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Abstract. In this paper, by using the Leggett–Williams fixed point theorem, the
existence of three positive periodic solutions for differential equations with piecewise
constant argument and impulse on time scales is investigated. Some easily verifiable
sufficient criteria are established. Finally, an example is given to illustrate the results.
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1. Introduction. Impulsive differential equations, which arise in physics,
population dynamics, economics, etc., are important mathematical tools for a better
understanding of many real-world models, we refer the reader to [1–5] and the
references therein. The study of differential equations on time scales, which has been
created in order to unify the study of differential and difference equations, is an area of
mathematics that has recently gained a lot of attention, moreover, many results on this
issue have been well documented in the monographs [6–8]. The study of differential
equations with piecewise constant arguments (EPCA) was initiated by Aftabizadeh
and Wiener [9]. They observed that the change of sign in the argument deviation leads
not only to interesting periodic properties but also to complications in the asymptotic
and oscillatory behaviour of solutions. Various qualitative behaviours of solutions for
EPCA have been investigated by many authors (see e.g. Refs. [9–17]).

To the best of the authors’ knowledge, there have been no results about the
existence of multiple solutions of impulsive differential equations with piecewise
constant arguments and parameters. In this paper, by using the Leggett–Williams
multiple fixed point theorem, we shall consider the following equation on time scales:

{
x�(t) = −A(t)xσ (t) + λ f

(
t, x(t), x(β(t))

)
, t ∈ �, t �= tk,

�x(tk) = x(t+k ) − x(t−k ) = Ik(x(tk)), t = tk, k ∈ �,
(1)

where A(t) = diag[a1(t), a2(t), . . . , an(t)], f = (f1, f2, . . . , fn)T , λ > 0 is a positive
parameter; β(t) = tk−1, if tk−1 ≤ t < tk, k ∈ �, t ∈ �, � is an ω-periodic time scale.
For each interval I of �, we denote I� = I ∩ �, x(t+k ) and x(t−k ) represent the right and
the left limits of x(tk) in the sense of time scales; in addition, if tk is right-scattered, then
x(t+k ) = x(tk), whereas, if tk is left-scattered, then x(t−k ) = x(tk). There exists a positive
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integer p such that tk+p = tk + ω, Ik+p = Ik, k ∈ �. Without loss of generality, we also
assume that [0, ω]� ∩ {tk, k ∈ �} = {t1, t2, . . . , tq}.

Throughout this paper, we assume that
(H1) ai ∈ C(�, �+) is ω-periodic, i = 1, 2, . . . , n;
(H2) f ∈ C(� × �n

+ × �n
+, �n

+) is ω-periodic with respect to the first variable and
Ik ∈ C(�n

+, �n
+), k ∈ �.

2. Preliminaries. In this section, we shall recall some definitions, and state some
preliminary results.

DEFINITION 2.1. A function x(t) is a solution of (1.1) on � if:
(i) x(t) is continuous on �;

(ii) the derivative x�(t) exists at each point t ∈ �, with the possible exception of the
points tk−1, k ∈ �, where one-sided derivatives exist;

(iii) Equation (1.1) is satisfied on each interval [tk−1, tk), k ∈ �.

DEFINITION 2.2. [7] A time scale � is an arbitrary nonempty closed subset of the
real numbers �. The forward and backward jump operators σ , ρ : � → � and the
graininess μ : � → �+ are defined, respectively, by

σ (t) := inf{s ∈ � : s > t}, ρ(t) := sup{s ∈ � : s < t} and μ(t) = σ (t) − t.

DEFINITION 2.3. [7] For x : � → �, then we define the delta derivative of
x(t), x�(t), to be the number (if it exists) with the property that for a given ε > 0,
there exists a neighbourhood U of t such that

|[x(σ (t)) − x(t)] − x�(t)[σ (t) − s]| ≤ ε|σ (t) − s|

for all s ∈ U.

DEFINITION 2.4. [7] If X�(t) = x(t), then we define the delta integral by∫ t

a
x(s)�s = X(t) − X(a).

DEFINITION 2.5. [18] Let � �= � be a periodic time scale with period p. We say that
the function f : � → � is periodic with period ω if there exists a natural number n
such that ω = np, f (t + ω) = f (t) for all t ∈ � and ω is the smallest number such that
f (t + ω) = f (t).

If � = �, we say that f is periodic with period ω > 0 if ω is the smallest positive
number such that f (t + ω) = f (t) for all t ∈ �.

DEFINITION 2.6. [7] A function p : � → � is called regressive if 1 + μ(t)p(t) �= 0 for
all t ∈ �k, where μ(t) = σ (t) − t is the graininess function. If p is regressive and right-
dense continuous function, then the generalized exponential function ep is defined
by

ep(t, s) = exp
{ ∫ t

s
ξμ(τ )(p(τ ))�τ

}
,
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for s, t ∈ �, with the cylinder transformation given by

ξh(z) =
{ Log(1+hz)

h , if h > 0,

z, if h = 0.

