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Global Positioning System (GPS) has been used as a primary source of navigation in land
and airborne applications. However, challenging environments cause GPS signal blockage or
degradation, and prevent reliable and seamless positioning and navigation using GPS only.
Therefore, multi-sensor based navigation systems have been developed to overcome the
limitations of GPS by adding some forms of augmentation. The next step towards assured
robust navigation is to combine information from multiple ground-users, to further improve
the chance of obtaining reliable navigation and positioning information. Collaborative (or
cooperative) navigation can improve the individual navigation solution in terms of both
accuracy and coverage, and may reduce the system’s design cost, as equipping all users
with high performance multi-sensor positioning systems is not cost effective. Generally,
‘Collaborative Navigation’ uses inter-nodal range measurements between platforms (users) to
strengthen the navigation solution. In the collaborative navigation approach, the inter-nodal
distance vectors from the known or more accurate positions to the unknown locations can be
established. Therefore, the collaborative navigation technique has the advantage in that errors
at the user’s position can be compensated by other known (ormore accurate) positions of other
platforms, and may result in the improvement of the navigation solutions for the entire group
of users. In this paper, three statistical network-based collaborative navigation algorithms,
the Restricted Least-Squares Solution (RLESS), the Stochastic Constrained Least-Squares
Solution (SCLESS) and the Best Linear Minimum Partial Bias Estimation (BLIMPBE) are
proposed and compared to the Kalman filter. The proposed statistical collaborative
navigation algorithms for network solution show better performance than the Kalman filter.
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1. INTRODUCTION. Global Positioning System (GPS) is the most widely
used positioning and navigation technology. Differential GPS (DGPS) offers
centimetre-level positioning accuracy for static observations and sub-decimetre
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accuracy for kinematic systems. However, GPS is a line-of-sight system and is,
therefore, unusable or severely limited by signal availability in GPS-challenged
environments. GPS is also subject to intentional (jamming) and unintentional RF
interference. To overcome these limitations, many navigation technologies based
mainly on the concept of multi-sensor integration have been proposed and tested
(Mirabadi et al., 2003; Sharaf and Noureldin, 2007; Grejner-Brzezinska et al., 2008;
Lee and Jekeli, 2011).
In the concept of Collaborative Navigation (CN), each vehicle (also referred to as

node hereafter) in the network share information (e.g. GPS code pseudo-ranges,
carrier-phase pseudo-ranges or its 3-Dimensional (3D) coordinates, and the inter-
nodal distance measurements with other nodes) to improve the overall performance of
a group of vehicles. It is assumed that each node of the network can measure the 3D
relative position by various inter-nodal ranging techniques such as laser ranging,
microwave ranging and vision sensors. The CN can improve the accuracy of a single-
platform navigation solution, increase the integrity of its solution, and detect possible
collision causes of the vehicle. Figure 1 illustrates the network-based collaborative
navigation concept where sub-networks of nodes navigating jointly could be created
ad hoc, as indicated by the circles; it should be noted that some nodes (users) may be
parts of different sub-networks. In a whole network, the selection of a sub-network of
nodes is a critical issue, as in the case of a large number of users in the entire network,
computational and communication loads may not allow for the entire network to be
treated as one entity (Grejner-Brzezinska et al., 2009). Conceptually, the sub-networks
can consist of nodes of equal hierarchy or may contain a master (anchor) node that
will normally have a better set of sensors and will be collecting measurements from all
other nodes to perform collaborative navigation.
Various collaborative navigation technologies based on the multi-sensor concept

have been discussed in many literatures. (Sanderson, 1997) employed the range

Figure 1. Collaborative navigation concept.
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measurement in the centralized linear Kalman filter framework. (Fox et al., 1999)
proposed collaborative mobile robot localization based on a probabilistic navigation
algorithm. (Berefelt et al., 2004) showed that the relative vector method was better than
the other two methods (virtual satellite and shared pseudorange) to improve the GPS/
INS performance in urban navigation. (Panzieri et al., 2005) used a bank of interlaced
Kalman filters to incorporate ranges into the states of the filter. (Brown and Nordlie,
2006) designated the master nodes to improve the navigation performance of the entire
network. (Kaba and Wu, 2009) developed the distributed multi-sensor fusion to bind
the position errors using GPS, RF beacons, or anchor nodes for the collaborative
navigation system. (Grejner-Brzezinska et al., 2009) employed the bank of extended
Kalman filters to integrate the inter-nodal range measurements with other sensor.
Collaborative navigation has advantage over the single vehicle navigation because

the position errors of some nodes can be compensated by known (or more accurate)
coordinates of other nodes, which improves the overall navigation results of the group
of users navigating together. It should be noted that previous studies of the network-
based approach use primarily the distance-dependent weighting or the empirical
covariance, thus, the accuracy and reliability of a single user or a group of users may
not be significantly improved. In this paper, three statistical network-based
collaborative navigation algorithms, namely the Stochastic Constrained Least-
Squares Solution (SCLESS), the Best Linear Minimum Partial Bias Estimation
(BLIMPBE), and the Restricted Least-Squares Solution (RLESS) are proposed and
compared to the Kalman filter, based on the field data collected by a network of five
kinematic platforms; a GPS Van, a mobile cart and three GPS stations.

