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Large-eddy simulation data for a Mach 1.3 round jet are decomposed into acoustic,
hydrodynamic and thermal components using Doak’s momentum potential theory. The
decomposed fields are then analysed to examine the properties of each mode and
their dynamics based on the transport equation for the total fluctuating enthalpy.
The solenoidal fluctuations highlight hydrodynamic components of the jet and
capture the shear layer growth and breakdown process. The acoustic mode exhibits
a jittering coherent wavepacket structure in the turbulent region and consequent
highly directional downstream radiation. The expected radial decay rates, r−6 for
hydrodynamic and r−2 for acoustic, are recovered and closely follow the universal
radiation spectra in the sideline and downstream directions. The scalogram of the
acoustic mode in the near-acoustic-field region is consistent with that of the pressure
perturbation signal in the acoustic-frequency range, but effectively removes the
hydrodynamic and thermal content. The time-resolved and mean behaviour of terms in
the total fluctuating enthalpy equation is analysed in detail. A large-scale intermittent
event in the near-acoustic field is shown to be associated with an intrusion of vortices
from the shear layer into the core of the jet. Acoustic sources are created when the
resulting negative fluctuations in the solenoidal component interact with positive
fluctuations in the Coriolis acceleration term. The latter are associated with regions
of high vorticity on the inner side of the shear layer. In contrast, sinks result from
the interaction of solenoidal momentum fluctuations with positive entropy gradients
along entrainment streaks.

Key words: aeroacoustics, free shear layers, jet noise

1. Introduction
Fully turbulent flows generate a broad spectrum of spatio-temporal scales. The

perturbation energy in such flows may be broadly classified into three major categories
– acoustic, hydrodynamic (sometimes denoted vortical) and thermal (sometimes
entropic). According to the splitting theorem (Kovásznay 1953), vortical modes
are solenoidal and convected whereas the acoustic modes are purely irrotational
and associated with density fluctuations. The compressibility of the flow also
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actuates the entropic and acoustic modes. Kovásznay (1953) studied these modes
in supersonic flows and characterized them with ‘fluctuation diagrams’. In flows
with small perturbations, the interaction, including energy transfer, between modes is
negligible.

In free-shear turbulent flows, such as jets, highly nonlinear turbulence enhances
the interaction between the modes through coupling and generation of new sources
(Chu & Kovásznay 1958). Mode splitting becomes more complicated under these
circumstances: Kovásznay (1953) notes the need to account for inter-modal quadratic-
coupling terms. For example, regions of coherent vortices could create entropic
fluctuations and scatter acoustic waves. Likewise, high temperature gradients could
induce additional vorticity in the flow through density variations (Zhou & Gore 1998).
The incorporation of nonlinear effects in viscous flows has been discussed by Hardin
& Pope (1994), who examined pressure fluctuations obtained about the corresponding
‘corrected’ incompressible flow. Despite this difficulty in separating the effect of
modes, there is a clear advantage in isolating the acoustic mode to determine the
near-field sound signature and dynamics of the corresponding source mechanisms.

The primary thrust of this paper is to address two main questions about the acoustic,
vortical and thermal modes in a Mach 1.3 jet.

(i) What is the spatio-temporal form of each mode and how does their behaviour
reconcile with known observations about their spectral content and decay away
from the jet?

(ii) What are the key mechanisms that dominate inter-modal interactions in the sound
generation process?

We answer these questions by probing a well-validated large-eddy simulation (LES)
of a perfectly expanded round jet; some of the main features of the method and the
flow are described in § 2.

A significant challenge in such an effort is the lack of a universal definition
of sound energy and associated acoustic fluctuations in the presence of multiple
modes. Several recent efforts have made progress in separating the near-acoustic
field of the jet (defined loosely as the region outside the highly turbulent core where
perturbations could be linearized, but not essentially acoustic only (Jordan & Colonius
2013)) into hydrodynamic and acoustic modes. One method proposed by Tinney &
Jordan (2008) is based on the speed of the mode, since the hydrodynamic modes
travel at convective speed which, in subsonic jets, is much lower than that of sound.
The procedure is not straightforward in low supersonic jets, where the difference in
speed between hydrodynamic and acoustic features is smaller in the potential core
region. Kuo et al. (2013) use empirical mode decomposition (EMD) to differentiate
the two modes by extracting signal components within narrow bands of frequencies.
Likewise, Sinayoko, Agarwal & Sandberg (2013) use wavenumber–frequency domain
filtering to characterize trapped acoustic modes which could effectively propagate to
the far field. Wavelet-based decomposition has also been adopted (Grizzi, Camussi &
Di Marco 2012) to extract acoustic modes in subsonic jets.

We adopt a more general decomposition approach based on Doak’s momentum
potential theory (MPT) (Doak 1989). The method has been successfully applied for
model problems (Daviller, Jordan & Comte 2009; Jordan, Daviller & Comte 2013).
For example, in Jordan et al. (2013), a specified convecting wavepacket is modulated
by solenoidal momentum fluctuations. The genesis of both downstream and sideline
radiation is clarified using Doak’s fluctuation energy balance. The present effort is
to be viewed as a natural extension of that work to a real flow, as represented by a
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high-resolution LES database. To the best of the authors’ knowledge this is the first
application of Doak’s MPT to a jet flow field obtained through numerical simulation.

Doak’s method to split the modes is described in § 3. Briefly, the momentum
density, ρu (ρ is the density and u is the particle velocity vector), is resolved into
its mean solenoidal, fluctuating solenoidal and fluctuating irrotational components
through a Helmholtz decomposition. The latter requires the solution of a Poisson
equation with the rate of change of fluctuating density (∂ρ ′/∂t) as a source term. The
fluctuating irrotational mode is further split into acoustic and thermal components
by solving a second Poisson equation with the term (1/c2)∂p′/∂t (c is the speed of
sound and p′ is the pressure fluctuation) as source. The procedure thus decomposes
the unsteady flow field at each instant into its acoustic, hydrodynamic and thermal
components. The numerical scheme employed for this procedure is discussed in § 4.

An important advantage of using Doak’s approach for mode decomposition is that
it does not require the fluctuations to be small. The decomposition into constituent
modes can be performed on any flow as long as it satisfies conditions of statistical
stationarity and the continuum approximation. Hence, this approach can be extended
to inherently nonlinear flows such as the turbulent core of a jet to understand the
form and evolution of the fluid-thermodynamic modes. This is the key to being able
to analyse inter-modal energy transfers occurring in fully turbulent flows. Another
approach with a similar overall philosophy has been presented by Jenvey (1989),
where the velocity field is chosen as the primary dependent variable.

The decomposed jet modes allow more rigorous comparison of the simulation
data with well-known observations and theories – some of these are presented in
§ 5. For example, it is much more straightforward to test compliance with the decay
rates (r−6 for hydrodynamic and r−2 for acoustic modes, r being the radial distance
from the jet axis). The spectral properties of the acoustic mode are also tested to
ensure agreement with experimental observations. In particular, peak acoustic radiation
characteristics along the downstream (F-spectrum) and sideline (G-spectrum) angles
are well established. The former, associated with larger structures, display higher
amplitudes but lower frequencies relative to the latter, which are associated with
fine-scale turbulence (Tam 1995; Tam et al. 2008).

The use of a ‘wavepacket ansatz’ to describe the noise field of a jet has been
reviewed by Jordan & Colonius (2013), and a reconciliation with Tam’s theory may
be found in Sinha et al. (2014). Cavalieri et al. (2011) modulate the spatial extent
and amplitude (‘jitter’) of the wavepacket to recreate the observed intermittency and
spectral peak in the downstream direction. Serré, Robinet & Margnat (2015) use a
pseudo-Gaussian space envelope to model pressure wavepackets with subsonic phase
velocity to predict the radiating highly directional sound spectra. In § 6, we analyse
the decomposed LES in this context. Specifically, we examine the acoustic mode to
highlight the signature of the axially coherent wavepacket and its modulation to yield
the highly directional radiation. In addition to the downstream radiation patterns, the
sideline radiation is also accounted for in this wavepacket dynamics.

Doak’s theory (Doak 1995, 1998) also includes a method to answer the second
question posed above, and indeed was employed by Jordan et al. (2013) to understand
source mechanisms and radiation patterns associated with the acoustic mode of their
model problem. Specifically, a generalized acoustic variable is formed from the total
fluctuating enthalpy (TFE), as detailed in § 7. In the core of the jet, the TFE is
dominated by the turbulent (hydrodynamic) component, but moving radially outwards,
its form assumes that associated with the acoustic component. The transport equation
highlights production, dissipation and transport mechanisms of the TFE, which can
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be considered as events resulting in work being done on or extracted from the flow.
Positive TFE sources could act as potential noise sources in the jet since the enthalpy
fluctuations carried by the acoustic modes eventually evolve into acoustic intensity
(p′u′) in the near field (Doak 1989). In § 8, we use the LES database to analyse
inter-modal energy transfer in terms of the fluctuating components of momentum
density and Coriolis acceleration, entropy gradients and shear stresses. Emphasis is
placed on intermittent events, which can have a prominent role in shaping the acoustic
signature of jets (Hileman & Samimy 2001; Kearney-Fischer, Sinha & Samimy 2013).
The current methodology is shown to be useful in associating instantaneous source
mechanisms with intermittent phenomena. Finally, the time-averaged transfer of the
TFE from the jet is analysed using mean sources and fluxes of energy in § 9, to
confirm the source–sink characteristics of pertinent instantaneous terms.

2. Mach 1.3 jet flow field
The LES database has been described in several prior publications (Gaitonde &

Samimy 2011; Gaitonde 2012; Speth & Gaitonde 2013), with the only difference
being that here the outer boundaries are extended even further away from the
nozzle exit to facilitate easier solution of the Poisson equations necessary for the
Helmholtz decomposition. A few details are provided for completeness. The full 3-D
compressible unsteady Navier–Stokes equations are solved in curvilinear coordinates
to mimic the experimental results of Samimy et al. (2007). At the nozzle exit, the
diameter, velocity, temperature and density are D∗j = 0.0254 m, U∗j = 391 ms−1,
T∗j = 224 K and ρ∗j = 1.567 kg m−3 respectively, while the ambient temperature is
T∗∞= 300 K. Flow variables are non-dimensionalized by their values at the nozzle exit,
except for pressure, for which ρ∗j U∗j

2 is used. The resultant Reynolds number of the jet
is Re=1.1×106 and the characteristic time scale is T∗C=D∗j /U

∗
j =6.496×10−5 s. The

LES adopts a non-dimensional time step size 1t∗/T∗C = 0.001 and non-dimensional
time is defined as t= t∗/T∗C. Non-dimensional frequency is expressed in terms of the
Strouhal number (St), defined as St = f ∗D∗j /U

∗
j , where f ∗ is the frequency in Hz. In

the following, an overbar ((·)) indicates a time-averaged quantity and a prime ((·)′)
represents a fluctuating component. An asterisk designates a dimensional variable,
while variables without asterisks denote normalized variables.

The LES calculations are performed on a cylindrical structured grid of 523, 526
and 125 points in the axial, radial and azimuthal directions respectively. The grid is
clustered in the radial and axial directions near the nozzle sleeve and towards the
centreline. Gradual stretching towards the outer boundaries provides a computational
domain extending to 113 and 102 jet diameters axially and radially respectively.
Characteristic boundary conditions are enforced at these boundaries. Since the
properties of the experimental boundary layer at the nozzle exit are not known, except
that its thickness is very small (Samimy et al. 2007), a uniform velocity condition
at the nozzle inlet has been sufficient to capture observed mean and fluctuating
quantities (Gaitonde & Samimy 2011). The LES solver employs a third-order upwind
biased Roe scheme (Roe 1981). The limiter is a very important component of the
method, serving both to complement the filter inherent to the scheme as well as
to maintain numerical stability. The van Leer harmonic limiter (van Leer 1979) has
proven very effective in this context. Time integration is achieved through an implicit
second-order diagonalized (Pulliam & Chaussee 1981) Beam–Warming approximate
factorization method (Beam & Warming 1978).

