ (�), if t = βηN then s-nfτ ,�(t)=N, and
• for every pair of normal terms N,N′ ∈ Nτ (�), if N = βηN′ then N =N′;

so that, further using Corollary 20 in the form (26), we have that

• for all terms t ∈ Lτ (�), s-nfτ ,�(t)= f-nfτ ,�(t).

Thus, the fixed-point property (27) allows one to conclude that:

all interpretations induce the same normalisation function nfτ : Lτ
��Nτ such that, for

every term t ∈ Lτ (�), one has that nfτ ,�(t) ∈ Nτ (�) is the unique normal term βη-equal
to t.

We now establish (27). The appropriate induction hypothesis to proceed by induction on the
structure of neutral and normal terms is stated in the theorem below.

Theorem 21. For every interpretation s : T �� S of base types in a cartesian closed category, the
diagrams

Mτ

mτ ����
���

���
���

���
∼= [y(__),μτ] [id,uτ ] �� [y(__), s[[τ ]]]

[s[[__]], s[[τ ]]]
[uv,id]

����������
(28)

and

Nτ
∼= ��

nτ ��















[y(__), ητ]

[s[[__]], s[[τ ]]]
[uv,qτ ]

�������������
(29)

commute for all types τ ∈ T̃.

PROOF: The proof uses the induction principle associated to the initial 〈
1,
2〉-algebra (M,N)
(see (15)) by considering the equalisers

Pτ
�� ıτ ��Mτ and Qτ

�� jτ ��Nτ

of (28) and (29), respectively, and showing that the family
(ıτ , jτ ) : (Pτ ,Qτ ) �� �� (Mτ ,Nτ ) (τ ∈ T̃)
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is a sub 〈
1,
2〉-algebra, from which it follows that ıτ and jτ are isomorphisms and hence
that (28) and (29) commute. The details are spelled out in Appendix C. �

Remark. In elementary terms, the above categorical proof amounts to establishing the identities

s[[� 
M : τ ]] (uv)� = uτ (M[ ], s[[� 
M : τ ]])
and

qτ s[[� 
N : τ ]] (uv)� = (N[ ], s[[� 
N : τ ]])
for M ∈ Mτ (�) and N ∈ Nτ (�), by simultaneous induction on the derivation of neutral and
normal terms (cf. Reynolds 1998).

The commutativity of diagram (29) amounts to property (27) and hence, as explained above,
all normalisation functions coincide.

Corollary 22. For every interpretation s : T �� S of base types in a cartesian closed category and
for the universal interpretation f : T ��Fccc[T] of base types into the free cartesian closed category
over them, the identity

s-nfτ = f-nfτ : Lτ
��Nτ in SetF↓̃T

holds.

Summarising, we have obtained normalisation functions

nfτ ,� : Lτ (�) ��Nτ (�) (τ ∈ T̃, � ∈ |F↓T̃|)
satisfying the correctness properties below.

• For all context renamings ρ : � �� �′ in F↓T̃,
(nfτ ,� t)[ρ]= nfτ ,�′(t[ρ])

for every term t ∈ Lτ (�).
• For all normal terms N ∈ Nτ (�),

nfτ ,�(N)=N.

• For all terms t ∈ Lτ (�),

nfτ ,�(t)= βηt.

• For all terms t, t′ ∈ Lτ (�),

if t = βηt′ then nfτ ,�(t)= nfτ ,�(t′).

Normalisation algorithm. The simplest description of the normalisation function from which
to extract an algorithm is the one induced by the trivial interpretation t of base types in the trivial
cartesian closed category as, in this case, the glueing category SetF↓̃T↓〈t[[ ]]〉 is simply (isomor-
phic to) the presheaf category SetF↓̃T (recall Example 12). In fact, previous categorical analysis
of normalisation by evaluation have centred around this interpretation (Altenkirch et al., 1995;
Reynolds, 1998).