2. NETWORK-BASED COLLABORATIVE NAVIGATION
ALGORITHM. The relative component of the inter-nodal vector between
nodes i and j is given as:

dij = xi − xj, (1)
where:

dij is a single component of the actual distance measurements between two nodes.
xi and xj are the position coordinates of each node.

The inter-nodal output measurement (i.e., sensor output) is simply modeled as
equation (2) with additive noise v:

yij = dij + v (2)
where v is assumed to have Gaussian distribution (v*N(0,Rv), where Rv is the noise
covariance matrix.
The three-dimensional measurement model for the n-node network environment is

given as:

�y
3m×1[ ]

= A
3m×3n[ ]

· �x
3n×1[ ]

+ �v
3m×1[ ]

(3)

where:

�y is the vector of x, y, z difference of inter-nodal distance measurements.
m is the number of measurements.
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�x is the vector of position in x, y, z for all nodes in the network.
A is the design matrix that linearly relates the node variables through the inter-nodal

measurements, and �v is the additive noise vector.

Since the design matrix A shows the relationship of the relative inter-nodal
measurements for pairs of nodes, it can be written as a composite matrix of identity
matrices. The dimension of matrix A is 3m by 3n for the three dimensional
coordinates. In the examples shown here, it is assumed that there is only one user node
and other nodes are all reference (or higher order) nodes in a network. Thus, for
instance, if the number of nodes is three, there are two inter-nodal distance
measurements between the user node and two reference nodes d31 and d32 in
Figure 2b, then the matrix A is given as follows:

A = −I1 0 I3
0 −I1 I3

[ ]
(4)

where each I is a 3 by 3 identity matrix for the 3D case.
However, there is one more inter-nodal relationship between node 1 and 2, d21,

dashed line, see Figure 2b; and thus, one more inter-nodal relationship can be added
to the measurements. Therefore, the matrix A can be rewritten as follows:

A =
−I1 0 I3
0 −I1 I3

−I1 I3 0





 (5)

Similarly, if the number of nodes is 4 (5), one can consider 3 (6) inter-nodal
distances among the reference nodes and 3 (4) inter-nodal distances between the user
nodes and the reference nodes. Naturally, with the increasing number of nodes in the
network, more inter-nodal measurements can be obtained and measured. Therefore,
the proposed ‘Network-based Estimation’ method can provide stronger geometry, as
compared to a single distance measurement, as well as the redundancy.
Three network-based collaborative navigation algorithms, namely:

(1) RLESS which employs the minimum constraints to overcome the rank
deficiency by fixing one of the known positions;

(a) two nodes

(c) four nodes 

21

3

1 2

1 2

3

4 

(b) three nodes

(d) five nodes

1 2

3 
4

5

Figure 2. The geometry of networks studied here as a function of a number of nodes:▲: reference
node, : user node.
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(2) SCLESS which imposes the stochastic constraints on the unknown position
using a priori coordinate variance and

(3) BLIMPBE which minimizes the biases for a subset of parameters (the position)
are tested in a network composed of the various kinematic nodes with the
objective to compare, evaluate, and, ultimately, to identify the best method for
collaborative navigation.

The general measurement (observation) model is shown in Equation (3) and is
recalled as:

�y = A · �x+ �v, �v � N(0,Σ = σ20P
−1) (6)

where:

�y is the 3m×1 inter-nodal measurement vector of x, y, z components.
A is the 3m× 3n design matrix with rank of q (q4n), x is 3n×1 unknown vector
of position difference in x, y, z.
�v is the additive noise vector assuming the normal distribution with zero mean
and variance-covariance of Σ.
σ0
2 is the unit-less variance component.
P is the weight matrix of the measurements.