A perception of the turbulent nature of the flow may be obtained through the
instantaneous flow, shown in figure 1. The instantaneous coherent features are
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FIGURE 1. (Colour online) Instantaneous flow field of the jet shown by (a) the Q-criterion
isosurface coloured by the streamwise vorticity, (b) the streamwise velocity and (c) the
vorticity and divergence contours.

visualized in figure 1(a) using isosurfaces of the Q-criterion coloured with the
streamwise component of vorticity. These features highlight the highly turbulent
core and the presence of convecting hairpin-like structures. The streamwise velocity
contours are shown in figure 1(b). The region of relatively high streamwise velocity
around and after the collapse of the potential core is indicative of the convective
part of the turbulent core containing the coherent eddies. These components are the
prominent contributors to the hydrodynamic or solenoidal field, as will be elucidated
in the following sections. Figure 1(c) shows the magnitude of the vorticity in the
inner region of the jet and the dilatation in the near-acoustic field. The vorticity tracks
the shear layer roll-up and turbulent eddies in the core of jet while the dilatation is
a surrogate for pressure fluctuations (Freund, Lele & Moin 2000). Near the jet, both
hydrodynamic and acoustic components are blended together, but moving away from
the jet, the features assume those of sound propagation. Although the above discussed
quantities aid in a qualitative understanding of jet turbulence and the near-acoustic
field, they represent combinations of modes. As discussed below, decomposition of
the flow into its component modes provides significantly better insight, especially
into the acoustic component which is far weaker than the hydrodynamic mode inside
the core.
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FIGURE 2. (Colour online) The mean flow field of the jet: (a), (b), (c), (d) and (e)
indicate the u, v and w components of the velocity, and the pressure and density
respectively. In (a), two dotted lines inclined at 30◦ (l30) and 90◦ (l90) to the jet axis
are shown; data along these rays will be analysed in subsequent sections.

The mean flow features of the jet are shown in figure 2. The mean streamwise
velocity, u, contours on the z = 0 plane in figure 2(a) indicate a perfectly expanded
axisymmetric jet. The approximate end of the potential core at x∼ 7 is marked with
a dot. The mean velocity at this centreline location is approximately 92 % of the jet
exit velocity. Two lines originating at this point show 30◦ and 90◦ rays along which
spectral data will be analysed. The mean Cartesian components of velocity, v and w,
on the x= 7 plane are shown in figures 2(b) and 2(c) respectively. These are an order
of magnitude smaller than the streamwise component and are also symmetric about
the axis. The mean pressure (p) and density (ρ) contours in figures 2(d) and 2(e) also
remain axisymmetric; we take advantage of this property in generating the mean terms
of the TFE equation in § 9.

The approach has been successfully employed to simulate the Mach 1.3 jet, and
detailed comparisons with experimental data may be found in Gaitonde & Samimy
(2011). For completeness, some results are presented in figure 3. The mean centreline
velocity is plotted in (a), taken from Gaitonde & Samimy (2011), along with the
corresponding experimental value (Samimy et al. 2007). The decay rate matches well
with the experimental values and provides confidence in the current simulation. It
should be noted that since the nozzle exit boundary layer state is unknown, following
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FIGURE 3. (Colour online) (a) Mean streamwise velocity along the centreline of
the jet compared with corresponding experimental data (reproduced from Gaitonde &
Samimy (2011)). (b) Far-field SPLs obtained through the FWH method compared with
corresponding experimental data (Samimy et al. 2010).
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FIGURE 4. (Colour online) Instantaneous perturbation quantities in the jet shown using
contours of the fluctuating component of (a) u and (b) pressure.

common practice (Bodony & Lele 2005), the focus is on the decay after core collapse.
Comparison of centreline fluctuation values may also be found in Gaitonde & Samimy
(2011). Figure 3(b) shows new results comparing computation with experimental far-
field sound pressure levels (SPLs) (Samimy et al. 2010), using the Ffowcs-Williams
and Hawkings (FWH) method (Ffowcs-Williams & Hawkings 1969), at 30◦ and 94 jet
diameters. The simulations show reasonable agreement with experimental data. Further
details, including grid resolution studies, may be found in Gaitonde & Samimy (2011).

For completeness, representative instantaneous fluctuating quantities are shown
in figure 4 along a z = 0 plane. The fluctuating u velocity component is shown
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FIGURE 5. (Colour online) Root mean square quantities along the centreline of the jet.

in figure 4(a). Both the streamwise and the radial (not shown) velocity fluctuation
components are of the same order of magnitude, and the peak instantaneous value
of the streamwise fluctuating velocity was found to be approximately 30 % of the jet
exit velocity. The pressure perturbations (p′) plotted in figure 4(b) show coherent
features evolving near the nozzle exit, and represent the signature of axially convecting
large-scale structures. Towards the near-acoustic field, patterns consistent with the
dilatation (figure 1c) appear. While the pressure perturbations in the core have
significant contributions from the hydrodynamic component, those in the near field
are predominantly acoustic due to the implicit filtering by the jet. The perturbation
fields indicate that the turbulent core of the jet has a wide range of associated scales
and dynamics, including shear layer instability growth, convecting coherent eddies,
radiating fields and intense mixing.

The root mean square (RMS) values of fluctuations in the primitive variables along
the jet centreline are plotted in figure 5. The peak RMS value of the fluctuating
streamwise velocity component reaches approximately 16 % of the jet exit velocity
by approximately 10 jet diameters downstream. Although lower than the streamwise
component, other velocity components also exhibit similar orders of magnitude of
RMS values in their corresponding fluctuations. An estimate of the pressure and
density fluctuations is also provided in figure 5.

3. Doak’s momentum potential theory

A brief discussion of Doak’s method (Doak 1989) is first presented. The primary
dependent vector field considered for decomposition is the momentum density (ρu).
As described in Doak (1989) and references therein, momentum potential theory
possesses several simplifying properties, which make it attractive for application to
turbulent flows with acoustic significance.

(i) The momentum density, ρu, is the primary dependent field, which is expressed
as a unique superposition of mean, turbulent, acoustic and thermal components.

(ii) The continuity equation, which contains ∇ · ρu, then yields a Poisson equation
comprising only fluctuating mass density and fluctuating scalar potential for the
linear momentum density.

(iii) For statistically stationary flows, the mean scalar momentum potential is zero.
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(iv) A decomposition is possible for the mean energy flux into unique turbulent,
acoustic and thermal components.

(v) The source terms leading to the above mean energy flux can also be categorized
into turbulent, acoustic and thermal components, using the TFE equation.

Thus, within the construct of Doak’s theory, a unique definition for the modes,
energy flux and its sources is guaranteed.

The details of the method are now summarized. The decomposition of the
momentum density is written as

ρu=B+B′ −∇ψ ′, ∇ ·B= 0, ∇ ·B′ = 0, (3.1a−c)

where, again, ρ and u are the density and particle velocity vector respectively; B
is the mean solenoidal component, B′ is the fluctuating solenoidal component and
ψ ′ is the fluctuating scalar potential, whose negative gradient forms the irrotational
component of the momentum-density vector. The mean scalar potential ψ for a time-
stationary flow is both irrotational and solenoidal, and is assumed to be zero. The
above decomposition, coupled with mass conservation for a continuum time-stationary
flow, yields a Poisson equation for the fluctuating scalar potential given by

∇2ψ ′ = ∂ρ
′

∂t
. (3.2)

The total irrotational field is further split into a linear combination of acoustic and
thermal components, with each obtained from a corresponding Poisson equation. Thus,

ψ ′ =ψ ′A +ψ ′T, ∇2ψ ′A =
1
c2

∂p′

∂t
, ∇2ψ ′T =

∂ρ

∂S
∂S′

∂t
. (3.3a−c)

Here, ψ ′A and ψ ′T represent the fluctuating acoustic and thermal components of the
irrotational momentum density respectively; p is the thermodynamic pressure, c2 =
(∂p/∂ρ)S is the squared value of the instantaneous local speed of sound and S is
the entropy calculated from S = Sj + cp[ln(T/Tj)] − R[ln(pj/p)], where subscript j
represents jet exit parameters, while cp is the specific heat at constant pressure and
R is the ideal gas constant.

In summary, within the framework of Doak’s theory, the divergence-free component
of momentum constitutes the hydrodynamic mode of the flow. The acoustic and
thermal modes are components of the irrotational field, driven by density variations
resulting from pressure, and entropic fluctuations respectively.

4. Numerical considerations for Helmholtz decomposition
For numerical convenience, many of the main findings are established by

considering the z = 0 half-plane of the LES domain in cylindrical coordinates
under the assumption of axisymmetry. The validity of this assumption is verified
by performing a full 3-D analysis on a select subset of the full time series, as
discussed later in §§ 6 and 8.

With x and r representing the axial and radial directions respectively, an orthogonal
coordinate system (η, ζ ) is introduced, where r = r(η) and x = x(ζ ). Equation (3.2)
can then be expressed as

1
r
∂

∂η

[
r

xζ
rη

∂ψ ′

∂η

]
+ ∂

∂ζ

[
rη
xζ

∂ψ ′

∂ζ

]
= rηxζ

∂ρ ′

∂t
. (4.1)
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This equation is discretized to second-order accuracy, yielding a penta-diagonal system
which is inverted iteratively using the BiCGSTAB (Van der Vorst 1992) algorithm.
A pseudo-time-stepping technique is adopted to ensure convergence of the Poisson
solver.

The solenoidal and irrotational components of the momentum density are extracted
as follows.

(i) The source term for the total irrotational component ψ ′ in (3.2) is obtained
from the LES flow field, and the corresponding Poisson equation is solved. The
outer boundaries are far enough away to assume the flow there to be purely
irrotational, and hence the fluctuating solenoidal component is negligible. From
(3.1), this yields the condition, (ρu)′ = −∇ψ ′; ψ ′ is then integrated along the
boundaries to provide a Dirichlet boundary condition for the Poisson solver. At
r= 0, axisymmetry enforces a zero-gradient Neumann condition for ψ ′.

(ii) The acoustic part of the irrotational field is obtained by solving the corresponding
Poisson equation (3.3) for ψ ′A, with its source term again coming from the LES.
Assuming temperature fluctuations in the far field to be negligible, the thermal
component there is fixed to zero, thus allowing the outer boundary conditions to
be specified as ψ ′A = ψ ′. A zero-gradient Neumann condition is used for ψ ′A at
r= 0.

(iii) The thermal component of the fluctuating momentum density is obtained from
the relationship between acoustic and thermal modes, ψ ′T =ψ ′ −ψ ′A (see (3.3)).

(iv) The mean and the fluctuating solenoidal components are then obtained from (3.1),
since B̄ is known from the LES.

5. Properties of the decomposed fields
In this section, we describe the qualitative characteristics of each decomposed

field, and examine their compliance with known features such as radial decay and
directional spectral content. Instantaneous snapshots of the decomposed fields are
provided in figure 6. Figure 6(a) shows the contours of the solenoidal fluctuations
(‖B′‖) (in colour) and the irrotational fluctuations (‖∇ψ ′‖) (in black and white).
Different ranges are used because the solenoidal fluctuations are an order of magnitude
larger than the maximum irrotational fluctuations. The solenoidal fluctuations closely
follow the development of the shear layer and peak in regions of high vorticity. The
initial region downstream of the lipline is characterized by shear layer instabilities
and eventual collapse of the core (6 < x < 7). The solenoidal fluctuations diminish
considerably after 10 jet diameters downstream as turbulence dies out. Although
higher in magnitude than the irrotational field in the turbulent region, the solenoidal
fluctuations are damped out rapidly in the radial direction, as discussed further below.
The term ‖B′‖ thus indicates the region of prominent turbulent motion in the free
shear layer.