Explicitly, the unquote and quote maps

Mτ
uτ �� s[[τ ]]

qτ ��Nτ (τ ∈ T̃) (30)
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in SetF↓̃T, with respect to the interpretation of base types s : θ � ��Mθ , are (in the internal language
of SetF↓̃T) as follows:

1. uθ (M)=M

qθ (M)= norm(M), where norm : Mθ

∼= ��Nθ (see (13))

2. u1(M)= ( )

q1( )= unit1( )

3. uτ∗τ ′(M)= ( uτ (fst(τ
′)

τ M) , uτ ′(snd(τ )
τ ′ M) )

qτ∗τ ′(x, x′)= pairτ∗τ ′( qτ (x) , qτ ′(x′) )

4. uτ=>τ ′(M)= λλ xs[[τ ]]. uτ ′(app(τ )
τ ′ (M, qτ x))

qτ=>τ ′(f )= absτ=>τ ′(λλ vVτ . qτ ′(f (uτ (varτ v))))

and the normalisation function is given by

nfτ ,�(t)= qτ (s[[� 
 t : τ ]] 〈uτi(varτi xi)〉i=1,n) (31)

for all terms t ∈ Lτ (�) where � = 〈xi : τi〉i=1,n.
These functions can be directly implemented, for instance, in metalanguages support-

ing abstract syntax with variable binding, like HOAS (Pfenning and Elliot, 1988), Fresh
O’Caml (Fresh O’Caml, www.cl.cam.ac.uk/∼amp12/fresh− ocaml/), the Scope-and-Type Safe
Universe of Syntaxes with Binding (Allais et al., 2021), and the SOAS Framework (Fiore and
Szamozvancev, 2022). Indeed, for concreteness, we here synthesise an elementary implementation
in Agda considered as a dependently typed functional programming language.1
Syntax. We consider simple types over a countably infinite set of base types (see (1)):

Typing contexts (Definition 4) are inductively generated by context extension from an empty
context:

We then have a family of variable indices (recall (9)) given as follows:
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for which context renamings (Definition 4) are considered:

The abstract syntax of simply typed terms (see (11)) is implemented by the inductive family
below:

Analogously, the abstract syntax of neutral and normal terms (see (12) and (14)) is imple-
mented by the following mutually inductive families:

Their presheaf actions (recall (7) and (8)) will be needed:
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Note the treatment of abstraction guaranteeing fresh bindings.

Semantics. We implement the presheaf semantics of types induced by the interpretation of base
types as neutral terms (see (24)). Note that for higher types, the implementation glosses over the
naturality condition required of presheaf exponentials (see (22)).

The semantic interpretation of terms (see (20)) follows:

Normalisation by evaluation. The unquote and quote functions (see (30)) are implemented:
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Remark.A technical point to note is that the implementation of f arises from the func-
torial action of presheaf exponentiation (in particular with respect to the evaluation map (23)),
which in this case instatiates to the equivalent expression .

Finally, the normalisation function (see (31)) is

4. Conclusion
We have given a new categorical view of normalisation by evaluation for typed lambda calculus,
both for extensional and intensional normalisation problems.

Extensional normalisation was obtained from a basic lemma unifying definability and nor-
malisation. Our analysis has the important methodological consequence of providing guidance
when looking for normal forms. Indeed, a basic lemma based on the definability result of Fiore
and Simpson (1999) via Grothendiek logical relations led to syntactic counterparts of the nor-
mal forms of Altenkirch et al. (2001) and has been applied to establish extensional normalisation
for the typed lambda calculus with empty and sum types (Balat et al., 2004). Along this line of
research, one can study normalisation for other calculi for which definability results based on
Kripke relations have been obtained – as classical linear logic (Streicher, 2000), for instance.

The approach to normalisation by evaluation presented in the paper is novel, chiefly, in the
following respects.

• The refinement from the extensional setting to the intensional one leading to the formalisa-
tion of normalisation by evaluation via categorical glueing.
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• The use of an algebraic framework to structure both the development and proofs culminating
in the definition of the normalisation function within a simply typed metatheory.

• The synthesis of a normalisation-by-evaluation program in a dependently typed functional
programming language.

The obtained abstract normalisation algorithm synthesises various concrete implementations.
Its specialisation to particular implementations of abstract syntax directly yields normalisation
programs for concrete syntactic representations. In particular, we have provided a normalisation-
by-evaluation program for the type-and-scope safe, intrinsically typed encoding of typed lambda
terms (Allais et al., 2021; Altenkirch and Reus, 1999; Benton et al., 2012). How the abstract setting
is related to representations of binding based on generating globally unique identifiers, say as
in Filinski (2001), needs to be investigated.

The role of categorical glueing in our analysis is reminiscent of realisability. It would be inter-
esting to understand whether there are connections to the modified realisability approach of
Berger (1993).