2.1 Restricted Least-Squares Solution (RLESS). In the RLESS, the
minimum constraint is given by fixing the best known coordinates in a network. For
example, if there are two reference nodes and one user node, one reference node which
has the best accuracy (e.g., master node) is fixed for a minimally constrained
adjustment. Thus, it could be the best approach if only one node has high accuracy
coordinates.
The minimally constrained solutions are obtained using the following constraint

equation:

κ0 = K · �x (7)
where:

κ0 is the l×1 constraint vector.
K is the l×m corresponding coefficient matrix and rank(K )=n−q.
q is the number of coordinates fixed.

The following estimate and the corresponding variance-covariance matrix for the
unknown vector, x̂RLESS , can be obtained using the general least-squares method:

x̂RLESS = (N + KTK)−1(c+ KTκ0) (8)
D{x̂RLESS} = σ20(N + KTK)−1N(N + KTK)−1 (9)

where [N c]=AT P [A y].
Alternatively, the estimate and corresponding covariance matrix for the RLESS can

be obtained using the general recursive least-squares method (see the detailed
derivations in Lewis, 1986).

2.2 Stochastically Constrained Least-Squares Solution (SCLESS). If prior
information about the nodes is available (e.g., known or best approximation of the
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coordinates of the nodes) with their variance-covariance matrix, the SCLESS method
can be used. Similar to Equation (7), the constraints with random errors are
formulated as:

z0 = K · x+ e0, e0 � (0,Σ0 = σ20P
−1
0 ) (10)

where:

z0 is the l×1 stochastic constraints vector.
e0 is the corresponding random errors with zero mean and variance-covariance

of Σ0.
P0 is the positive-definite weight matrix.
The rank of K matrix is l5m−q.

Since the observation vector and the stochastic constraints are uncorrelated, the
least-squares estimates, x̂SC−LESS, and the variance-covariance matrix, D{x̂SC−LESS},
of the unknown vectors are:

x̂SC−LESS = (N + KTP0K)−1(c+ KTP0z0) (11)
D{x̂SC−LESS} = σ20(N + KTP0K)−1 (12)

2.3 Best Linear Minimum Partial Bias Estimation (BLIMPBE). Finally,
the BLIMPBE, which was originally developed to minimize the biases at a
specific receiver positions in a rank-deficient GPS network adjustment, estimates
the unknowns with the minimum biases using the selection matrix (Schaffrin and
Iz, 2001; Snow, 2002). For example, if two reference nodes have better accuracy
than all other reference nodes (i.e., the number of all nodes is more than three) one
can employ only two reference nodes in the BLIMPBE method using a selection
matrix. The SCLESS uses all reference nodes in a network, while the BLIMPBE
employs only selected reference nodes. Therefore, it could be the best approach if
one can find (or select) the best reference nodes among all reference nodes in the
network.
The selection matrix, which has the following form, should have sufficient rank to

overcome the rank-deficiency in the system.

Sm×m = I3×3,s 0
0 0

[ ]
(13)

where I3×3,s is the 3 by 3 identity matrix with the dimension of s according to the
number of selected reference nodes from the entire network.
Since the detailed derivations are available in ibid., the resulting estimates,

x̂BLIMPBE , and the corresponding variance-covariance matrix, D{x̂BLIMPBE}, are
given at Equations (14) and (15):

x̂BLIMPBE = [SN(NSNSN)−NS] c (14)
D{x̂BLIMPBE} = σ20[SN(NSNSN)−NS] (15)

3. CENTRALIZED KALMAN FILTER. The Centralized Filter (CF)
represents globally optimal estimation accuracy for the implemented system models
(Knight et al, 1993; Grejner-Brzezinska and Wang, 1998; Carlson, 2002; Zhang et al.,
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2002). A CF may lead to significant computation loads, but it serves as an ideal
benchmark for other filters. Therefore, in this paper, we implemented a centralized
linear Kalman filter and compared its performance with respect to three proposed
network-based collaborative navigation algorithms. In Figure 3, all measurements
collected at the nodes and the inter-nodal range measurements are processed by a
single centralized Kalman filter. Figure 3 illustrates a generic case, when non-linear
measurements and/or dynamic model are used, while in the examples presented here a
linear Kalman filter is used.
The full derivation of the linear Kalman filter for collaborative navigation is well

presented in (Sanderson, 1997). Here, only a summary is given.
A linear measurement model of collaborative navigation can be described as the

random variable, �x, which is the vector of nodes position with a priori distribution,
Pk−1, and measurements is given as �y, with covariance matrix, Rv. Based on Gaussian
probability density function the linear measurement model can be solved as the
minimum mean-square error estimation of the Kalman filter.
A linear estimator, �̂x , for nodes positions, �xk, is given as

�̂xk = �̂xk−1 + PkHT
k R

−1
v (�yk −Hk �̂xk−1) (16)

where:

matrix Hk shows the relationship between states and inter-nodal range measure-
ments.

