COMPACT COMPOSITION OPERATORS

R. K. SINGH and ASHOK KUMAR

(Received 20 May 1977; revised 5 February 1979)

Communicated by A. P. Robertson

Abstract

Let (X,ζ,λ) be a σ -finite measure space, and let φ be a non-singular measurable transformation from X into itself. Then a composition transformation C_{φ} on $L^2(\lambda)$ is defined by $C_{\varphi}f = f \circ \varphi$. If C_{φ} is a bounded operator, then it is called a composition operator. The space $L^2(\lambda)$ is said to admit compact composition operators if there exists a φ such that C_{φ} is compact. This note is a report on the spaces which admit or which do not admit compact composition operators.

1980 Mathematics subject classification (Amer. Math. Soc.): 47 B 05.

1. Preliminaries

Let (X,ζ,λ) be a σ -finite measure space, and let φ be a non-singular measurable transformation (that is, one for which $\lambda \varphi^{-1}(E) = 0$ whenever $\lambda(E) = 0$) from X into itself. Then a composition transformation C_{φ} on $L^p(\lambda)$ $(p \ge 1)$ is defined as

$$C_{\varphi}f = f \circ \varphi$$
 for every $f \in L^p(\lambda)$.

If C_{φ} is a bounded operator on $L^{p}(\lambda)$, we call it a composition operator induced by φ . Every essentially bounded complex-valued measurable function θ on X induces the operator M_{θ} on $L^{p}(\lambda)$, which is defined by

$$M_{\theta}f = \theta \cdot f$$
 for every $f \in L^{p}(\lambda)$.

The operator M_{θ} is known as the multiplication operator induced by θ . The Banach space $L^{p}(\lambda)$ is said to admit compact composition operators if there exists at least one non-singular measurable transformation φ such that C_{φ} is a compact composition operator on $L^{p}(\lambda)$.

The main object of this note is to describe spaces which admit and which do not admit compact composition operators in the case when p = 2.

For $\varepsilon > 0$, let X_{ε}^{θ} denote the set $\{x \colon x \in X \text{ and } | \theta(x)| > \varepsilon\}$ and let Z_{ε}^{θ} denote the subspace of $L^{2}(\lambda)$ consisting of all those functions which vanish outside X_{ε}^{θ} . The Banach algebra of all bounded linear operators on $L^{2}(\lambda)$ will be denoted by $B(L^{2}(\lambda))$. Now we shall prove the following lemma.

LEMMA 1.1. Let $M_{\theta} \in B(L^2(\lambda))$. Then M_{θ} is compact if and only if Z_{ε}^{θ} is finite dimensional for every $\varepsilon > 0$.

PROOF. Suppose M_{θ} is compact. Then the restriction of M_{θ} to Z_{ε}^{θ} is also compact. Since M_{θ} is invertible on Z_{ε}^{θ} (see Halmos (1967), Problem 52), we can conclude that Z_{ε}^{θ} is finite dimensional.

Conversely, if $Z_{1/n}^{\theta}$ is finite dimensional for every natural number n, then the operator M_{θ_n} is a compact operator, where $\theta_n = \theta$ on $X_{1/n}^{\theta}$ and 0 outside $X_{1/n}^{\theta}$. It is clear that the sequence $\{M_{\theta_n}\}$ converges to M_{θ} in norm. Since each M_{θ_n} is of finite rank, by Problem 138 of Halmos (1967), M_{θ} is compact.

The following well-known result is a corollary to the above lemma.

COROLLARY 1.1. Let λ be a non-atomic measure, and let $M_{\theta} \in B(L^2(\lambda))$. Then M_{θ} is compact if and only if M_{θ} is the zero operator.

COROLLARY 1.2. Let $X = X_1 \cup X_2$ be the decomposition of X into non-atomic and atomic parts respectively, and let $M_{\theta} \in B(L^2(\lambda))$. Then M_{θ} is compact implies that $\theta = 0$ almost everywhere on X_1 .