Acknowledgements. The basis for this work, which was motivated by a question of Roberto Di Cosmo, was done during a
visit to PPS, Université Paris 7 in July 2001 organised by Paul-André Melliès and supported by the CNRS. Discussions with
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Note
1 The code is available from www.cl.cam.ac.uk/~mpf23/Notes/Notes.html.
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Appendix A. Homomorphism property of � : L → C

Vτ

varτ

����
��
��
�� s[[__]]

��
















Lτ
�τ

�� S(s[[ ]], s[[τ ]])
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1
unit1



��
��
��
�� ∼=

���
��

����
���

L1
�1

�� S(s[[ ]], s[[1]])

Lτ∗τ ′

fst(τ
′)

τ

��

�τ∗τ ′ �� S(s[[ ]], s[[τ ∗ τ ′]])
π1◦__
��

Lτ
�τ

�� S(s[[ ]], s[[τ ]])

Lτ ′∗τ

snd(τ
′)

τ

��

�τ ′∗τ �� S(s[[ ]], s[[τ ′ ∗ τ ]])

π2◦__
��

Lτ
�τ

�� S(s[[ ]], s[[τ ]])

Lτ × Lτ ′

pairτ∗τ ′
��

�τ ×�τ ′ �� S(s[[ ]], s[[τ ]])× S(s[[ ]], s[[τ ′]])
∼=
��

Lτ∗τ ′
�τ∗τ ′

�� S(s[[ ]], s[[τ ∗ τ ′]])

Lτ ′=>τ × Lτ ′

app(τ
′)

τ

��

�τ ′=>τ ×�τ ′ �� S(s[[ ]], s[[τ ′=>τ ]])× S(s[[ ]], s[[τ ′]])
∼=
��

S(s[[ ]], (s[[τ ′]] �� s[[τ ]])× s[[τ ′]])

ε◦__
��

Lτ
�τ

�� S(s[[ ]], s[[τ ]])

(Lτ ′)Vτ

absτ=>τ ′
��

(�τ ′ )Vτ

�� (S(s[[ ]], s[[τ ′]]))Vτ

∼=
��

Lτ=>τ ′
�τ=>τ ′

�� S(s[[ ]], s[[τ=>τ ′]])

Appendix B. Homomorphism property of (m, n) : (M,N)→ (C,C)

Vτ

varτ

����
��
��
�� s[[__]]

��
















Mτ mτ

�� S(s[[ ]], s[[τ ]])

(B1)

Mτ∗τ ′

fst(τ
′)

τ

��

mτ∗τ ′ �� S(s[[ ]], s[[τ ∗ τ ′]])
π1◦__
��

Mτ mτ

�� S(s[[ ]], s[[τ ]])

(B2)
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Mτ ′∗τ

snd(τ
′)

τ

��

mτ ′∗τ �� S(s[[ ]], s[[τ ′ ∗ τ ]])

π2◦
��

Mτ mτ

�� S(s[[ ]], s[[τ ]])

(B3)

Mτ ′=>τ × Nτ ′

app(τ
′)

τ

��

mτ ′=>τ ×nτ ′ �� S(s[[ ]], s[[τ ′=>τ ]])× S(s[[ ]], s[[τ ′]])
∼=
��

S(s[[ ]], (s[[τ ′]] �� s[[τ ]])× s[[τ ′]])

ε◦
��

Mτ mτ

�� S(s[[ ]], s[[τ ]])

(B4)

Vθ

varθ

����
��
��
�� s[[__]]

��
















Nθ nθ

�� S(s[[ ]], s[[θ]])

(B5)

Mθ∗τ ′

fst(τ
′)

θ
��

mθ∗τ ′ �� S(s[[ ]], s[[θ ∗ τ ′]])
π1◦__
��

Nθ nθ

�� S(s[[ ]], s[[θ]])

(B6)

Mτ ′∗θ

snd(τ
′)

θ
��

mτ ′∗θ �� S(s[[ ]], s[[τ ′ ∗ θ]])

π2◦
��

Nθ nθ

�� S(s[[ ]], s[[θ]])

(B7)

Mτ ′=>θ × Nτ ′

app(τ
′)

θ

��

mτ ′=>θ×nτ ′ �� S(s[[ ]], s[[τ ′=>θ]])× S(s[[ ]], s[[τ ′]])
∼=
��

S(s[[ ]], (s[[τ ′]] �� s[[θ]])× s[[τ ′]])

ε◦
��

Nθ nθ

�� S(s[[ ]], s[[θ]])

(B8)

1
unit1∼=�

��



��
�

∼=
���

��

����
���

N1 n1
�� S(s[[ ]], s[[1]])