Rv is the covariance matrix of the inter-nodal range measurement errors.

The covariance of the estimates is given as:

Pk = (P−1
k−1 +HT

k R
−1
v Hk)−1 (17)

Figure 3. Centralized filter for collaborative navigation.

451NETWORK-BASED COLLABORATIVE NAVIGATION IN GPS-DENIEDNO. 3

https://doi.org/10.1017/S0373463312000069 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000069


4. FIELD TEST AND SIMULATION. To evaluate the network-based
collaborative navigation algorithms, a field test was performed on 11 August. 2009 on
West Campus at The Ohio State University. The three GPS stations and two mobile
platforms (referred to as ‘GPSVan’ and ‘mobile cart’), were used in the test. In the
GPSVan, there are two navigation-grade IMUs and two geodetic-grade GPS
receivers, while the mobile cart carries a tactical-grade IMU, two GPS receivers and
a 12 volt battery (Figure 4). The GPSVan and the cart were moved along the varying-
dynamic trajectories around the three GPS base stations (Figure 5).
To process the kinematic GPS data, the AIMS-Pro software ver. 2.0, developed

at the Satellite Positioning and Inertial Navigation (SPIN) Laboratory at OSU,
was employed. The position fixes were provided at the data-sampling rate of 1 Hz.
The distances to the base stations were rather short (up to 200 m) for the entire
experiment. Thus, L1 carrier phase measurements, after removing fixed double-
differential integer ambiguity, were used to generate the reference solutions for all
network nodes.
In order to generate a 5-node kinematic network, the GPSVan trajectory was used

as a (virtual) reference station and four reference nodes (HL, N2, N3 and N4 in
Figure 5) and four different trajectories were generated. Finally, the trajectory of the
mobile cart (C2, in Figure 5) was assigned as user node. Based on the pre-generated
trajectories, the four 3-dimensional ranges in ECEF X, Y, Z (i.e., position difference
or baseline components) between reference nodes and the user node and the six ranges
between the reference nodes (see Figure 2d) were computed at all epochs along
with their variance-covariance information. This was done to simulate the inter-nodal
3-dimensional distance measurements, as no actual 3-dimensional measurements were
acquired (it is very difficult to obtain the 3-dimensional range measurements in
practice). Next, simulated errors were added to the C2 node; the initial coordinate
uncertainty of 5 m was added to x, y, and z components as biases, and random error,
ranging between -50 cm and +50 cm was also applied. Next, the positioning solutions
of the network-based collaborative navigation were computed and compared with

Figure 4. ‘GPSVan’ and ‘mobile cart’.
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each original user node position (i.e., the reference carrier-phase-based GPS solutions
using AIMS-Pro).

5. SIMULATED RESULTS AND ANALYSIS . In ‘Scenario 1’ (3-node
case), there is one range measurement between the reference nodes and two range
measurements between the user and the reference nodes. In ‘Scenario 2’ (5-node case),
the six ranges between the reference nodes and the four ranges between the user node
and the reference nodes are used to obtain the position estimates of the user node (C2
in figure 5). Figures 6 and 7 show the position difference between the simulated user
trajectory with biases and random errors added, and the estimated user positions for
the four network-based collaborative algorithms: the SCLESS, the BLIMPBE, the
RLESS, and the Kalman filter for two cases (Scenarios 1 and 2) where the number of
nodes equal three and five, respectively.

5.1. Scenario 1: 3-Nodes in a Network. The added biases and random error in
the user node’s coordinates were significantly decreased from the simulated erratic
coordinates, through the three network-based collaborative navigation algorithms,
especially by the SCLESS, the BLIMPBE, the RLESS and the Kalman filter (see
Figure 6). The SCLESS and BLIMPBE method showed better performance
(especially in the standard deviation) than the RLESS and the Kalman filter. The
RLESS and the Kalman filter showed the comparable biases, but the random errors
were not adequately removed, as compared to the two other methods. The SCLESS
and BLIMPBE solutions were almost the same for the user node, while the SCLESS
solution absorbed the (added) biases into the network. Therefore, the estimated
coordinates of user node in a network by using the a priori variance information were
affected accordingly. Because RLESS is predominantly dependent on the accuracy of
the coordinates to be fixed, it is not recommended for use in the network-based
estimation. Table 1 shows the statistical results of the position difference between the

Figure 5. The simulated trajectory of the five nodes.
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original reference solutions and the estimated coordinates from the network-based
algorithm, using the simulated biased data with random errors, as explained earlier.