Proof. The subspace $L^2(\lambda_1)$ is invariant under M_{θ} , where $\lambda_1 = \lambda - \lambda_2$, λ_2 being the restriction of λ to X_2 , the atomic part of X (see Zaanan (1967)). Hence M_{θ} is compact on $L^2(\lambda_1)$. By Corollary 1.1 $M_{\theta} = 0$ on $L^2(\lambda_1)$ from which it follows that $\theta = 0$ almost everywhere on X_1 .

COROLLARY 1.3. Let $M_{\theta} \in B(L^2(\lambda))$ be a one-to-one operator. Then M_{θ} is compact implies that λ is an atomic measure.

PROOF. If M_{θ} is compact, then, by Corollary 1.2, $\theta = 0$ almost everywhere on X_1 and hence $L^2(\lambda_1) \subseteq N(M_{\theta})$, where $N(M_{\theta})$ denotes the null space of M_{θ} . Since M_{θ} is one-to-one, it is clear that $\lambda_1 = 0$. Hence $\lambda = \lambda_2$, which shows that λ is an atomic measure.

2. Compact composition operators

THEOREM 2.1. Let $C_{\varphi} \in B(L^2(\lambda))$. Then C_{φ} is compact if and only if $Z_{\varepsilon}^{f_0}$ is finite

dimensional for every $\varepsilon > 0$, where f_0 is the Radon-Nikodym derivative of $\lambda \varphi^{-1}$ with respect to λ .

PROOF. It is known that an operator A is compact if and only if A*A is compact. By a result of Singh (1974) $C_{\varphi}^*C_{\varphi} = M_{f_0}$. Hence by Lemma 1.1 the result follows.

COROLLARY 2.1. Let (X, ζ, λ) be a non-atomic measure space. Then $L^2(\lambda)$ does not admit a compact composition operator.

PROOF. Suppose $C_{\varphi} \in B(L^2(\lambda))$ is compact. Then M_{f_0} is compact. By Corollary 1.1, M_{f_0} is the zero operator, and hence C_{φ} is the zero operator. But no composition operator is the zero operator. Hence the proof is finished.

COROLLARY 2.2. If $C_{\varphi} \in B(L^2(\lambda))$ is one-to-one and compact, then λ is atomic.

Let $p = \{p_1, p_2, p_3, ...\}$ be a sequence of strictly positive numbers, and let $l^2(p)$ be the Hilbert space of all complex sequences $\{x_1, x_2, ...\}$ such that

$$\sum_{n=1}^{\infty} |x_n|^2 p_n < \infty.$$

Then, in this case, for a mapping φ from the set of positive integers into itself the Radon-Nikodym derivative f_0 is given by

$$f_0(m) = \frac{\lambda(\varphi^{-1}(\{m\}))}{\lambda(\{m\})} = \frac{1}{p_m} \sum_{\varphi(n) = m} p_n.$$

By Theorem 1 of Singh (1976) it follows that C_{φ} is bounded if and only if $\{f_0(m)\}$ is a bounded sequence. In the light of Theorem 2.1 it is obvious that C_{φ} is compact if and only if $f_0(m) \to 0$ as $m \to \infty$. We shall use these two facts in the following two theorems.

THEOREM 2.2. If $0 < \limsup_{n \to \infty} p_n < \infty$, then $l^2(p)$ does not admit a compact composition operator.

PROOF. Let $\sup p_n = \beta$. There is $\alpha > 0$ such that $p_n \geqslant \alpha$ for all $n \in K$, an infinite subset of positive integers. If C_{φ} is compact and K_m is the subset of K consisting of those n for which $\varphi(n) = m$,

$$f_0(m) = \frac{1}{p_m} \sum_{\varphi(n)=m} p_n \geqslant \frac{\alpha}{\beta} \sum_{n \in K_m} 1_n$$
, where $1_n = 1$.

Thus K_m must be finite for each m and so, K being infinite, $\varphi(K)$ must be infinite. But, for each $m \in \varphi(K)$, $f_0(m) \geqslant \alpha/\beta$ and so $f_0(m) \mapsto 0$, which is a contradiction.

