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Abstract

Let (X,(,k) be a a-finite measure space, and let <p be a non-singular measurable transformation
from X into itself. Then a composition transformation Cv on L^(X) is defined by Cvf = f° <p. If
Cv is a bounded operator, then it is called a composition operator. The space Ll(k) is said to
admit compact composition operators if there exists a <p such that Cv is compact. This note is a
report on the spaces which admit or which do not admit compact composition operators.

1980 Mathematics subject classification (Amer. Math. Soc.): 47 B 05.

1. Preliminaries

Let (X, f, A) be a a-finite measure space, and let cp be a non-singular measurable
transformation (that is, one for which 2.<p~1(E)=0 whenever A(E)=Q) from X
into itself. Then a composition transformation Cv on Z/(A) (p ^ 1) is defined as

CJ=/o <p for every fe L\X).

If C,, is a bounded operator on Lp(/l), we call it a composition operator induced
by q>. Every essentially bounded complex-valued measurable function 6 on X
induces the operator Me on L"(X), which is denned by

Mef= 6./ for every feL"(X).

The operator Me is known as the multiplication operator induced by 6. The Banach
space LP(X) is said to admit compact composition operators if there exists at least
one non-singular measurable transformation q> such that Cv is a compact com-
position operator on LP(A).

The main object of this note is to describe spaces which admit and which do
not admit compact composition operators in the case when p = 2.
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For e > 0, let Xe
c denote the set {x: xs X and 18(x) \ > e} and let Z\ denote the

subspace of L2{X) consisting of all those functions which vanish outside X9
%. The

Banach algebra of all bounded linear operators on L2{X) will be denoted by
B(L2(X)). Now we shall prove the following lemma.

LEMMA 1.1. Let MeeB(L2(X)). Then Me is compact if and only if Z\ is finite
dimensional for every e > 0.

PROOF. Suppose Me is compact. Then the restriction of Me to Z\ is also compact.
Since Me is invertible on Z\ (see Halmos (1967), Problem 52), we can conclude
that Z* is finite dimensional.

Conversely, if Ze
l/n is finite dimensional for every natural number n, then the

operator MBn is a compact operator, where 6n = 6 on Xe
1/n and 0 outside Xe

1/n. It
is clear that the sequence {MeJ converges to Me in norm. Since each M8n is of
finite rank, by Problem 138 of Halmos (1967), Me is compact.

The following well-known result is a corollary to the above lemma.

COROLLARY 1.1. Let X be a non-atomic measure, and let M0eB(L2(Xy). Then Me

is compact if and only ifMg is the zero operator.

COROLLARY 1.2. Let X = Xy u X2 be the decomposition of X into non-atomic and
atomic parts respectively, and let Me e B(L2(X)). Then Mg is compact implies that
6 = 0 almost everywhere on X^.

PROOF. The subspace L2(Xt) is invariant under Me, where Xt =X—X2, X2 being
the restriction of X to X2, the atomic part of X (see Zaanan (1967)). Hence M9

is compact on L2(X1). By Corollary 1.1 Mg = 0 on L2(Xl) from which it follows
that 0 = 0 almost everywhere on Xt.

COROLLARY 1.3. Let MeeB(L2(XJ) be a one-to-one operator. Then Me is compact
implies that X is an atomic measure.

PROOF. If Mg is compact, then, by Corollary 1.2, 0 = 0 almost everywhere on
Xx and hence L2(Xt) £ N(Me), where N(Me) denotes the null space of M9. Since
M9 is one-to-one, it is clear that Xx = 0 . Hence X =X2, which shows that X is an
atomic measure.

2. Compact composition operators

THEOREM 2.1. Let CveB(L2(X)). Then Cv is compact if and only if Z{° is finite
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dimensional for every e > 0, where f0 is the Radon-Nikodym derivative of X(p~l

with respect to X.

PROOF. It is known that an operator A is compact if and only if A* A is compact.
By a result of Singh (1974) C* C9 = Mfo. Hence by Lemma 1.1 the result follows.

COROLLARY 2.1. Let (X, £, X) be a non-atomic measure space. Then L2(X) does not
admit a compact composition operator.

PROOF. Suppose CveB(L2(Xj) is compact. Then Mfo is compact. By Corollary
1.1, Mfo is the zero operator, and hence Cv is the zero operator. But no composition
operator is the zero operator. Hence the proof is finished.

COROLLARY 2.2. If C9eB(L\X)) is one-to-one and compact, then X is atomic.

Let p = {Pi,P2,Pi>---} be a sequence of strictly positive numbers, and let I2(p)
be the Hilbert space of all complex sequences {xux2,...} such that

1 1 = 1

Then, in this case, for a mapping <p from the set of positive integers into itself the
Radon-Nikodym derivative f0 is given by

By Theorem 1 of Singh (1976) it follows that C9 is bounded if and only if {fo(m)}
is a bounded sequence. In the light of Theorem 2.1 it is obvious that Cv is compact
if and only if fo(m) -»0 as m -» oo. We shall use these two facts in the following
two theorems.

THEOREM 2.2. / / 0 < lim sup,,.,,*,/?,, < oo, then I2(p) does not admit a compact
composition operator.

PROOF. Let sup/>n = jS. There is a > 0 such that pn > a for all neK, an infinite
subset of positive integers. If Cv is compact and Km is the subset of K consisting
of those n for which <p(ri) = m,

Mm) = -J- £ ft^-"j;iB where 1, = 1.

Thus Km must be finite for each m and so, K being infinite, cp(K) must be infinite.
But, for each m e (p(K), fo(m) > a//? and so fo(m) +-> 0, which is a contradiction.
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COROLLARY 2.3. The Hilbert space I2 does not admit a compact composition
operator.