The near field of the jet outside the main turbulent flow is dominated by the
irrotational mode, as seen in figure 6(a). This component clearly captures the radiated
field, including the highly directional components in the downstream shallow-angle
directions. The drop off is also fairly rapid, but not as much as the solenoidal
component: the irrotational mode persists to large distances from the core.

Further decomposition of the irrotational component into acoustic and thermal
constituents results in figures 6(b) and 6(c) respectively. It should be noted that
a larger radial domain has been plotted in the former because the acoustic field
remains significant at larger distances from the jet. Although much smaller than the
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FIGURE 6. (Colour online) Instantaneous decomposed momentum-density fluctuations of
the jet: (a) ‖B′‖ contours overlaid with ‖∇ψ ′‖, (b) ‖∇ψ ′A‖, (c) ‖∇ψ ′T‖.

solenoidal component, the highest acoustic mode values also occur in the turbulent
region near the axis. Indeed, as shown later, the acoustic response contains a coherent
wavepacket in this region, whose dynamics is closely linked to noise radiation. The
acoustic mode drops off away from the turbulent region (discussed quantitatively
later), but the radiative characteristics of the near-acoustic field are well preserved.

The thermal component shown in figure 6(c) is similar to the solenoidal component
in some ways and the acoustic component in others. Like the former, the thermal
mode is restricted to the turbulent region, with a rapid drop off in magnitude
away from the jet. There is relatively little presence of the thermal mode outside
the jet. Overall, however, its magnitude is closer to that of the acoustic mode
and approximately an order of magnitude smaller than the solenoidal mode. These
fluctuations arise from the entropy and thermal gradients caused due to vorticity and
mixing of the cold jet with the ambient fluid, as discussed in detail in § 8. Their
relative magnitudes are a consequence of the fact that the present jet is cold, and
will change if the jet is heated.

The variation of the hydrodynamic and acoustic modes with radial distance has
been documented in the literature. We now use this theoretical knowledge to examine
compliance of the decomposed fields. Based on the conservation of energy of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

41
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.410


398 S. Unnikrishnan and D. V. Gaitonde

20

40

r

10–310–610–910–12

IPSD(A)

Integrated PSD

FIGURE 7. (Colour online) Radial variation of the IPSD of ‖∇ψ ′A‖. The theoretical fall-
rate curve is included to compare the slopes.
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FIGURE 8. (Colour online) Radial variation of the IPSD of B′r and ‖B′‖. The theoretical
fall-rate curve r−6 is also included along with the curves r−5 and r−7 to compare the
slopes.

concentric waves propagating through a spherical surface, the acoustic component
attenuates at a rate proportional to r−2 (Mittal 2010). On the other hand, theoretical
analyses predict that the hydrodynamic field decays at a higher rate, proportional to
r−6 (Ribner 1962; Arndt, Long & Glauser 1997).

Data were acquired along a ray at 90◦ to the jet axis at the end of the mean
potential core. The integrated power spectral density (IPSD) of the acoustic field is
plotted along with the corresponding reference drop-off curve in figure 7. The acoustic
decay rate approaches the r−2 curve with increasing radial distance, since the jet tends
to behave like a localized point acoustic source emitting purely spherical waves, which
is the underlying assumption of the corresponding theoretical prediction.

The decay rate of the hydrodynamic component is shown in figure 8, using two
variables, B′r and ‖B′‖. In contrast to the acoustic mode, this hydrodynamic rate is
only plotted until r = 25 since beyond this point the hydrodynamic fluctuations are
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FIGURE 9. (Colour online) The PSD of −∂ψ ′A/∂x compared with the corresponding model
spectrum at 30◦ (a) and 90◦ (b) from the jet axis.

negligible. The r−6 behaviour is the best match among r−5, r−6 and r−7 for both
variables plotted in figure 8. The decay rate of B′r follows the r−6 curve throughout.
However, ‖B′‖ agrees best with r−6 in the outer region (r > 8), but has a slightly
lower rate of decay towards the core. We note that the exact decay rates, especially in
the turbulent region, can vary slightly from the theoretical curves as they are based
on simplified assumptions. The decomposition thus separates out two components
from the total fluctuation (ρu)′, which attenuate at two different radial decay rates,
as anticipated.

The spectrum of the acoustic component is now compared with experimentally
observed trends at various polar angles, specifically the F- and G-spectra. By analysing
a comprehensive set of experimental data, Tam et al. (2008) observed that jet noise
spectra followed two universal curves: the F-spectrum along downstream angles, which
has a distinct peak at relatively lower frequencies, while the G-spectrum along the
sideline directions, with more broadband character. The power spectral density (PSD)
of −∂ψ ′A/∂x at a point nine jet diameters away from the axis on l30 (see figure 2) is
plotted in figure 9(a) (PSD30) with the F-spectrum by superimposing the peak of the
model spectrum on the peak observed in the PSD at St= 0.18. The decomposed field
is found to follow the model spectrum in the pertinent range of acoustic frequencies
and indicates a peak at approximately St ∼ 0.2. This is qualitatively consistent with
far-field experimental supersonic jet data at similar Mach numbers (Seiner et al.
1992; Viswanathan 2004; Tam et al. 2008). A similar narrow-band character has
also been observed in the near field of near-sonic jet LES (Bogey & Bailly 2007).
The spectrum obtained at l90 = 9 along a 90◦ ray from the end of the potential core
(PSD90) is plotted with the G-spectrum in figure 9(b). Here, the peak is superimposed
at St = 0.24. Consistent with the model spectrum, the decomposed acoustic field is
broadband in nature.

As a final check on the properties of the predicted solenoidal and irrotational fields,
figure 10 compares the time–frequency characteristics of the streamwise component
of the decomposed momentum density with those of the pressure perturbation signal
obtained at l30 = 9 along a 30◦ ray from the end of the potential core. At this
location, the signals are not expected to be purely acoustic, but rather to also contain
hydrodynamic fluctuations. However, the peak frequency associated with the signal
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FIGURE 10. (Colour online) Scalograms of p′ (a), B′x (b), −∂ψ ′A/∂x (c) and −∂ψ ′T/∂x
(d) at l30 = 9 along a 30◦ ray. The dotted horizontal lines indicate St= 0.03, 0.1, 0.2, 0.3
and 0.5 from bottom to top. These frequencies are also marked within boxes on the right.
Three prominent intermittent events are marked in (c).

is acoustic in nature. Figure 10(a) shows the scalogram of the pressure perturbation
signal (p′) with non-dimensional time on the horizontal axis and log10 values of the
pseudo-frequency on the vertical axis. The quantity plotted is the wavelet coefficient
(WC(p)) obtained using a Morlet wavelet. The pseudo-frequency is obtained using
the scale to frequency conversion relation for the Morlet wavelet. The log10 scale
better resolves the intermittency in the pertinent range of frequencies. For ready
reference, St = 0.03 (lowest), 0.1, 0.2, 0.3 and 0.5 (highest) are marked with dotted
lines. The scalogram captures several intermittent events, most of which are centred
around frequencies corresponding to St = 0.2, which was also found to be the peak
acoustic radiation frequency along the 30◦ ray in figure 9(a). Experimental evidence
(Tam et al. 2008) also suggests that the acoustic radiation peaks near this frequency
at shallow (approximately 30◦) angles. Apart from the low-intensity events in the
acoustic-frequency range, intermittent events with longer duration and higher energy
are observed at lower frequencies around and below St= 0.03.

The scalogram of B′x, WC(H), at this location, shown in figure 10(b), isolates
this low-frequency content very clearly, indicating that these energy-rich features are
contributed by the turbulent fluctuations. Such low-frequency content in the near
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field of jets is not considered to be a component of the acoustic mode. Rather it is
considered to be ‘non-acoustic’ in nature and is filtered to improve correlation studies
between core turbulence and the near-field acoustic signals. Bogey & Bailly (2007)
discuss low-frequency peaks in the LES near-field pressure of low-Reynolds-number
jets at Mach 0.9. They denote this low-frequency component as ‘aerodynamic’ based
on the work and terminology of Arndt et al. (1997), who observed this component
to be strong near the lipline. The low-frequency content in pressure was also verified
in the experimental work of Bogey et al. (2007). Consistent with these works, the
current decomposition faithfully reproduces the ‘non-acoustic’ low-frequency content
in the hydrodynamic component, while the acoustic component is devoid of this
content. Although not shown, a comparison of (a) and (b) with the same contour
levels confirms that the solenoidal component is free of any significant events above
St= 0.08.

Figure 10(c) shows the scalogram of −∂ψ ′A/∂x, WC(A), at the same location. It
is evident that this signal incorporates all of the intermittent phenomena found in
the pressure perturbation signal in the expected range of acoustic frequencies. Three
prominent intermittent events in the acoustic range of frequencies are further discussed
in § 6; these are highlighted with dotted curves in figure 10(c) and are marked 1 ,
2 and 3 . The contour values of (a) and (c) suggest that the energy content in
these events is identical. The radial component of the acoustic momentum-density
fluctuations (−∂ψ ′A/∂r) was also analysed and found to exhibit similar intermittent
events. The thermal fluctuation scalogram (WC(T)), figure 10(d), confirms the
observation that this mode is also attenuated at a higher rate compared with the
acoustic component. Indeed, the thermal fluctuations closely follow the features of
the solenoidal component, and most of their energy is contained in a lower band of
frequencies around St = 0.03. Although further discussion of the use of azimuthal
planes for the analysis is presented in §§ 6 and 8 by select comparisons with full 3-D
analyses, the above results affirm the acceptability of this simplification for Helmholtz
decomposition.

The evolution of component modes was analysed at various locations along the 30◦
ray using scalograms. The key observations may be summarized as follows. Although
a wide range of spatio-temporal scales exists in the turbulent region, the content
is primarily solenoidal, while the smaller acoustic component exhibits significant
intermittent events in the St = 0.1–St = 0.3 spectral range. At locations further away
from the core (as in the results of figure 10), the solenoidal component attenuates
rapidly, and the scalograms of p′ and the acoustic mode −∇ψ ′A become similar to
each other, indicating the increasingly acoustic nature of pressure fluctuations outside
the turbulent region.

A spectral analysis was performed to understand the evolution of each mode along
different polar angles. The main conclusions are highlighted by results along the
l30 and l90 rays. The PSDs of the decomposed modes for the 30◦ ray are presented
in figure 11, with log10 values of St along the x-axis and the distance along the
ray on the y-axis. Thus, horizontal lines indicate spectral content along the ray at
the ordinate value, while vertical lines indicate growth or decay with distance of
the frequency represented by the abscissa. Again, dotted vertical lines mark the
frequencies corresponding to St = 0.1, 0.2, 0.3 and 0.5 from left to right. As a
reference, the spectrum of the x-component of the momentum-density fluctuations
(ρux)

′ is presented in figure 11(a). Figure 11(b) shows the contribution of the
solenoidal component. This mode clearly contributes to most of the high-energy
content in the total signal, especially near the core of the jet. The predominant
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FIGURE 11. (Colour online) The PSD contours of (ρux)
′ (a), B′x (b), −∂ψ ′A/∂x (c) and

−∂ψ ′T/∂x (d) obtained at various locations along a 30◦ ray. The vertical axis denotes the
distance along the ray. The vertical dotted lines mark the frequencies St= 0.1, 0.2, 0.3 and
0.5 from left to right. These frequencies are also marked within boxes at the top of the
figure.

hydrodynamic energy of the flow is found to have a broadband nature in the
frequency range below St = 0.2. The inclination of the contours indicates that the
highest frequencies are attenuated first. By approximately five jet diameters along this
ray, there is relatively little energy between St= 0.2 and St= 0.5. The energy in the
acoustic mode, figure 11(c), is enhanced in this region however. The contours indicate
a peak around St=0.2 at nearly all points of this ray, gaining prominence further away
from the core where the hydrodynamic component is attenuated. By approximately
10 jet diameters, the lower frequencies in the hydrodynamic component are also
attenuated and the only remaining contribution to the total fluctuations comes from
the acoustic mode with predominant peaks around and below St = 0.2. The thermal
spectrum shown in figure 11(d) also has features similar to those of the acoustic
spectrum near the core of the jet, except that it is attenuated in a manner similar to
that of the hydrodynamic mode. The plots thus confirm that the spectra of the three
decomposed modes together explain the features in the total signal in a consistent
manner.
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FIGURE 12. (Colour online) The PSD contours of (ρur)
′ (a), B′r (b), −∂ψ ′A/∂r (c) and

−∂ψ ′T/∂r (d) obtained at various locations along a 90◦ ray. The vertical axis denotes the
distance along the ray. The vertical dotted lines mark the frequencies St= 0.1, 0.2, 0.3 and
0.5 from left to right. These frequencies are also marked within boxes at the top of the
figure.