5.2. Scenario 2: 5-Node Network. As can be seen in Figure 7 and Table 2
(statistical position error result of the user node C2), the SCLESS, the BLIMPBE, and
the RLESS method performed better than the Kalman filter method because the
increased number of reference nodes (i.e., inter-nodal distance measurements) can
provide stronger geometry and redundancy of the proposed network-based
collaborative navigation algorithms. The SCLESS method showed best standard
deviations (also, in the Root Mean Square [RMS]) of the user node among all
proposed estimation methods. Similarly to Scenario 1, the RLESS showed worse
accuracy of the user nodes than that of other two network-based collaborative
navigation algorithms.
Overall, it can be seen that the proposed network-based collaborative algorithm

methods can enhance the accuracy and the stability in the coordinate estimation of a
user node by using only inter-nodal distance measurements when a GPS signal is not
available. The methods and analysis presented in this paper provide a way to improve
the solutions by simply building a network and applying these statistical collaborative
navigation estimation methods. Although only inter-nodal range measurement is used
in this study, additional ranging solutions and multi-sensor output could be applied to

Figure 6. Position error of the user node (C2) according to three network-based collaborative
algorithms and Kalman Filter (KF) (3-node case, in Figure 2b).
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Table 1. The statistical result of user node C2 of three network-based collaborative navigation algorithms
and Kalman Filter (KF) solutions (3-node case).

Algorithm [cm] Mean Std. Dev. RMS

SCLESS

X 0·037 0·099 0·106
Y 0·057 0·111 0·124
Z 0·040 0·110 0·117

Total 0·201

BLIMPBE

X 0·064 0·097 0·116
Y 0·063 0·101 0·119
Z 0·076 0·095 0·122

Total 0·206

RLESS

X 0·030 0·178 0·180
Y 0·035 0·172 0·175
Z 0·044 0·184 0·189

Total 0·319

KF

X 0·024 0·173 0·174
Y −0·040 0·178 0·182
Z −0·027 0·173 0·175

Total 0·303

Figure 7. Position error of the user node (C2) according to three network-based collaborative
algorithms and the Kalman Filter (KF) (5-node case, in Figure 2d).
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the network-based collaborative navigation case as well. The position errors RMS of
SCLESS (BLIMPBE) were smaller by about 33% (32%) with respect to the Kalman
filter results in Scenario 1. In Scenario 2, SCLESS, BLIMPBE and RLESS position
errors were smaller that that of the Kalman filter by about 28%, 24%, and 9%,
respectively. Even though the accuracy improvement achieved by using one of the
statistical-based methods is at sub-decimetre level, which may not be relevant in land
vehicle navigation, it has substantial relevance in navigating small platforms, such as
swarms of autonomous miniature vehicles or robots.

6. CONCLUSIONS. It was demonstrated that the proposed statistical net-
work-based ‘Collaborative Navigation’ algorithms can improve the position accuracy
of the user node in the network based on field test data and simulated ranges. The
‘GPSVan’ and the ‘mobile cart’ with three geodetic GPS base stations were used in the
field tests discussed here. Three network-based collaborative navigation algorithms,
namely the Stochastic Constrained Least-Squares Solution (SCLESS), the Best Linear
Minimum Partial Bias Estimation (BLIMPBE) and the Restricted Least-Squares
Solution (RLESS) were proposed and compared to the Kalman filter to obtain
accurate position of the user node and all other nodes in a network under realistic field
conditions. The SCLESS method showed the best performance, especially, in the
standard deviation, among the proposed ‘Network-based Estimation’methods and the
Kalman filter. In other proposed network-based estimation methods, the overall
performance of the SCLESS and the BLIMPBE was better than that of the RLESS
in the 5-node and 3-node cases. Therefore, it is concluded that the statistical
collaborative navigation algorithm is a preferred estimation method for the
collaborative navigation applications such as robots, ground-users and autonomous
miniature vehicles.

Table 2. The statistical results of fifth user node C2 of three network-based collaborative navigation
algorithms and Kalman Filter (KF) solutions (5-node network).

Algorithm [cm] Mean Std. Dev. RMS

SCLESS

X −0·013 0·072 0·073
Y 0·006 0·101 0·101
Z 0·011 0·100 0·100

Total 0·162

BLIMPBE

X −0·012 0·084 0·085
Y 0·021 0·100 0·102
Z 0·013 0·109 0·110

Total 0·172

RLESS

X −0·050 0·095 0·099
Y −0·041 0·109 0·117
Z −0·042 0·108 0·117

Total 0·205

KF

X 0·112 0·108 0·156
Y 0·052 0·113 0·125
Z 0·029 0·102 0·106

Total 0·227
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