(B9)
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Nτ × Nτ ′

pairτ∗τ ′∼=
��

nτ ×nτ ′ �� S(s[[ ]], s[[τ ]])× S(s[[ ]], s[[τ ′]])
∼=
��

Nτ∗τ ′ nτ∗τ ′
�� S(s[[ ]], s[[τ ∗ τ ′]])

(B10)

(Nτ ′)Vτ

absτ=>τ ′∼=
��

(nτ ′ )Vτ

�� (S(s[[ ]], s[[τ ′]]))Vτ

∼=
��

Nτ=>τ ′ nτ=>τ ′
�� S(s[[ ]], s[[τ=>τ ′]])

(B11)

Appendix C. Proof of Theorem 21
For ıτ : Pτ

�� ��Mτ and jτ : Qτ
�� ��Nτ the equalisers of (28) and (29), respectively, we show

that ({ Pτ }τ∈T̃, { Qτ }τ∈T̃) is a sub 〈
1,
2〉-algebra of (M,N). That is, that we have the following
situation


1(P,Q) �����
��


1(ı ,j)
��

P
��

ı

��

1(M,N) ∼= �� M


2(P,Q) �����
��


2(ı ,j)
��

Q
��

j

��

2(M,N) ∼= �� N

Below, we will use the following conventions: (H) indicates commutativity by the homomor-
phism property; (I) and (J), respectively, indicate commutativity by the definition of ı and j; and
(Q) and (U), respectively, indicate commutativity by the definition of q and u.

(1) For τ ∈ T̃, the map Vτ
varτ ��Mτ equalises diagram (28), and hence factors through

Pτ
�� ıτ ��Mτ , because the diagram

1
varτ ,〈τ 〉(id〈τ 〉)
����

����

�����
����

�
vτ

��

ids[[τ ]]

��

(H) Mτ 〈τ 〉
−�

�
−

∼= ��

mτ ,〈τ 〉
��

[y〈τ 〉,μτ]
[id,uτ ]
��

[s[[τ ]], s[[τ ]]]
[uτ vτ ,id]

�� [y〈τ 〉, s[[τ ]]]

in Set

commutes.

(2) For τ , τ ′ ∈ T̃, the map Pτ∗τ ′ �� ıτ∗τ ′ ��Mτ∗τ ′
fst(τ

′)
τ ��Mτ equalises diagram (28), and hence

factors through Pτ
�� ıτ ��Mτ , as shown by the diagram below.

https://doi.org/10.1017/S0960129522000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000263


1062 M. Fiore

Pτ∗τ ′
ıτ∗τ ′ ��

ıτ∗τ ′

��

(I)

Mτ∗τ ′
fst(τ

′)
τ ��

mτ∗τ

��
(H)

Mτ

mτ

��
[s[[__]], s[[τ ]]× s[[τ ′]]]

[id,π1]
��

[uv,id]
��

[s[[__]], s[[τ ]]]

[uv,id]

��

Mτ∗τ ′

fst(τ
′)

τ

��

∼= �� [y( ),μτ∗τ ′]
[id,(fst(τ

′)
τ ,π1)]
��

[id,uτ∗τ ′ ] ��

(U)

[y( ), s[[τ ]]× s[[τ ′]]]
[id,π1]
����

�

�����
��

Mτ
∼= �� [y( ),μτ] [id,uτ ]

�� [y( ), s[[τ ]]]

Analogously, for τ , τ ′ ∈ T, the map Pτ ′∗τ
�� ıτ ′∗τ ��Mτ ′∗τ

snd(τ
′)

τ ��Mτ equalises dia-
gram (28), and hence also factors through Pτ

�� ıτ ��Mτ .

(3) For τ , τ ′ ∈ T̃, the map Pτ ′=>τ × Qτ ′ �� ıτ ′=>τ ×jτ ′ ��Mτ ′=>τ × Nτ
′ app(τ

′)
τ ��Mτ equalises

diagram (28), and hence factors through Pτ
�� ıτ ��Mτ , as shown by the diagram below.