Results of a similar analysis along the 90◦ ray from the end of the mean potential
core are provided in figure 12. The radial component of the momentum-density
fluctuations (ρur)

′ is analysed here, as it is most representative of the fluxes along
the sideline direction (the axial component yields similar observations however).
Figure 12(a–d) shows the PSD contours for the total signal, hydrodynamic, acoustic
and thermal fluctuating components respectively. Similarly to the 30◦ ray case, most
of the high-energy content arises from the turbulent fluctuations near the core, which
exhibit a broadband nature. Turbulent fluctuations between St = 0.1 and St = 0.5 are
found to have a greater longevity along the sideline directions. This is due to the
prevalence of relatively random hydrodynamic fluctuations. These propagate in the
sideline direction but are effectively filtered out in the downstream direction where
more coherent motion dominates. The acoustic fluctuations contribute to most of the
total signal spectrum above five jet diameters radially, especially at higher frequencies.
In contrast to the 30◦ ray case, however, the acoustic spectrum exhibits a broadband
nature, which is consistent with the conclusions of Tam et al. (2008).
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FIGURE 13. (Colour online) The irrotational response in the core: (a) the contours of
−∂ψ ′A/∂x and (b) the contours of −∂ψ ′T/∂x. The insets use a contour range different from
the corresponding panels to highlight the near-field characteristics. The dotted inclined line
in the inset of (a) marks a 30◦ ray to the jet axis from the end of the mean potential
core at x= 7. The dotted curve in each panel marks the outline of the axial wavepacket.

6. Core dynamics of the acoustic mode

As discussed in § 5, due to the attenuation of the turbulent and thermal components,
the features of the decomposed acoustic mode reduce to those of the pressure
perturbation signal in the near-acoustic field. However, the structure of the acoustic
mode in the core region provides important insights in the context of the wavepacket
dynamics discussed in Jordan & Colonius (2013). In this section, we analyse the
acoustic mode in the core to visualize the creation of intermittent features which
contribute to the peak acoustic spectrum in the downstream direction.

The streamwise components of the irrotational fields, −∂ψ ′A/∂x and −∂ψ ′T/∂x,
are shown in figure 13. The contours of −∂ψ ′A/∂x in figure 13(a) indicate that the
acoustic mode in the core is a well-defined axially coherent wavepacket, whose spatial
extent is outlined by the dotted curve. The wavepacket actually extends well after the
collapse of the core (x∼ 7) to approximately 10 jet diameters. However, the envelope
qualitatively demarcates only that region of the axially coherent wavepacket (until
x ∼ 10) that shows consistent high amplitudes and high periodicity. The prominent
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features beyond x ∼ 10 are intermittent in nature, and their formation due to the
dynamics of the upstream regions of the wavepacket will be discussed in detail in the
following figures. We note that such coherent wavepackets have been educed from
the pressure fields of subsonic jets (Freund 2001). The decomposed acoustic field,
however, provides a better visualization since it is not contaminated by the much
larger turbulent component.

An analysis of the evolving simulations indicates that these wavepackets are
generated with a dominant periodic nature from the developing shear layer. Although
the vortical structures are dissipated downstream, the irrotational fluctuations they
create persist and propagate into the near-acoustic and far field of the jet. The inset
in figure 13(a) shows the same quantity but is zoomed out to include the near-acoustic
field contour levels as well. The same acoustic component that indicated the presence
of the axial wavepacket clearly also yields the radiating component. As demonstrated
below, this holistic feature of the decomposed field is useful in directly associating the
mechanisms in the core with the intermittent features observed in the near-acoustic
field. The dotted line in the inset marks a 30◦ ray from the end of the mean potential
core. The downstream propagating waves are clearly observed to have peak values
centred around this ray. The less coherent sideline radiation patterns are visible but not
prominently because they have lower amplitudes. An analysis of the transient dataset
indicates that the leading region of the acoustic wavepacket primarily emits sideline
radiation. This was confirmed by a correlation analysis (not included), which shows
that the sideline radiation has peak correlation with the lipline value of the acoustic
wavepacket between x ∼ 2 and x ∼ 5. The thermal component of the fluctuating
irrotational momentum field shown in figure 13(b) also exhibits a wavepacket nature
in the core, but, as shown in the corresponding inset, it does not contribute to the
radiated near field.

The scalogram shown earlier at l30 = 9 along the 30◦ ray, figure 10(c), indicated
three coherent intermittent phenomena occurring around St = 0.2. An animation (not
included) of the evolving wavepacket in −∂ψ ′A/∂x contours was used to trace these
events back to specific episodes in the core. The results for the most prominent
intermittent phenomenon centred around t∼ 110, designated event 2 in figure 10(c),
are discussed in figure 14. Figure 14(a–d) shows the contours of −∂ψ ′A/∂x at the
indicated time instances, while figure 14(e–h) shows azimuthal vorticity contours (ωθ )
at the corresponding instants. The dotted curves in (a–d) track the pertinent feature
in the wavepacket as it develops in the downstream direction. Figure 14(a) shows the
initial phase of the generation of two adjacent irrotational perturbation zones from
the disturbances in the shear layer. These perturbations propagate in the downstream
direction, growing in spatial extent and amplitude as seen in (b), around x= 5. This
axial region in the core is found to consistently experience high amplification of
the acoustic wavepacket. The amplified irrotational perturbation zones then coalesce,
further intensifying their amplitude and resulting in relatively larger spatial scales, as
shown in (c). Such merging and amplification results in a well-defined high-intensity
acoustic field, shown in (d), which defines the peak radial extent of the axially
coherent wavepacket. This amplification produces a spatially persistent acoustic
intermittent event, which propagates into the near field. The internal mechanics of the
acoustic wavepacket can thus yield crucial information on the genesis of near-field
noise intermittency from the turbulent core.

The shear layer mechanism accompanying this process is tracked in figure 14(e–h)
with the azimuthal vorticity. Figure 14(e) marks a vortical region experiencing an
intrusion into the core, as marked by the arrow. This vortex element is accelerated and
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FIGURE 14. (Colour online) Time trace of the core dynamics leading to a prominent
intermittent event in the near field; (a–d) indicate the contours of acoustic fluctuations
−∂ψ ′A/∂x and (e–h) indicate the contours of azimuthal vorticity ωθ . The dotted outline
follows the features of interest in (a–d) and (e–h).

pushed towards the core as indicated in the succeeding panels ( f –h). The correlation
between the wavepackets of (a–d) and the azimuthal vorticity in (e–h) highlights the
significance of vortex intrusion in creating amplification in the acoustic response field,
which in turn yields near-field intermittency. As discussed in § 8, this can create a
source for the transport of fluctuating enthalpy by the fluctuating momentum density.
In the context of Doak’s analysis (Doak 1989), this is equivalent to a deceleration
in the solenoidal component of momentum, since the fluid particle is being pushed
from a high- to a low-shear region. The consequent reduction of solenoidal fluctuation
energy of the fluid volume is manifested as a contribution to the propagated energy
flux.

The implication of this intermittent event is felt at a later time in the near-acoustic
field. Figure 15 shows contours of −∂ψ ′A/∂x at a later time of t = 110. The dot
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FIGURE 15. (Colour online) Contours of −∂ψ ′A/∂x indicating a coherent event affecting
a point (marked by the dot) at nine jet diameters along a 30◦ ray from the end of the
mean potential core.

represents a point at l30= 9 along a 30◦ ray from the end of the mean potential core,
where the intermittency of the acoustic mode (event 2 ) was analysed in figure 10(c).
The amplified acoustic response in the core of the jet discussed above propagates
predominantly in the downstream shallow-angle direction and reaches this point at
approximately t= 110, causing the corresponding intermittency in its scalogram. The
spatial features of this near-field event are clearly visible in the contours of −∂ψ ′A/∂x
as a coherent wavefront.

The significance of vorticity in amplifying the acoustic mode, and consequent
strong intermittent events, is further analysed statistically. Vortex intrusion into the
core results in a sudden peak in the local vorticity, which is manifested as a positive
fluctuation in ω′θ . From the discussion of figure 14, it is evident that such an event
leads to negative amplification of the local acoustic mode, which should appear as a
negative fluctuation in −∂ψ ′A/∂x. The quadrant analysis described in Wallace (2016)
is used to establish this connection, using ω′θ and −∂ψ ′A/∂x, and the results are
provided in figure 16. The joint probability distribution function (JPDF) of these two
signals, using the time history at a typical location in the core ((x, r)= (5.5, 0.25)),
is shown in (a). The horizontal axis represents ω′θ and the vertical axis is −∂ψ ′A/∂x.
It is evident from the symmetric orientation of the JPDF contours in the second
and third quadrants that negative variations in vorticity do not influence the acoustic
mode in any statistically significant manner. Conversely, the fourth quadrant has a
highly skewed distribution, indicating that although intermittent in nature, extreme
events in vorticity are positive fluctuations. This clearly leads to negative fluctuations
in the acoustic mode, which were found to be intermittently amplified, leading to
strong downstream events. This inference can also be summarized by a correlation
analysis between ω′θ and −∂ψ ′A/∂x, as shown in (b). The normalized correlation
between these signals is plotted as a function of non-dimensional lag. The peak
negative correlation between the vorticity and acoustic signals confirms that the peak
fluctuations in these signals are out of phase, as also seen in the JPDF contours.
A similar correlation analysis will be utilized in § 8 to statistically establish the
source/sink nature of various terms of the TFE transport equation. Finally, we also
highlight the relation between these signals in (c). Two quantities, A1 and V1, are

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

41
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.410


408 S. Unnikrishnan and D. V. Gaitonde

50 100 150 200 250

t

Lags
–10 0 5 10–5

–4 0 4

8.4
JPDF

4.2

1.0

0.1
 0

0.05

 –0.05

 0

 –0.2

 –0.4

0.2

5

 0

 –5

CC

A
1,

 V
1

(a)

(b)

(c) A1
V1

FIGURE 16. (Colour online) (a) Joint probability distribution contours of ω′θ and
−∂ψ ′A/∂x. (b) Normalized correlation function of ω′θ and −∂ψ ′A/∂x plotted with
non-dimensional lag. (c) Modified signals A1 and V1 obtained from −∂ψ ′A/∂x and ω′θ
respectively highlighting the peaks in acoustic and vortical signals.

plotted with non-dimensional time, where

Ṽ1(t)=
{
ω′θ(t), if ω′θ(t)> RMS(ω′θ(t)),
0, otherwise,

(6.1)

Ã1(t)=

−∂ψ ′A
∂x

(t), if Ṽ1(t) 6= 0,

0, otherwise,
(6.2)

V1(t)= Ṽ1(t)

RMS(Ṽ1(t))
, A1(t)= Ã1(t)

RMS(Ã1(t))
. (6.3a,b)

Thus, Ṽ1 represents the peak fluctuations in ω′θ whenever they are above the RMS
value and Ã1 represents the corresponding fluctuation in −∂ψ ′A/∂x. These signals
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are normalized by their respective RMS values to highlight the features of interest.
The plots of V1 and A1 clearly show that intermittent positive peaks in vorticity
result in negative amplification of the acoustic mode in a consistent manner. Similar
observations were also obtained at various other locations within the core.