Let p, q : � → � be two regressive functions, we define

p ⊕ q := p + q + μpq, 
p := − p
1 + μp

, p 
 q = p ⊕ (
q).

Then the generalized exponential function has the following properties.

LEMMA 2.1. [7] Assume that p, q : � → � are two regressive functions, then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ (t), s) = (1 + μ(t)p(t))ep(t, s);
(iii) ep(t, σ (s)) = ep(t,s)

1+μ(s)p(s) ;
(iv) 1

ep(t,s) = e
p(t, s);

(v) ep(t, s) = 1
ep(s,t) = e
p(s, t);

(vi) ep(t, s)ep(s, r) = ep(t, r).

LEMMA 2.2. The function x(t) is an ω-periodic solution of (1.1) if and only if x(t) is
an ω-periodic solution of the following system:

x(t) = λ

∫ t+ω

t
G(t, s)f (s, x(s), x(β(s)))�s +

∑
k:tk∈[t,t+ω]

G(t, tk)Ik(x(tk)),

where

G(t, s) = diag[G1(t, s), G2(t, s), . . . , Gn(t, s)],

and

Gi(t, s) = e
ai (t, s)
e
ai (0, ω) − 1

, s ∈ [t, t + ω]�, i = 1, 2, . . . , n.

Proof. First, we prove the necessity. If x(t) = (x1(t), . . . , xn(t))T is a solution of
system (1.1), then

x�
i (t) + ai(t)xσ

i (t) = λfi(t, x(t), x(β(t))), (2)

for t �= tk, i = 1, . . . , n. Multiplying both sides of (2.2) by eai (t, 0), we have

[xi(t)eai (t, 0)]� = λfi(t, x(t), x(β(t)))eai (t, 0), (3)

for i = 1, 2, . . . , n. Integrating (2.3) step by step from t to t + ω, we get

xi(t) = λ

∫ t+ω

t

e
ai (t, s)
e
ai (0, ω) − 1

fi(s, x(s), x(β(s)))�s +
∑

j;tj∈[t,t+ω]

e
ai (t, tk)
e
ai (0, ω) − 1

Iik(x(tk)),

where i = 1, 2, . . . , n, we find that x(t) satisfies (2.1).
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Second, we prove the sufficiency. Let x(t) = (x1(t), . . . , xn(t))T be a solution of
system (2.1). If t �= tk, k ∈ �, i = 1, 2, . . . , n, from (2.1), we have

x�
i (t) = λ[Gi(t, t + ω)fi(t + ω, x(t + ω), x(β(t + ω))) − Gi(t, t)fi(t, x(t), x(β(t)))]

− ai(t)xσ
i (t)

= −ai(t)xσ
i (t) + λfi(t, x(t), x(β(t))).

If t = tk, k ∈ �, i = 1, 2, . . . , n, then by (2.1), we get

xi(t+k ) − xi(t−k ) =
∑

j:tj∈[t+k ,t+k +ω)

Gi(tk, tj)Iij(x(tj)) −
∑

j:tj∈[t−k ,t−k +ω)

Gi(tk, tj)Iij(x(tj))

= Gi(tk, tk + ω)Iik(x(tk) + ω) − Gi(tk, tk)Iik(x(tk))

= Iik(x(tk)).

So we know that, x(t) is also an ω-periodic solution of (1.1). This completes the proof
Lemma 2.2. �

Let � be a Banach space and K be a closed, nonempty subset of �. K is a cone
provided:

(i) αu + βv ∈ K for all u, v ∈ K and α, β ≥ 0;
(ii) u,−u ∈ K imply u = 0.
Define Kr = {x ∈ K|‖x‖ ≤ r}. Let α(x) denote the positive continuous concave

functional on K , that is, α : K → [0,∞) is continuous and satisfies

α(λx + (1 − λ)y) ≥ λα(x) + (1 − λ)α(y) for all x, y ∈ K, 0 ≤ λ ≤ 1

and we denote the set K(α, a, b) = {x|x ∈ K, a ≤ α(x), ‖x‖ ≤ b}.
The following lemma cited from Ref. [18] is useful for the proof of our main results

of this paper.

LEMMA 2.3. [19] Let K be a cone of the real Banach space � and A : Kc → Kc be a
completely continuous operator, and suppose that there exists a concave positive functional
α with α(x) ≤ ‖x‖(x ∈ K) and numbers a, b, d with 0 < d < a < b ≤ c, satisfying the
following conditions:

(1) {x ∈ K(α, a, b) : α(x) > a} �= ∅ and α(Ax) > a if x ∈ K(α, a, b);
(2) ‖Ax‖ < d if x ∈ Kd;
(3) α(Ax) > a for all x ∈ K(α, a, c) with ‖Ax‖ > b.