COROLLARY 2.3. The Hilbert space l^2 does not admit a compact composition operator.

THEOREM 2.3. If $\sup p_n = \infty$, then $l^2(p)$ admits a compact composition operator.

PROOF. Define inductively a strictly increasing sequence $\{\varphi(n)\}$ such that, for each n, $p_{\varphi(n)} > n \cdot p_n$. Then for this C_{φ} , $f_0(m) = 0$ if m is not $\varphi(n)$ for some n, while $f_0(\varphi(n)) = p_n/p_{\varphi(n)} < 1/n$. Thus C_{φ} is compact. This proves the theorem.

THEOREM 2.4. Let $p = \{p_1, p_2, ...\}$ and $\sum_{i=1}^{\infty} p_i < \infty$. Then $l^2(p)$ admits a compact composition operator.

PROOF. Let m be an arbitrary fixed positive integer. Then define the function φ as

$$\varphi(n) = \begin{cases} n & \text{if } n < m, \\ m & \text{if } n \ge m. \end{cases}$$

The operator C_{φ} is bounded and compact.

In the proof of the above theorem we have obtained a finite rank composition operator. But, in this case, there do exist compact composition operators which are not of finite rank. This is shown in the following example.

EXAMPLE 2.1. If $p_n = a^{2n}$, where 0 < a < 1, and $\varphi(n) = n/2$ in case n is even and $\varphi(n) = (n+1)/2$ in case n is odd, then C_{φ} is one-to-one and compact on $l^2(p)$.

In support of Theorem 2.3 we cite the following example.

EXAMPLE 2.2. Let $p_n = 1/n$ if n is even and $p_n = n$ if n is odd. Let $\varphi(n) = (n-1)$ if n is even and $\varphi(n) = n^2$ if n is odd. Then C_{φ} is bounded and compact.

Let (X, ζ, λ) be a σ -finite measure space, and let $X = X_1 \cup X_2$ be the decomposition of X into non-atomic and atomic parts respectively. From now on we shall assume that X_1 and X_2 are non-null measurable subsets of X. Without any loss of generality we can assume that atoms are points. First, we shall prove the following lemma.

LEMMA 2.5. If $C_{\varphi} \in B(L^2(\lambda))$, then C_{φ} is compact implies that $X = \varphi^{-1}(X_2)$.

PROOF. If C_{φ} is compact, then M_{f_0} is compact, and hence by Corollary 1.2 $f_0 = 0$ almost everywhere on X_1 . Therefore $\lambda \varphi^{-1}(X_1) = 0$. Since

$$X = \varphi^{-1}(X_1) \cup \varphi^{-1}(X_2),$$

we have $X = \varphi^{-1}(X_2)$.

COROLLARY 2.4. Let $X = X_1 \cup X_2$ be the decomposition of X, and let $\lambda(X) = \infty$ and $\lambda(X_2) < \infty$. Then $L^2(\lambda)$ does not admit a compact composition operator.

PROOF. The proof follows from Lemma 2.5 and Theorem 1 of Singh (1976).

COROLLARY 2.5. Let $X = X_1 \cup X_2$ be the decomposition of X, and let $\lambda(X) = \infty$. Then $L^2(\lambda)$ admits a compact composition operator only if $\lambda(X_2) = \infty$.

THEOREM 2.6. Let (X, ζ, λ) be a σ -finite measure space, and let $0 \le \alpha \le \lambda(\{x\}) \le \beta < \infty$ for every $x \in X_2$.

Then $L^2(\lambda)$ does not admit a compact composition operator.

PROOF. If X contains finitely many atoms and there exists a compact composition operator C_{φ} , then by Lemma 2.5 $\varphi^{-1}(X_2) = X$, which contradicts the boundedness of C_{φ} (see Singh (1976)).

If X has infinitely many atoms and $L^2(\lambda)$ admits a compact composition operator C_{φ} , then $Z_{\delta}^{f_0}$ is finite dimensional for every $\delta > 0$. This implies that $X_{\delta}^{f_0}$ has finitely many atoms. Since $\lambda(X_2) = \infty$, C_{φ} cannot be bounded, which is a contradiction.