The decomposed core acoustic field is now explored in further detail to characterize
the growth and evolution of the axial wavepacket. The spatio-temporal modulations
of this wavepacket are known to be central to the genesis of downstream propagated
noise. Cavalieri et al. (2011) induced temporal modulations in the amplitude and
spatial extent (‘jittering’) of a model wavepacket to obtain a good match with sound
levels predicted by LES in subsonic jets. Semeraro, Lesshafft & Sandberg (2015)
optimally forced a linear wavepacket model in a subsonic jet at St = 0.6 to recreate
downstream-direction response and compared it with the Fourier modes obtained
from direct numerical simulation. Likewise, Serré et al. (2015) modelled the jittering
process to recreate radiated sound patterns. Since the current decomposition highlights
the internal dynamics of the wavepacket, it offers an opportunity to further investigate
factors responsible for this amplification and spatial modulation.

To facilitate a clearer examination of the jittering of the acoustic component from
the LES, we first use a chronogram (space–time variation) along the lipline to identify
the axial modulation and intermittent amplification of the wavepacket. The space–time
signal is then analysed in the spectral domain. The fast Fourier transform along the
spatial (axial) coordinate (at each instant) provides the wavenumber (kx), while along
the time coordinate (fixed space), it provides the frequency (ω) spectrum. The ratio
ω/kx yields the convection velocity of the mode. This analysis is again performed on
another signal obtained by filtering the original space–time signal within the acoustic
band of radiated frequencies. This provides insight into the prominent intermittent
events in the core and highlights the most significant ‘jittering’ phenomena responsible
for the directional radiation.

The results of performing these steps are shown in figure 17. Various radial
locations from r = 0.4 to r = 1.4 were examined: the inferences are essentially the
same, though the amplitudes vary. The lipline, used also by Freund (2001) and Tinney
& Jordan (2008), is an appropriate location, since it encompasses the prominent parts
of the wavepacket. Figure 17(a) shows the chronogram of −∂ψ ′A/∂x along the lipline
of the jet. Recurring events are evident at any given location by tracing a vertical line
in the plot, as highlighted in the inset. The axial extent of the wavepacket (obtained by
examining a horizontal line through the figure) is also seen to be slowly modulated
in time. Similar features have been observed in the non-decomposed variables in
experiment (Tinney & Jordan 2008) and azimuthally averaged computations (Freund
2001).

The Fourier transform (FT) of these data is shown in figure 17(b) in the
wavenumber–frequency plane. We present only the positive wavenumber domain since
the energy contribution of upstream propagating acoustic waves was significantly
lower than that of downstream propagating components. The velocity of the
wavepacket in the acoustic mode, as indicated by the slope of the FT contours,
is approximately 0.77Uj, which is close to sonic speed. The periodic nature evident
in figure 17(a) is manifested as a peak frequency of St ∼ 0.38 in figure 17(b).
This corresponds to the so-called ‘internal’ or ‘average’ frequency (Cavalieri et al.
2011) of the wavepacket. An investigation of the frequency spectrum at each axial
location (not included) indicates that the features within the axial locations ranging
from 2.5 < x < 5.5 contribute the most to this peak frequency; it is in this region
that the wavepacket has the greatest radial extent (see figure 13a). The contours in
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FIGURE 17. (a) The x–t plot of −∂ψ ′A/∂x along the lipline of the jet. (b) Wavenumber–
frequency representation of the x–t signal in (a). The horizontal dotted lines mark
frequencies with peak energy corresponding to the internal frequency of the wavepacket
(St= 0.38) and the downstream radiation (St= 0.2). The inclined dotted line represents the
prominent convection speed of the wavepacket (0.77Uj). (c) The filtered x–t signal marked
with events in the core leading to prominent near-field intermittency. (d) The spectrum of
the filtered signal in (c).

figure 17(b) also show a weaker peak around St = 0.2, which coincides with the
downstream peak radiation. This contribution is derived from the region 5.5< x< 8.5,
and corresponds to the influence of the dynamic fluctuations in the core collapse
location, which effectively modulate the axial extent of the wavepacket. The higher
frequencies in figure 17(b) are contributed by the transition process in the initial shear
layer development region close to the nozzle exit. This is due to the fact that the
boundary layer exiting the nozzle is very thin and rapidly destabilizes downstream
(as can be seen in figure 14e–h).

The principal frequency of the wavepacket is found to be higher than the radiated
frequency, consistent with the observation of Cavalieri et al. (2011). It is instructive
to further examine the mechanism by which the wavepacket centred around St= 0.4
radiates at St = 0.2. We follow the approach of band-pass filtering the x–t data
shown in figure 17(a) around this frequency. For this purpose, we use empirical
mode decomposition (EMD), previously utilized for turbulence signals in Agostini &
Leschziner (2014). The band chosen extends from St= 0.1 to St= 0.3. The resulting
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FIGURE 18. (Colour online) (a) Instantaneous form of the 3-D acoustic wavepacket
(−∂ψ ′A/∂x) shown on the z = 0 half-plane. (b) Instantaneous form of the acoustic
wavepacket (−∂ψ ′A/∂x) at the corresponding time instant obtained with one azimuthal
slice.

filtered x–t data and the frequency–wavenumber contents are shown in figures 17(c)
and 17(d) respectively. Several core events, designated E1, E2, E3 and E4, can
be identified as marked. The first three of these events evolve into the prominent
intermittent phenomena observed around t = 47, 110, and 130 respectively in the
scalogram of figure 10(c), marked as events 1 , 2 and 3 respectively. Core event
E2, centred around t= 100, is the most prominent, and is responsible for the strong
intermittent event in the near-field scalogram at t = 110, as discussed earlier. A
comparison of the full and filtered signals reveals that all peaks due to wavepacket
amplification need not result in a near-field intermittent event. Those peaks occurring
between five and nine jet diameters downstream are most efficient in inducing
sustained perturbations in the irrotational field. The filtered signal also highlights the
modulation of the downstream end of the wavepacket in the range 7< x< 10. These
phenomena together induce the wavepacket to propagate an acoustic field having a
relatively narrow-band peak in the downstream direction.

In order to verify that the physical form of the acoustic mode is not significantly
affected by the use of an azimuthal slice, we now compare the results from the full
3-D analysis with the axisymmetric calculation. An instantaneous snapshot of the
acoustic mode from both calculations is shown in figure 18. The contours of the 3-D
axial wavepacket on a z= 0 slice are shown in (a), while the result with the slice is
shown in (b). Both of the calculations clearly yield similar results: all major features
of the wavepacket are well represented in both cases and quantitative differences are
minor. The comparison is particularly good within the first seven to eight jet diameters,
which is the prominent region of the wavepacket, influencing its amplification further
downstream. The effects of using a slice on TFE production mechanisms are addressed
by comparing the results with corresponding 3-D calculations in § 8.
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7. The total fluctuating enthalpy equation
The previous sections (§§ 5 and 6) characterized the physical form and spectral

properties of the individual modes in the jet. We now address the second question
posed in § 1 on the nature of inter-modal interactions leading to generation and
transmission of sound energy from the jet. For this purpose, we adopt Doak’s
equation for mean transport of TFE of the flow due to momentum fluctuations (Doak
1989). The analysis connects component modes to flow quantities such as vorticity
and entropy gradients, which will be shown to be crucial in determining acoustic
sources in the jet and relating the intermittent phenomena to the observed sound
energy.

A brief description of the TFE equation is now provided. The decomposition of
momentum density allows the mean conservation of TFE to be written as a linear
superposition of energy fluxes due to fluctuating turbulent, acoustic and thermal
components in the flow. The mean transport of the TFE is written as

∇ · [H′B′ +H′(−∇ψ ′A)+H′(−∇ψ ′T)]
=−

{
B′ · α′ + [(−∇ψ ′A) · α′] +

[
(−∇ψ ′T) · α′ − (ρT)′

∂S′

∂t

]}
. (7.1)

The total enthalpy per unit mass (H) is defined as H = cpT + u · u/2, and H′ is its
total fluctuating component (TFE). The vector α′ is defined as

α′ = (ω× u)′ −
(

T∇S+ 1
ρRe
∇ · S

)′
. (7.2)

Here, ω=∇×u is the vorticity, ∇S is the entropy gradient and S is the viscous stress
tensor.

The left-hand side of (7.1) represents the mean flux of fluctuating enthalpy carried
away by each modal component of the flow. The momentum potential theory thus
naturally yields the governing equation for the mean energy flux or the intensity
H′(ρu)′, in the form of a linear superposition of uniquely defined components. This
helps in understanding the role of acoustic, turbulent and thermal modes in complex
flows in carrying the fluctuating enthalpy from turbulent regions into relatively
quiescent zones. Each flux automatically vanishes in the absence of the corresponding
type of motion.

The right-hand side of (7.1) indicates the various source mechanisms involved
in this transport. The vector α′ is termed the net fluctuating ‘acceleration’, which
includes contributions from the fluctuations in the vorticity, entropy gradients and
viscous stresses in the flow. These terms provide insight into the production and
dissipation of the TFE due to interaction of momentum fluctuations with the
‘acceleration’ vector α′. This interaction represents the rate of production of TFE
per unit volume due to the Coriolis component of ‘acceleration’, which is a result
of vorticity, as well as interaction of momentum fluctuations with the fluctuating
dissipative forces per unit mass due to entropy gradients and viscosity. By applying
the decomposition of the momentum fluctuations, the role of each mode in the
production or dissipation of TFE due to its interaction with the ‘acceleration’ vector
can be studied. The contribution of the viscous stresses to the source term is found
to be orders of magnitude smaller than those from vorticity and entropy gradients,
which is anticipated for this relatively high-Reynolds-number jet. The last term on
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the right-hand side, (ρT)′∂S′/∂t, is dissipative in nature and is analogous to thermal
diffusion due to entropy fluctuations.

The TFE (H′) can be further split into acoustic (H′A), thermal (H′T) and turbulent
(H′B) component fluctuations based on Jenvey (1989). The rationale behind this is to
define all components of the TFE associated with pressure fluctuations as acoustic
and those components associated with entropy fluctuations as entropic. The remaining
component, which is solenoidal, is either vortical or turbulent. In the interest of
completeness, the following discussion, based on Doak (1989), summarizes this
decomposition.

For a time-stationary flow, the total enthalpy (H) per unit mass can be split into
mean and fluctuating quantities as

H = h+ 1
2

u · u= h+ 1
2

(
m ·m
ρ2

)
+ h′ + 1

2

(
m ·m
ρ2

)′
, (7.3)

where h= cvT + p/ρ is the static enthalpy, with cv being the specific heat at constant
volume, and m= ρu is the momentum-density vector. Using the thermodynamic state
relationships, ρ = ρ(p, S) and h= h(p, S), the time derivative of total enthalpy can be
defined as

∂H
∂t
= ∂h′

∂t
+
[

m
ρ2
· ∂m
∂t
− m ·m

ρ3

∂ρ

∂t

]′
= ∂h′

∂t
+
[

m
ρ2
·
(
∂B′

∂t
− ∂∇ψ

′
A

∂t
− ∂∇ψ

′
T

∂t

)
− m ·m

ρ3
·
(
ρp
∂p′

∂t
+ ρS

∂S′

∂t

)]′
, (7.4)

where ρp = (∂ρ/∂p)S and ρS = (∂ρ/∂S)p. In the above, the time derivative of the
momentum density (m) has been replaced by the linear combination of the acoustic,
hydrodynamic and thermal components. The rate of change of density fluctuation is
also split into its components, which depend on pressure and entropy fluctuations. This
facilitates the association of components of H′ with specific modes. By representing
H = H + H′B + H′A + H′T (where H′B, H′A and H′T correspond to the hydrodynamic,
acoustic and thermal components of the TFE respectively) and equating each term to
corresponding components in (7.4), the individual components of the TFE are obtained
as

H′A =
[∫ {(

hp − m ·m
ρ3

ρp

)
∂p′

∂t
−
(

m
ρ2

)
· ∂∇ψ

′
A

∂t

}
dt
]′
, (7.5a)

H′T =
[∫ {(

hS − m ·m
ρ3

ρS

)
∂S′

∂t
−
(

m
ρ2

)
· ∂∇ψ

′
T

∂t

}
dt
]′
, (7.5b)

H′B =
[∫ {(

m
ρ2

)
· ∂B′

∂t

}
dt
]′
, (7.5c)

where hp = (∂h/∂p)S and hS = (∂h/∂S)p. For an ideal gas following p = (cp − cv)T ,
with a constant ratio of specific heats γ = cp/cv and speed of sound defined as c=
(γ p/ρ)1/2, the above expressions can be integrated, neglecting products of fluctuations,
to yield first-order approximations for the corresponding components of the TFE as
follows:

H′A =
(

p′

ρ

) (
1−M ·M)−( c

ρ

)
M · ∇ψ ′A, (7.6a)
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H′T =
[

c2

(γ − 1)

] (
S′

cp

) [
1+ (γ − 1)M ·M] , (7.6b)

H′B =
(

c
ρ

)
M ·B′, (7.6c)

where the Mach number vector is defined as M≡ u/c.