THEOREM 2.3. If suppn = oo, then I2(p) admits a compact composition operator.

PROOF. Define inductively a strictly increasing sequence {<p(n)} such that, for
each n, p^n)>n.pn. Then for this Cv, fa{m) = 0 if m is not cp(n) for some n, while
fo((p(n)) =pn\p<p(n) < l/w- Thus Co is compact. This proves the theorem.

T H E O R E M 2.4. Let p = {pup2, •••} and £ , ° i i P i < <x>. Then I2(p) admits a compact

composition operator.

PROOF. Let m be an arbitrary fixed positive integer. Then define the function <p as

= <
n if n < m,

if n ^ m.

The operator C,, is bounded and compact.

In the proof of the above theorem we have obtained a finite rank composition
operator. But, in this case, there do exist compact composition operators which
are not of finite rank. This is shown in the following example.

EXAMPLE 2.1. If pn = a2", where 0 < a < 1, and q>(n) = n/2 in case n is even and
(p(ri) = («+l)/2 in case n is odd, then C9 is one-to-one and compact on I2{p).

In support of Theorem 2.3 we cite the following example.

EXAMPLE 2.2. Let pn — l/n if n is even and pn = n if n is odd. Let q>{n) = (n — l)
if n is even and cp(ri) = n2 if n is odd. Then Cv is bounded and compact.

Let (X, C, X) be a cr-finite measure space, and let X = Xt u X2 be the decom-
position of X into non-atomic and atomic parts respectively. From now on we
shall assume that X1 and X2 are non-null measurable subsets of X. Without any
loss of generality we can assume that atoms are points. First, we shall prove the
following lemma.

LEMMA 2.5. / / C^eB(L\X)), then Cv is compact implies that X = <p~1{X%).

PROOF. If Cv is compact, then Mfo is compact, and hence by Corollary 1.2
/ 0 = 0 almost everywhere on Xt. Therefore ^ " ' ( J T i ) = 0 . Since

we have X = cp ~ l(X2).
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COROLLARY 2.4. Let X = X^ u X2 be the decomposition of X, and let X(X) = oo
and X(X2) < oo. Then L2(X) does not admit a compact composition operator.

PROOF. The proof follows from Lemma 2.5 and Theorem 1 of Singh (1976).

COROLLARY 2.5. Let X = Xt u X2 be the decomposition of X, and let X{X) = oo.
Then L2(X) admits a compact composition operator only if k(X2) = oo.

THEOREM 2.6. Let (X, {, X) be a c-finite measure space, and let

0 < a < l({x}) < P < oo for every xeX2.

Then L2(X) does not admit a compact composition operator.

PROOF. If X contains finitely many atoms and there exists a compact com-
position operator Cv, then by Lemma 2.5 (p~i(X2) = X, which contradicts the
boundedness of C9 (see Singh (1976)).

If X has infinitely many atoms and L2(A) admits a compact composition operator
C,,, then Z{° is finite dimensional for every <5 > 0. This implies that X%° has
finitely many atoms. Since X(X2) = oo, Cv cannot be bounded, which is a contra-
diction.

THEOREM 2.7. Let X be a a-finite measure space of infinite measure with infinitely
many atoms, and let inf{A({x}): xeX2] = a > 0. Then L2(l) admits a compact
composition operator if and only if sup {X({x}): xeX2} = oo.

PROOF. The necessary part follows from Theorem 2.5 and the proof of the
sufficient part is analogous to the proof of Theorem 2.3.

THEOREM 2.8. Let X be a a-finite measure space of infinite measure with infinitely
many atoms, and let sup {l({x})\ xeX2} =/? > 0. Then L2(X) admits a compact
composition operator only if inf {A({x}): xe X2} = 0 .

PROOF. The proof follows from Theorem 2.6.

The converse of the above theorem is not true as is shown in the following
example.

EXAMPLE 2.3. Let X = [0,^] u N, where N is the set of natural numbers, and
let X be the Lebesgue measure on [0 , i ] and A({«}) = 1 if n is odd and 1/2" if n is
even. Then L2(X) does not admit a compact composition operator.

THEOREM 2.9. Let X be a a-finite measure space with infinitely many atoms and
sup {A({x}): xeX2} = oo. Then L2(X) admits a compact composition operator.
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PROOF. The proof is analogous to the proof of Theorem 2.3.

THEOREM 2.10. Let (X,C,A) be a totally finite measure space with finitely many
atoms, and let Cve5(L2(A)). Then C9 is compact if and only if X = (p~l(X2).

PROOF. The proof is obvious.

The following two examples illustrate Theorems 2.9 and 2.10.

EXAMPLE 2.4. Let Z = ]-oo,0]uiV, where N is the set of natural numbers.
Let X be the Lebesgue measure on ] -oo,0] , and A({«}) =nz if n is odd and 1/2"
if n is even. Then, if q>(x) = 2n+l for xe ] — oo,0] and («— 1) < — x<n,
cp{x) = x2 in case x is an odd positive integer and cp(x) =(x+l)2 in case x is an
even positive integer, Cv is a compact composition operator.

EXAMPLE 2.5. Let X = [0,1] u {2,3}. Let X be the Lebesgue measure on [0,1]
and A({2}) =A({3}) = 1. Let <p(x) = 2 if xe[0,1] u {3}, and <p(2) = 3. If C is the
(T-algebra of A-measurable subsets of X, then ^"'(O has finitely many elements
and L2(X, (JO"1^),^) is the range of Cv. Hence C^ is of finite rank and therefore
it is compact.
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