THEOREM 2.7. Let X be a σ -finite measure space of infinite measure with infinitely many atoms, and let $\inf \{ \lambda(\{x\}) : x \in X_2 \} = \alpha > 0$. Then $L^2(\lambda)$ admits a compact composition operator if and only if $\sup \{ \lambda(\{x\}) : x \in X_2 \} = \infty$.

PROOF. The necessary part follows from Theorem 2.5 and the proof of the sufficient part is analogous to the proof of Theorem 2.3.

THEOREM 2.8. Let X be a σ -finite measure space of infinite measure with infinitely many atoms, and let $\sup \{\lambda(\{x\}): x \in X_2\} = \beta > 0$. Then $L^2(\lambda)$ admits a compact composition operator only if $\inf \{\lambda(\{x\}): x \in X_2\} = 0$.

Proof. The proof follows from Theorem 2.6.

The converse of the above theorem is not true as is shown in the following example.

EXAMPLE 2.3. Let $X = [0, \frac{1}{2}] \cup N$, where N is the set of natural numbers, and let λ be the Lebesgue measure on $[0, \frac{1}{2}]$ and $\lambda(\{n\}) = 1$ if n is odd and $1/2^n$ if n is even. Then $L^2(\lambda)$ does not admit a compact composition operator.

THEOREM 2.9. Let X be a σ -finite measure space with infinitely many atoms and $\sup \{\lambda(\{x\}): x \in X_2\} = \infty$. Then $L^2(\lambda)$ admits a compact composition operator.

PROOF. The proof is analogous to the proof of Theorem 2.3.

THEOREM 2.10. Let (X, ζ, λ) be a totally finite measure space with finitely many atoms, and let $C_{\varphi} \in B(L^2(\lambda))$. Then C_{φ} is compact if and only if $X = \varphi^{-1}(X_2)$.

Proof. The proof is obvious.

The following two examples illustrate Theorems 2.9 and 2.10.

EXAMPLE 2.4. Let $X =]-\infty, 0] \cup N$, where N is the set of natural numbers. Let λ be the Lebesgue measure on $]-\infty, 0]$, and $\lambda(\{n\}) = n^2$ if n is odd and $1/2^n$ if n is even. Then, if $\varphi(x) = 2n+1$ for $x \in]-\infty, 0]$ and $(n-1) \le -x < n$, $\varphi(x) = x^2$ in case x is an odd positive integer and $\varphi(x) = (x+1)^2$ in case x is an even positive integer, C_{φ} is a compact composition operator.

EXAMPLE 2.5. Let $X = [0, 1] \cup \{2, 3\}$. Let λ be the Lebesgue measure on [0, 1] and $\lambda(\{2\}) = \lambda(\{3\}) = 1$. Let $\varphi(x) = 2$ if $x \in [0, 1] \cup \{3\}$, and $\varphi(2) = 3$. If ζ is the σ -algebra of λ -measurable subsets of X, then $\varphi^{-1}(\zeta)$ has finitely many elements and $L^2(X, \varphi^{-1}(\zeta), \lambda)$ is the range of C_{φ} . Hence C_{φ} is of finite rank and therefore it is compact.

Acknowledgement

The authors are obliged to the referee for his comments and suggestions which sharpened and improved some of the results of this paper.

References

- P. R. Halmos (1967), A Hilbert space problem book (Van Nostrand, Princeton, N.J., 1967).
- W. C. Ridge (1973), 'Spectrum of a composition operator', Proc. Amer. Math. Soc. 37, 121-127.
- R. K. Singh (1974), 'Compact and quasinormal composition operators', *Proc. Amer. Math. Soc.* 45, 80-82.
- R. K. Singh (1976), 'Composition operators induced by rational functions', *Proc. Amer. Math. Soc.* 59, 329-333.
- A. C. Zaanan (1967), Integration, completely revised edition of An introduction to the theory of integration (Interscience, New York, 1967).

Department of Mathematics University of Jammu Jammu-180001 India