8. Behaviour of source mechanisms in the TFE
We now use (7.1) to analyse the various flux and source terms with the goal of

understanding the sound generation process in the jet, specifically the events that
accompany the entrainment episode identified in § 6 above. Previous works (Daviller
et al. 2009; Jordan et al. 2013) have explained the behaviour of the mean flux and
source terms of (7.1) for model wavepacket problems. Here, we first consider the
instantaneous behaviour of the source terms, to gather insight into the dynamics
between momentum and shear-induced vorticity and associated entropy gradients. We
also consider the contribution of dissipation mechanisms due to entropy fluctuations
to the TFE budget.

The various source terms in (7.1) are represented as dot products (interaction)
between the decomposed components of the fluctuating momentum density and
the fluctuating ‘acceleration’ vector α′. Whenever these vectors are non-orthogonal,
a source term is activated leading to the production/destruction of TFE and its
subsequent transport. The mutual orthogonality of these vector fields results in zero
sources. Doak described such a scenario as ‘local fluctuating dynamic equilibrium’
(Doak 1989). Under this condition, a silent flow is obtained where turbulent, acoustic
and thermal intensities nullify the net effect in any given volume element of the fluid
so that the momentum fluctuations do not result in any inflow or outflow of energy.
When these vector fields are non-orthogonal, a mean energy transport defined by (7.1)
is generated, resulting in acoustic radiation from the jet. The current analysis of the
relevant instantaneous quantities elucidates the precise mechanisms in a developing
shear layer which prevents the existence of a ‘local fluctuating dynamic equilibrium’
condition.

Before going into the details of the source mechanisms, we briefly describe
the nature of the ‘acceleration’ vector and the associated physical phenomena.
The fluctuating ‘acceleration’ vector has components from the fluctuating Coriolis
acceleration, fluctuating entropy gradients and viscous stresses. To separate the
associated mechanisms, we consider each component individually by denoting
α′ = α′1 + α′2, where α′1 = (ω × u)′ and α′2 = −(T∇S + [1/(ρRe)]∇ · S)′. As noted
earlier, the viscous stress contribution to α′2 is negligible compared with the fluctuating
entropy gradients, and hence these two components are combined together. The
features of the components of α′ are shown in figure 19. An instantaneous snapshot of
vorticity (ωθ ) is shown in figure 19(a) for reference to indicate the development of the
shear layer and mixing. Figures 19(b) and 19(c) show the instantaneous contours for
α′1 and α′2 respectively. Major fluctuations in the Coriolis acceleration occur in regions
of high vorticity, typically tracing the shear layer roll-up in regions of higher velocity.
They thus identify intrusion of vortices into the core of the jet. As a result, the peak
values are generally observed closer to the inner side of the developing shear layer,
as seen in figure 19(b). Once the core collapses, the intense mixing spreads out this
component. The term α′2 closely represents the entrainment process in the shear layer
and traces the ingestion of the ambient fluid into the core. The shear and temperature
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FIGURE 19. (Colour online) Contours of (a) vorticity ωθ , and magnitudes of (b) α′1
and (c) α′2.

gradients involved in this process induce fluctuations in entropy gradients, which can
be seen in figure 19(c). The traces of this process highlight the Kelvin–Helmholtz
instability patterns in the free shear layer. While Coriolis acceleration is considered
to be a production term, the fluctuations in entropy gradients and viscous stresses are
decelerations due to dissipative mechanisms (Doak 1989).

The relative magnitudes of α′1 and α′2 can be considered as an implication of
Crocco’s equation, which can also be interpreted as a coupling of entropic and
vorticity modes. While α′1 represents the ‘rotational’ or vortex structures in the
vorticity, α′2 highlights the shear. We note that this balance will be different in
the case of hot jets. If the heating is assumed not to have a significant impact on
the vortex structures, the term α′1 will remain similar. However, higher temperature
gradients in the shear layer can be expected to intensify the entropy gradients in the
entrainment streaks, thus modifying α′2.

The interaction of the ‘acceleration’ and momentum density leads to various source
mechanisms for the TFE, of which the most prominent ones are discussed below
in detail. The non-orthogonality of fluctuations in the solenoidal component of the
momentum density and the ‘acceleration’ term is the most significant interaction.
In the following, we discuss the interaction of the vector fields B′ and α′ (which
comprises α′1 and α′2). An instantaneous snapshot of these vector fields is provided in
figure 20, to highlight their relative orientation. The snapshot is typical of the vortex
intrusion and entrainment process in the shear layer, as observed in animations of the
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FIGURE 20. (Colour online) Interaction of the solenoidal fluctuations with ‘acceleration’
terms. In (a), the solid (black) vectors indicate the vector field B′ and the dotted (red)
vectors indicate the vector field α′1. The contours represent the dot product of these two
fields. In (b), the solid vectors (black) indicate the vector field B′ and the dotted vectors
(red) indicate the vector field α′2. The contours represent the dot product of these two
fields. In each panel, the inset zooms into the region marked by the dotted square to
highlight the orientation of the vector fields.

corresponding quantities, and is confirmed through a subsequent statistical analysis of
the respective source terms.

We first detail the nature of the TFE source due to solenoidal–Coriolis acceleration
interaction, B′ · α′1. This is shown in figure 20(a), where the solid (black) arrows
denote the solenoidal fluctuating momentum B′, while the dotted (red) arrows indicate
the fluctuating Coriolis acceleration (α′1) vector fields respectively. It should be noted
that the size of the arrows has been chosen for clarity and is not proportional to the
magnitude of the vector. The background contours indicate the dot product of these
two vector fields and highlight regions of strong interactions leading to sources or
sinks. It should also be noted that the discussion involves the fluctuating components
of the corresponding vector fields. The following inferences are readily apparent.

(i) The solenoidal fluctuations are indicative of the curl of the velocity vector in the
shear layer and identify the rotational nature of the vortical features.
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(ii) The two vector fields, B′ and α′1, are seen to be near-orthogonal away from the
vicinity of the lipline at r= 0.5. Hence, major sources of the TFE are localized
around the lipline.

(iii) A positive source is created when the vector fields are aligned in opposite
directions, as can be seen near the coordinates (x, r) = (4.4, 0.3), marked by
the dotted square. This region is also shown in the inset; it highlights negative
fluctuations in B and positive fluctuations in α1.

(iv) The orientation of B′ in this positive source region is the result of transfer of a
fluid element from a region of high shear into the potential core. This induces
negative fluctuations in the solenoidal component, interpreted as the deficiency of
momentum, due to intrusion of the low-velocity fluid into the high-speed core of
the jet.

(v) The radial and axial components of the Coriolis acceleration term (ω× u) in this
region have positive fluctuations (α′1) because a vortical element pushed into the
core experiences a higher velocity in the core while being accelerated.

(vi) Hence, within this source region, α′1 is seen to be aligned mainly in the
‘north-east’ (radial and axial components of α1 experience positive fluctuations)
direction since it is also expected to be orthogonal to the velocity vector (points
south-east generally, not shown). On the other hand, B′ is aligned along the
‘south-west’ direction (radial and axial components of B experience negative
fluctuations, which is the effect of intrusion of vortices into the core).

Thus, the intrusion of high vortical regions towards the core activates the turbulent
source term causing mean energy flow through momentum fluctuations.

The term α′2 is dominated by fluctuations in entropy gradients. Its interaction with
the solenoidal momentum fluctuations is shown in figure 20(b). The solid arrows
denote the solenoidal fluctuating momentum B′ and the dotted arrows indicate the
fluctuating entropy gradient and viscous stress acceleration (α′2) vector fields. The
contours again represent the dot product of the two vector fields. The following
observations are apparent.

(i) Contrary to the Coriolis acceleration component, the entropy gradients primarily
produce sinks. Regions indicating prominent entrainment streaks in figure 19(c)
are found to be strong sinks in figure 20(b).

(ii) The negative solenoidal momentum fluctuations (the axial and radial components
of B′) now act on the similarly aligned entropy gradient fluctuation vector (due
to the negative nature of components of α′2), producing a sink.

(iii) Within the entrainment streaks, entropy gradients are heightened due to sustained
shearing and temperature gradients due to mixing. A fluid element moving
towards the core along these streaks experiences positive fluctuations of entropy
gradients (due to the positive nature of axial and radial components of (T∇S)′).
The definition of α′2 involving the negative of this fluctuation gradient causes
the two vector fields (B′ and α′2) to be more likely to be similarly aligned when
entrainment occurs.

The mixing induced entropy generation thus dissipates the energy that would have
otherwise been carried away by the momentum fluctuations.

The relative alignment of the vector fields B′, α′1 and α′2 shown in figure 20 is
very typical, i.e. the intrusion of vortical regions into the core consistently produces
a positive source term due to the opposite alignment of B′ and α′1. Conversely, the
entrainment streaks result in negative source terms inside the lipline, dissipating TFE
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FIGURE 21. (Colour online) (a)–(d) Correlation of components of B′ and α′1 as
indicated, plotted with lag. (e) Histogram of the source term −B′ · α′1.

due to similar alignment of B′ and α′2. In order to ensure that these observations
are statistically valid, correlation analysis was performed, and some typical results are
summarized below. In the following analysis, the correlation function of two variables,
e.g. f1 and f2, is represented in the corresponding figures as 〈 f1, f2〉. If f1 and f2 exhibit
a similar nature of fluctuations, a high positive correlation peak is observed. Out of
phase or opposite nature of fluctuations results in a negative peak.

The turbulent production term, −B′ ·α′1, is explored in figure 21, which is obtained
at (x, r)= (2.7, 0.4). Figure 21(a) shows the correlation between the two components
of B′. The high positive correlation at zero lag indicates that this vector field has
similar variations (both negative) whenever vortical intrusion occurs into the core. This
is because the intruding vortical region brings in fluid with low momentum and high
vorticity into the core of the jet. This ensures that its south-west alignment, discussed
in figure 20(a), is statistically consistent. Similarly, the high positive correlation of
the components of α′1 in (b) also indicates that this vector field has similar variations
in both its components (both positive), hence resulting in a north-east direction, as
shown in figure 20(a). This is because the vortical element, due to its high vorticity,
has a higher Coriolis acceleration compared with the core. The result of these signs
of fluctuations on the dot product of these vector fields can be seen in (c) and (d).
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FIGURE 22. (Colour online) (a)–(d) Correlation of components of B′ and α′2 as
indicated, plotted with lag. (e) Histogram of the source term −B′ · α′2.

The strong negative peaks in correlations between the dot-product terms (B′x, α
′
1x)

and (B′r, α
′
1r) show that they are out of phase. Therefore, the net value of the dot

product is mostly negative, which makes the turbulent production term of TFE,
−B′ · α′1, predominantly positive. The histogram of this term is shown in (e), with
the horizontal axis representing the bin-centre value of the production term and the
vertical axis representing the fraction of occurrences obtained as the ratio of the
number of occurrences within a given bin (Nbin) to the total number of samples (N).
The histogram clearly shows the positive nature of the term −B′ · α′1, indicating that
it is a statistically significant source of TFE.