Pτ ′=>τ × Qτ ′
ıτ ′=>τ ×jτ ′ ��

id×(nτ ′ jτ ′ )
����

��

�����
���

ıτ ′=>τ ×id

��

Mτ ′=>τ × Nτ ′
app(τ

′ )
τ ��

mτ ′=>τ ×nτ ′

��
(H)

Mτ

mτ

��
Pτ ′=>τ × [s[[__]], s[[τ ′]]]

(mτ ′=>τ ıτ ′=>τ )× id

��

ıτ ′=>τ ×id

��

[s[[__]], s[[τ ]]s[[τ ′ ]]]× [s[[__]], s[[τ ′]]]

[uv,id]×id

��

∼= �� [s[[__]], s[[τ ]]s[[τ ′ ]] × s[[τ ′]]]
[id,ε] ��

[uv,id]

��

[s[[__]], s[[τ ]]]

[uv,id]

��

Mτ ′=>τ × Qτ ′
id×(nτ ′ jτ ′ ) ��

id×jτ ′

��

Mτ ′=>τ × [s[[__]], s[[τ ′]]]

∼=×id

��

(I)

(J)

[y( ),μτ ′=>τ ]× [s[[__]], s[[τ ′]]]
[id,uτ ′=>τ ]×id��

id×[uv,id]

��

[y( ), s[[τ ]]s[[τ ′ ]]]× [s[[__]], s[[τ ′]]]

id×[uv,id]

��
[y( ),μτ ′=>τ ]× [y( ), s[[τ ′]]]

[id,uτ ′=>τ ]×id��

∼=��
����

��

�����
����

�id×[id,qτ ′ ]

��

[y( ), s[[τ ]]s[[τ ′ ]]]× [y( ), s[[τ ′]]] ∼= �� [y( ), s[[τ ]]s[[τ ′ ]] × s[[τ ′]]]

[id,ε]
��

��
��

��
��

��

���
��

��
��

��
��

�

[y( ),μτ ′=>τ ]× [y( ), ητ ′ ]

∼=��
����

��

�����
����

�

[y( ),μτ ′=>τ × s[[τ ′]]]

[id,id×qτ ′ ]

��

[id,uτ ′=>τ ×id]      

        

(U)

Mτ ′=>τ × Nτ ′

app(τ
′ )

τ

��

∼=×∼=������

��������

∼= �� [y( ),μτ ′=>τ × ητ ′ ]

[id,(app(τ
′ )

τ ,ε)]

��
Mτ ∼= �� [y( ),μτ ]

[id,uτ ]
�� [y( ), s[[τ ]]]

(4) For θ ∈ T, the map Vθ
varθ ��Nθ equalises diagram (29) with τ = θ , and hence factors

through Qθ
�� jθ ��Nθ because the diagram
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1
ids[[θ]]
����

��

�����
���

varθ ,〈θ〉(id〈θ〉) ��

(varθ ,ids[[θ]])

��

qθuθ vθ

��

(H)

Nθ 〈θ〉

−�

�
−

∼=��
����

��

�����
����

�nθ ,〈θ〉
��

[s[[θ]], s[[θ]]]
[uθ vθ ,qθ ]〈θ〉

�� [y〈θ〉, ηθ]
in Set

commutes.

(5) For θ ∈ T and τ ′ ∈ T̃, the mapPθ∗τ ′ �� ıθ∗τ ′ ��Mθ∗τ ′
fst(τ

′)
θ ��Nθ equalises diagram (29) with

τ = θ , and hence factors through Qθ
�� jθ ��Nθ , as shown by the diagram below (which

depends on the diagram in item 2 above with τ = θ).

Pθ∗τ ′
ıθ∗τ ′

�����
���

���
���

ıθ∗τ ′
��

ıθ∗τ ′

��!!
!!!

!!!
!!

Mθ∗τ ′

fst(τ
′)

θ
��

Mθ∗τ ′

fst(τ
′)

θ
��

Mθ∗τ ′

fst(τ
′)

θ
��

Nθ

nθ

��

Mθ
∼=�� ∼= ��

∼=
��

mθ
���

��

�����
��

Nθ

∼=

��

[s[[__]], s[[θ]]]

[uv,id] ����
���

���
���

−�

�
−

[uv,qθ ]

��

[y( ),μθ]
∼= [id,uθ ]
��

(Q)(U)

[y( ), s[[θ]]]
[id,qθ ]

��
[y( ), ηθ]

Analogously, for θ ∈ T and τ ′ ∈ T̃, the map Pτ ′∗θ
�� ıτ ′∗θ ��Mτ ′∗θ

snd(τ
′)

θ ��Nθ equalises
diagram (29) for τ = θ , and hence also factors through Qθ

�� jθ ��Nθ .