The entrainment streaks are primary dissipation regions of TFE inside the lipline
of the jet. Figure 22 shows a typical result for the correlation analysis of the vector
fields B′ and α′2 obtained at (x, r) = (2.2, 0.4). High positive correlation peaks are
observed for the components of the corresponding vector fields B′ (a) and α′2 (b). The
associated vector fields thus have similar variations in their components. Components
of B′ primarily experience negative values inside the core, as described above. The
same is true for the components of α′2, since they are defined as the fluctuations in
the negative spatial gradient of entropy. The peak correlations of (B′x, α

′
2x) and (B′r, α

′
2r)

are positive, indicating that these components are in phase. Hence, the dot product of
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FIGURE 23. (Colour online) Correlation of B′x and α′2r with the fluctuating vorticity, at
locations above and below the lipline of the jet.

these vector fields (given by B′xα
′
2x + B′rα

′
2r) is mostly positive, resulting in a negative

source term for TFE, due to −B′ · α′2. It was also noted that due to the high spatial
gradients of entropy in the radial direction, compared with the axial direction, the term
B′rα

′
2r is more influential in creating this dissipation for the TFE. The histogram of

−B′ · α′2 shown in (e) confirms that this is a negative source.
A similar analysis showed that the interaction of the fluctuating solenoidal

component and entropy gradients can act as a source of TFE outside the shear layer
(although not as intense as the source mechanism created due to vortex intrusion
into the core). This mechanism is explained as follows. While the vortices are
ejected out from the shear layer into the low-velocity ambient fluid, the resulting
heightened entropy gradients cause negative fluctuations α′2, outside the lipline of
the jet. However, the fluctuating solenoidal component B′ in these ejected vortices is
positive outside the lipline. Such events introduce localized packets of relatively high
vorticity and high momentum into the ambient stagnant fluid surrounding the jet. This
results in predominantly out of phase variations in B′ (positive) and α′2 (negative),
creating a positive source of TFE, −B′ · α′2, outside the lipline of the jet.

This dual behaviour of the turbulent–entropy-gradient interaction (−B′ · α′2) is
confirmed in the plots shown in figure 23. The aim is to establish correlation of the
source/sink characteristics of −B′ · α′2 above and below the lipline of the jet. For this,
the components of the fluctuating solenoidal and acceleration fields are correlated
with the fluctuating azimuthal vorticity above and below the lipline of the jet at a
given axial location. The results presented here are obtained at (x, r) = (2.2, 0.4),
which is below the lipline, and (x, r) = (2.2, 0.6), which is above the lipline. The
ejection of vortices to regions above the lipline and entrainment of vorticity into the
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FIGURE 24. (Colour online) (a) Instantaneous net turbulent source term, −B′ · α′, due to
interaction of the solenoidal fluctuations with ‘acceleration’ terms. (b–d) Mean turbulent
source terms of the TFE transport equation as indicated. The horizontal dotted lines mark
the lipline of the jet.

core induces a positive fluctuation in azimuthal vorticity, and hence ω′θ is positive
during such instances. By correlating the components of B′ and α′2 with ω′θ , the
dependence of these vector fields on entrainment and ejection events of vortices
can be statistically defined. Figure 23(a) shows the peak negative correlation of Bx

′

with ω′θ at a point below the lipline. This indicates that entrainment of vorticity into
the core leads to negative fluctuations in the solenoidal component, Bx

′, consistent
with the description of figure 20(b); Br

′ was also seen to have similar results. The
correlation of α′2r with ω′θ also has a peak negative correlation at the location below
the lipline, as seen in (b). Here, α′2r was chosen for representation because it is the
prominent component of α′2. Therefore, entrainment of vorticity into the core also
leads to negative fluctuations in the acceleration vector α′2. Thus, the term −B′ · α′2 is
a negative source for TFE inside the lipline of the jet, as explained in figure 20(b).

The corresponding analysis at the location above the lipline is shown in (c) and
(d). From (c), one deduces that the positive peak correlation between solenoidal and
vortical fluctuations indicates the positive nature of B′ in the vortices ejected out of
the shear layer. At the same time, (d) indicates that these regions experience negative
fluctuations, α′2, due to the spatial entropy gradients. This out of phase relationship
between B′ and α′2 leads to a positive source for TFE at locations above the lipline.

To summarize the net effect of the turbulent production term, the sum of −B′ · α′1
and −B′ · α′2 is plotted in figure 24(a) in the form of contours of −B′ · α′. The
axis ranges are maintained the same as in figure 20. The regions of vortex intrusion
and entrainment streaks remain sources and sinks respectively of TFE. The mean
behaviour of these terms also shows their consistent nature. The mean value of
−B′ · α′1 shown in (b) indicates that this term is a prominent source of TFE within
the shear layer. The second term, −B′ · α′2, results in a sink which becomes stronger
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Solenoidal fluctuations
due to rolled-up vortices

Entrainment streaks with
high entropy gradients

Potential core

Potential core
Shear layer

Shear layer(a)

(b)

FIGURE 25. (Colour online) (a) Transfer of a fluid element with high vortical fluctuations
from the shear layer into the core shown schematically. This is associated with release
of energy from this fluid element which is carried away in the form of TFE flux by
momentum-density fluctuations. (b) The entrainment streaks developing in the shear layer
shown schematically. These regions exhibit high entropy gradients and are prominent
regions where TFE is dissipated.

towards the centreline of the jet, as shown in (c). This strengthening of the sink is
due to increasing spatial entropy gradients as the fluid is continually sheared along
the entrainment streaks. The positive-source nature of this term is also visible outside
the lipline of the jet, which is consistent with the previous discussion based on
correlation analysis. The net result of interaction between various turbulent source
terms is shown in (d), which clearly identifies a prominent source region of TFE
flanking the lipline of the jet, and a sink region towards the centreline of the jet. The
mean source/sink nature of all of the terms in the TFE transport equation will also
be discussed comprehensively in § 9.

The schematic in figure 25 summarizes the above discussion. The solenoidal
fluctuations resulting from the shear layer roll-up intrude into the potential core as
shown in (a), setting up a scenario for production of TFE which is propagated by the
fluctuating momentum density into the near field. This contributes to the observed
acoustic signature of the jet. Conversely, the ingestion of the ambient fluid into the
core highlighted by the entrainment streaks in (b) causes regions of high gradients of
entropy. These streaks are the prominent regions in the core where TFE is dissipated
out, thus acting as sinks.
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FIGURE 26. (Colour online) Instantaneous TFE source terms indicated along with vorticity.
The contours represent ωθ (a), −B′ · α′ (b), ∇ψ ′A · α′ (c) and ∇ψ ′T · α′ + (ρT)′∂S′/∂t (d).

We now summarize all of the source terms of (7.1) in figure 26. At this point,
the effects of α′1 and α′2 are not separately considered. The quantities plotted include
the interaction of the corresponding component of momentum density (solenoidal,
acoustic and thermal) with the ‘acceleration’ vector α′. Instantaneous vorticity (ωθ )
contours are again shown in figure 26(a) for reference. Figure 26(b) shows the
instantaneous source caused by the turbulent production term (B′ · α′). This quantity
is positive in the majority of the spreading shear layer region, which is dominated by
rotational structures and has sinks in localized entrainment regions. The production
term due to acoustic fluctuations shown in figure 26(c) (∇ψ ′A · α′) is relatively weak
and comprises sources only in the entrainment region due to interaction with entropic
fluctuations. This shows that the irrotational field has negligible interaction with the
Coriolis acceleration induced by the rotational nature of the flow. However, it interacts
more with the entropy gradients in the entrainment streaks, in particular the positive
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regions of the acoustic wavepacket. This results in opposite alignment of −∇ψ ′A and
α′2, which in turn creates a positive source due to the negative sign on this term
in (7.1).

Apart from the interactions of the ‘acceleration’ term and the momentum-density
fluctuations, an additional dissipation term, (ρT)′∂S′/∂t, is involved in (7.1) which
is analogous to thermal diffusion (Doak 1989) due to the rate of change of entropic
fluctuations. This term is considerably larger than the sinks created due to the
interaction of the thermal momentum fluctuations with the ‘acceleration’ terms
(∇ψ ′T · α′), and hence their combined value is shown in figure 26(d). As the contour
values suggest, this is the most prominent sink in the cold jet. These sink regions
also follow the entrainment regions discussed earlier in figure 20(b). The source/sink
characteristics of each of the terms discussed above are consistent with Doak’s
theoretical predictions (Doak 1989). Although the jet studied is cold, some comments
may be made for heated jets. If the result of heating is assumed to primarily intensify
the mixing and entropy gradients (α′2), and have a lesser impact on the vortex strength,
it could result in stronger sinks inside and stronger sources outside the lipline for the
TFE. If the outer sources are more efficient in transmitting TFE, a potentially louder
jet may result. However, heating can also intensify the dissipation term (ρT)′∂S′/∂t
in (7.1). Hence, the net production of TFE depends on the new balance between
these counter-acting mechanisms.

The validity of the above analysis of events in an azimuthal plane is established
by considering select results performed with the full 3-D dataset. An instantaneous
snapshot of the turbulent production mechanism of TFE, −B′ · α′, for the 3-D case
is shown in figure 27(a). The corresponding result for the axisymmetric calculation
on the azimuthal plane is shown in (b). Both of the analyses yield consistent results
in terms of the nature of the source, highlighting several TFE production regions due
to vortex intrusion. A few sinks due to entrainment are also visible. Slight variations
in the magnitude are found closer to the axis, but their relative signs remain the
same. Figure 27(c) shows the time trace of this quantity for the 3-D and axisymmetric
calculations at (x, r)= (5.3, 0.4) on the symmetry plane (as indicated by the dots in
(a) and (b)). Both of the calculations predict similar trends in the behaviour of the
source mechanism, although the axisymmetric version occasionally misses the peak
values obtained in the full 3-D version. The mean spatial trends of the sources were
also found to be in general agreement in both of the calculations.

The success of the analysis on an azimuthal slice is anticipated because the largest
gradients occur in the radial direction while the azimuthal derivatives are an order of
magnitude smaller. This is also true for the instantaneous momentum-density fields.
Figure 28 demonstrates this for the raw (non-decomposed) and decomposed data field.
Since the Poisson equation (3.2) governs the irrotational field, figure 28(a) compares
the corresponding gradients of the radial and azimuthal components of the fluctuating
momentum density, ∂(ρvr)

′/∂r and ∂(ρvθ)′/∂θ respectively. The aim is to understand
the relative importance of ∂(ρvr)

′/∂r and ∂(ρvθ)
′/∂θ . As can be clearly seen, the

instantaneous azimuthal derivative is an order of magnitude lower than the radial
derivative. This justifies the use of the axisymmetric form of the Poisson equation.

To confirm that the contribution of the azimuthal derivative in the governing Poisson
equation is negligible at least to the leading order, instantaneous radial and azimuthal
derivatives of the irrotational field (∂2ψ ′/∂r2 and ∂2ψ ′/∂θ 2) were calculated from the
sample 3-D solution of (3.2). Their average values over the symmetry plane are shown
in figure 28(b). The azimuthal derivatives are an order of magnitude smaller than the
radial derivatives in the Poisson equation.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

41
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.410


Mode decomposition 425

30

3-D

Axi.

10 20 40

0 2 4 6 8 10

0 2 4 6 8 10

1

2

1

2

0

1

0.1

0.4

–0.4

–0.2

0.1

0.4

–0.4

–0.2y

r

x

x

t

(a)

(b)

(c)

FIGURE 27. (Colour online) (a) Instantaneous turbulent source mechanism of TFE,
−B′ · α′, from 3-D analysis. (b) Instantaneous turbulent source mechanism of TFE,
−B′ · α′, from axisymmetric analysis. (c) Time trace of −B′ · α′ from the 3-D and
axisymmetric analyses at (x, r) = (5.3, 0.4) on the symmetry plane (as indicated by the
dots in (a) and (b)).

9. Mean fluxes and sources in the TFE
The instantaneous analysis above has focused on specific phenomena resulting in

sources and sinks for TFE transport, which eventually result in sound radiation. This
section examines their mean manifestation, as they appear in Doak’s TFE transport
(7.1). We first describe the properties of the mean flux of TFE carried away by various
modes of momentum-density fluctuations. This is followed by an analysis of the mean
source terms which set up this transport.

Of the various mean flux terms on the left-hand side of (7.1), we discuss the
most informative ones in figure 29. The transport of acoustic enthalpy by turbulent
fluctuations can be considered as the sound energy transmitted to the near field
by small-scale turbulence. To explore this aspect, the mean divergence of the flux
of fluctuating acoustic enthalpy by solenoidal fluctuations (∇ ·H′AB′) is shown in
figure 29(a). This component is synonymous with the scattering of acoustic energy
or sound (Daviller et al. 2009) due to turbulent fluctuations and is observed to
be significant in the sideline direction. This explains why jet noise spectra in the
sideline direction have a broadband nature, and is consistent with the model problem
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FIGURE 28. (Colour online) (a) Radial and azimuthal derivatives of the momentum-
density field, obtained from LES, averaged over the symmetry plane. (b) Radial and
azimuthal derivatives of the irrotational component of the momentum-density field,
obtained after performing 3-D decomposition, averaged over the symmetry plane.

analysis of Jordan et al. (2013), who show that a solenoidal wavepacket can emit
low-intensity acoustic radiation in the sideline direction in the presence of vortical
fluctuations. Thus, the fine-scale turbulence induced during the initial shear layer
transition and core mixing plays a significant role in transmitting acoustic energy
to sideline angles. This component does not have any significant contribution to the
sound energy radiated along the low-aft angle, for, e.g., between 20◦–60◦ from the
jet axis. Its mean flux lines do not indicate a prominent directional bias, which is
expected from the mean of turbulent small-scale phenomena.

Next, we examine the hydrodynamic (solenoidal) energy of the flow carried away by
the hydrodynamic (solenoidal) fluctuations. The pertinent term is the mean divergence
of the flux of the solenoidal component of enthalpy fluctuations associated with the
solenoidal momentum-density fluctuations (∇ ·H′BB′), which is shown in figure 29(b).
Within the core, this reduces to the turbulence energy of the flow carried away by
the turbulent fluctuations because the hydrodynamic mode there is primarily turbulent.
As the contour values indicate, this term forms the strongest flux component within
the shear layer, but its value is negligible beyond five jet diameters radially (where
fluxes of acoustic enthalpy dominate). The turbulence dies out in the near field,
and the solenoidal component now represents the non-acoustic component of the
momentum-density fluctuations. This component represents the inflow of ambient
fluid due to entrainment. It is divergence free and is a result of the continuity
equation, and will also be present in an incompressible jet. The lines in figure 29(b)
represent the direction of the mean flux field H′BB′. The entrainment of ambient
fluid by the expanding jet is evident in the inward pointing arrows. This entrainment
process brings in a small amount of energy from the surroundings. Since the turbulent
enthalpy flux propagating from the core is considerably stronger, these flux lines do
not penetrate the shear layer. The net flux thus propagates in a generally axial
direction downstream, i.e. the solenoidal enthalpy fluctuations are transported in the
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FIGURE 29. (Colour online) Mean divergence of energy flux terms in the TFE equation
as indicated. The lines in (b,d, f ) indicate the corresponding mean flux lines.

mean direction of the bulk flow and are bounded by the developing shear layer. Their
magnitudes peak along the lipline of the jet and fall rapidly in the radially outward
direction.

The turbulent fluctuations in the core also transport heat energy, although the near-
field influence is negligible. Figure 29(c) shows this phenomenon through the mean
divergence of flux of thermal fluctuating enthalpy by solenoidal fluctuations (∇ ·H′TB′).
This component is also limited to the region within the developing shear layer and
identifies a radially inward flow of thermal energy due to the cold fluid issuing into
the relatively warmer ambient medium.

A quantitative analysis of the data indicates that the irrotational acoustic field
primarily contributes to the transport of acoustic enthalpy. We highlight this fact
by plotting the mean divergence of the flux of fluctuating acoustic enthalpy by
fluctuating acoustic momentum density ∇ ·H′A(−∇ψ ′A) in figure 29(d). The lines
show the orientation of the mean flux field H′A(−∇ψ ′A). The prominent flux transport
is along low-aft angles as indicated by the magnitude of the divergence. This mean
flux reduces to acoustic intensity p′u′ in the near-acoustic field of the jet. The
flux lines trace a net outward transport of fluctuating acoustic enthalpy by acoustic
momentum fluctuations. The flux lines in (b) and (d) confirm that the splitting of
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FIGURE 30. (Colour online) Mean sources in the TFE equation as indicated. All panels
have an identical contour range to that indicated in (a).

the momentum-density fluctuations is consistent and complies with the expected
propagation directions of entrainment and acoustic radiation respectively.

Thermal fluctuations are closely bound to turbulent fluctuations, as shown in
figure 6. Hence, thermal fluctuations are also expected to contribute to the transport
of acoustic energy in a similar fashion. The mean divergence of the flux of fluctuating
acoustic enthalpy by thermal fluctuations ∇ ·H′A(−∇ψ ′T) is shown in figure 29(e).
Similarly to solenoidal fluctuations, thermal fluctuations also set up sideline acoustic
energy flux, but not significantly in the low-aft-angle direction.

Mixing results in heating of the relatively cold fluid issuing into the ambient
medium. The direction of the flux lines in figure 29( f ) indicates that the mean thermal
fluctuating enthalpy flux carried by the thermal momentum-density fluctuations
H′T(−∇ψ ′T) is prominently in the radially inward direction – this is expected for
the cold jet under study. The extent of the thermal flux is mostly limited to the
near-core region where there is a perceptible difference in the temperatures of the
mixing fluids.

The above discussed flux transports are set up by sources in the TFE transport
equation (7.1). These mean sources are shown in figure 30. As discussed in the
previous section, in order to differentiate the nature of source terms based on
specific flow phenomena, the mean interactions of the decomposed momentum-density
fluctuations with fluctuating Coriolis acceleration (α1

′) and acceleration due to entropy
gradient fluctuations (α2

′) are considered separately. Figure 30(a–c) shows the sources
and sinks created due to the interaction of turbulent fluctuations in the core of the
jet with the ‘acceleration’ terms α1

′, α2
′ and their sum, α′. Similarly, figure 30(d–f )

shows sources and sinks created by the acoustic component of the momentum-density
fluctuations. Figure 30(g–i) includes those created due to thermal interactions.

We now consider the influence of turbulent fluctuations in setting up mean transport
of TFE in the jet (figure 30a–c). The turbulent production term (−B′ · α1

′) is plotted
in figure 30(a). This is the most prominent source for production of mean flow of
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fluctuating enthalpy due to fluctuating momentum. It represents the energy of turbulent
fluctuations converted into radiated energy by fluctuating momentum. Consistent with
Doak’s prediction (Doak 1989), this production term has a peak inside the shear layer
and towards the core of the jet. This effect was discussed earlier in the context of
instantaneous quantities (§ 8).

The mean interaction of the turbulent fluctuations with the fluctuating entropy
gradients (−B′ · α2

′) induces a sink towards the core of the jet, as seen in figure 30(b),
consistent with the corresponding explanation in § 8 of the instantaneous dynamics.
There is also mean production of fluctuating enthalpy in the outer region of the
developing shear layer, due to the ejection of vortices into the low-momentum
ambient fluid. This is a manifestation of the radially outward flow of fluid in the
developing shear layer. The net result of the mean interaction of the turbulent
fluctuations with the ‘acceleration’ vector is shown in figure 30(c). A predominant
source exists throughout the width of the shear layer and the entropic dissipation of
energy attenuates the source region near the inner shear layer, resulting in a weak sink.
This highlights the effect of dissipation mechanisms in a cold jet, which attenuate
the production of fluctuation energy that would otherwise have been propagated as
sound.

The correlation analysis of the source/sink mechanisms in § 8 was presented for
locations closer to the nozzle, since the strength of these terms is highest where the
gradients are generally high. This is also visible in (a) and (b). The trends of the
statistical analysis were identical at the downstream locations also. This is also ensured
by the mean nature of −B′ · α1

′ and −B′ · α2
′.

The source terms created as a result of the mean interaction of the acoustic
fluctuations with the ‘acceleration’ terms are shown in figure 30(d–f ). Consistent
with the description of instantaneous source mechanisms in § 8, the mean source
term indicates a weak acoustic–turbulent interaction sink (∇ψ ′A · α1

′) and a relatively
strong source due to acoustic–entropy-gradient interaction (∇ψ ′A · α2

′). This source is
however not as prominent as the one induced due to turbulent fluctuations.

The mean source terms produced due to the interaction of thermal fluctuations
with the ‘acceleration’ (∇ψ ′T · α1

′ and ∇ψ ′T · α2
′) terms are shown in figures 30(g)

and 30(h) respectively. These are seen to be considerably weaker. They are more
prominent towards the inner side of the developing shear layer and follow the same
trends as of the mean sources due to the turbulent fluctuations shown in (a) and (b).
For completeness, in figure 30(i), these two components are plotted together with
the third term associated with fluctuating entropy, (ρT)′∂S′/∂t, which includes the
process of entropy creation. Since the jet is cold, the term simply represents a strong
sink for TFE, spreading across the developing shear layer.

10. Summary
Doak’s momentum potential theory has been applied to LES data for a cold Mach

1.3 jet to obtain insight into the sound generation process. The momentum-density
field was first split into acoustic, thermal and turbulent components. These modes
are shown to be compliant with their known features, including their decay rates
(hydrodynamic and acoustic) as well as their spectra (acoustic) in the downstream
and sideline directions respectively. Intermittent phenomena are detected in the
near-acoustic field, centred around the peak of the acoustic spectrum (St ∼ 0.2). The
hydrodynamic and thermal fluctuations, centred around lower frequencies (St∼ 0.03),
are rapidly filtered out in the radial direction.
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A prominent intermittent event in the near field is traced back to vortex intrusion
associated with entrainment. This phenomenon in the core is correlated with
amplification in the acoustic response field. The acoustic mode also exhibits a
coherent axial wavepacket nature in the core, whose dynamics exhibits merging, axial
modulation and amplification, consistent with the observations of Cavalieri et al.
(2011). The primary frequency of this wavepacket is approximately St∼ 0.4, while it
yields highly directional downstream radiation at St∼ 0.2. The filtered chronogram of
the wavepacket highlights the dynamics near the end of the potential core modulating
its axial extent and amplification.

Analysis of the instantaneous source terms in the TFE equation indicates that the
non-orthogonality of the fluctuating acceleration and hydrodynamic mode prevents
‘local fluctuating dynamic equilibrium’ in the core of the jet. This results in net source
or sink terms for TFE transport. The intrusion of solenoidal structures into the core of
the jet results in negative fluctuations in the solenoidal component of the momentum
density. These interact with positive fluctuations in the Coriolis acceleration term,
creating sources. On the other hand, interaction of solenoidal momentum fluctuations
with positive entropy gradients along the entrainment streaks results in sinks inside
the core.

In the analysis of the mean terms of the TFE equation, the hydrodynamic and
thermal modes are found to contribute to the transport of acoustic energy in the
sideline direction with broadband characteristics. The acoustic mode accounts for
most of the narrow-band energy flux in the downstream direction. Both instantaneous
and mean source mechanism analyses of the TFE equation indicate that the interaction
of the fluctuating Coriolis acceleration with the turbulent fluctuations produces the
most prominent source for TFE transport towards the inner half of the shear layer.
Entropic gradients and fluctuations result in dissipation of TFE inside the core.
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