(6) For θ ∈ T and τ ′ ∈ T̃, the map Pτ ′=>θ × Qτ ′ �� ıτ ′=>θ×jτ ′ ��Mτ ′=>θ × Nτ ′
app(τ

′)
θ �� Nθ

equalises diagram (29) with τ = θ , and hence factors through Qθ
�� jθ ��Nθ , as shown by

the diagram below (which depends on the diagram in item 3 above with τ = θ).
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Pτ ′=>θ × Qτ ′
ıτ ′=>θ×jτ ′

�����
���

���
���

�
ıτ ′=>θ×jτ ′

��

ıτ ′=>θ×jτ ′

����
���

���
���

��

Mτ ′=>θ × Nτ ′

app(τ
′)

θ
��

Mτ ′=>θ × Nτ ′

app(τ
′)

θ
��

Mτ ′=>θ × Nτ ′

app(τ
′)

θ
��

Nθ

nθ

��

Mθ
∼=�� ∼= ��

∼=
��

mθ
����

��

������
��

Nθ

∼=

��

[s[[__]], s[[θ]]]

[uv,id] ����
���

���
���

�
−�

�
−

[uv,qθ ]

��

[y( ),μθ]
∼= [id,uθ ]
��

(Q)(U)

[y( ), s[[θ]]]
[id,qθ ]

��
[y( ), ηθ]

(7) Diagram (29) with τ = 1 commutes, and hence the map 1 unit1
∼=

��N1 factors through the

equaliser Q1 �� j1
∼=

��N1.

(8) For τ , τ ′ ∈ T̃, the map Qτ × Qτ ′ �� jτ ×jτ ′ �� Nτ × Nτ ′
pairτ∗τ ′

∼=
��Nτ∗τ ′ equalises dia-

gram (29), and hence factors through Qτ∗τ ′ �� jτ∗τ ′ ��Nτ∗τ ′ , as shown by the diagram
below.

Qτ × Qτ ′
jτ ×jτ ′ ��

jτ ×jτ ′

��

(J)

Nτ × Nτ ′
pairτ∗τ ′

∼=
��

nτ ×nτ ′
��

(H)

Nτ∗τ ′

nτ∗τ ′
��

[s[[__]], s[[τ ]]]× [s[[__]], s[[τ ′]]] ∼= ��

[uv,qτ ]×[uv,qτ ′ ]
��

[s[[__]], s[[τ ]]× s[[τ ′]]]
[uv,id]

��
[y( ), ητ]× [y( ), ητ ′]

∼="
""""

""

��"""
""""

[y( ), s[[τ ]]× s[[τ ′]]]
[id,qτ ×qτ ′ ]

�����
���

���
���

[id,qτ∗τ ′ ]

��

Nτ × Nτ ′ ∼= ��

∼=×∼=�������

���������

pairτ∗τ ′ ∼=
��

[y( ), ητ × ητ ′]
[id,(pairτ∗τ ′ ,id)] ∼=�

���
��

����
���

�

(Q)

Nτ∗τ ′ ∼= �� [y( ), ητ∗τ ′]
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(9) For τ , τ ′ ∈ T̃, the map (Qτ ′)Vτ �� (jτ ′ )Vτ

�� (Nτ ′)Vτ
absτ=>τ ′

∼=
��Nτ=>τ ′ equalises diagram (29),

and hence factors through Qτ=>τ ′ �� jτ=>τ ′ ��Nτ=>τ ′ , as shown by the diagram below.

(Qτ ′)Vτ
(jτ ′ )Vτ

��

(jτ ′ )Vτ

��

(J)

(Nτ ′)Vτ
absτ=>τ ′

∼=
��

(nτ ′ )Vτ

��
(H)

Nτ=>τ ′

nτ=>τ ′
��

[s[[ ]], s[[τ ′]]]Vτ ∼= ��

[uv,qτ ′ ]Vτ

��

[s[[__]], s[[τ ′]]s[[τ ]]]
[uv,id]
��

[y( ), ητ ′]Vτ

∼=�
���

��

����
���

�

[y( ), s[[τ ′]]s[[τ ]]]
[id,qτ ′ uτ vτ ]

�����
���

���
���

�

[id,qτ=>τ ′ ]

��

(Nτ ′)Vτ ∼= ��

(∼=)Vτ
����

!!����

absτ=>τ ′ ∼=
��

[y( ), (ητ ′)ντ ]
[id,(absτ=>τ ′ ,id)] ∼=�

���
��

����
���

�

(Q)

Nτ=>τ ′ ∼= �� [y( ), ητ=>τ ′]
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