Then A has at least three fixed points in Kc.

In order to apply Lemma 2.2 to system (1.1), consider the Banach space

� = {x|x = (x1(t), . . . , xn(t))T ∈ PC(�, �n) : x(t + ω) = x(t), t ∈ �}

with the norm defined by ‖x‖ = ∑n
i=1 |xi|0, where |xi|0 = sup

t∈[0,ω]�
|xi(t)|,

PC(�, �n) = {x : � → �n|x|(tk,tk+1)�
∈ C((tk, tk+1)�, �n), ∃x(t−k ) = x((tk), k ∈ �}.

Define the cone K in � by

K = {x = (x1(t), . . . , xn(t))T ∈ � : xi(t) ≥ σ |xi|0, t ∈ [0, ω]�, i = 1, 2, . . . , n},
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where

0 < σ = A/B < 1

and

A = min
1≤i≤n

{Ai}, B = max
1≤i≤n

{Bi},

Ai := min{Gi(t, s) : 0 ≤ t ≤ s ≤ ω} = 1
e
ai (0, ω) − 1

> 0, i = 1, 2, . . . , n,

Bi := max{Gi(t, s) : 0 ≤ t ≤ s ≤ ω} = e
ai (0, ω)
e
ai (0, ω) − 1

> 0, i = 1, 2, . . . , n.

It is not difficult to verify that K is a cone in X .
Let the map � be defined by

(�x)(t) = λ

∫ t+ω

t
G(t, s)f (s, x(s), x(β(s)))�s +

∑
k:tk∈[t,t+ω]

G(t, tk)Ik(x(tk)), (4)

for x ∈ K , t ∈ �, and

(�x) = (�1x,�2x, . . . , �nx)T .

LEMMA 2.4. The mapping � maps K into K, i.e., �K ⊂ K.

Proof. For any x ∈ K , it is easy to see that �x ∈ PC(�, �n). Since x(β(t + ω)) =
x(β(t)), in view of (2.4), for t ∈ �, i = 1, 2, . . . , n, we obtain

(�ix)(t + ω) = λ

∫ t+2ω

t+ω

Gi(t + ω, s)fi(s, x(s), x(β(s)))�s +
∑

k:tk∈[t+ω,t+2ω]

Gi(t + ω, tk)Iik(x(tk))

= λ

∫ t+ω

t
Gi(t + ω, u + ω)fi(u + ω, x(u + ω), x(β(u + ω)))�u

+
∑

k:tk∈[t,t+ω]

Gi(t + ω, tk + ω)Iik(x(tk + ω))

= λ

∫ t+ω

t
Gi(t, u)fi(u, x(u), x(β(u)))�u +

∑
k:tk∈[t,t+ω]

Gi(t, tk)Iik(x(tk))

= (�ix)(t).

That is, (�x)(t + ω) = (�x)(t), t ∈ �. So �x ∈ �. For any x ∈ K, i = 1, 2, . . . , n, we
have

|�ix|0 ≤ Biλ

∫ t+ω

t
fi(t, x(t), x(β(t)))�s + Bi

∑
k:tk∈[t,t+ω]

Iik(x(tk))

and

(�ix)(t) ≥ Aiλ

∫ t+ω

t
fi(t, x(t), x(β(t)))�s + Ai

∑
k:tk∈[t,t+ω]

Iik(x(tk)).
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So we get

(�ix)(t) ≥ A
B

|�ix|0 = σ |�ix|0.

Hence, �x ∈ K . The proof of Lemma 2.4 is complete. �
Since the method is similar to that in the literature [20], we omit the proof of the

following lemma.

LEMMA 2.5. The operator � : K → K is completely continuous.

For convenience in the following discussion, we introduce the following notations:

f 0 = lim
‖u‖→0

sup
t∈[0,ω]

‖f (t, u(t), u(β(t)))‖
‖u‖ , I0 = lim sup

‖u‖→0

q∑
k=1

‖Ik(u)‖
‖u‖ ,

f ∞ = lim
‖u‖→∞

sup
t∈[0,ω]

‖f (t, u(t), u(β(t)))‖
‖u‖ , I∞ = lim sup

‖u‖→∞

q∑
k=1

‖Ik(u)‖
‖u‖

and for b > 0, we define

I(b) = min
σb≤‖u‖≤b

q∑
k=1

‖Ik(u)‖.

3. Main result.
Our main result of this paper is as follows:

THEOREM 3.1. Assume that (H1) − (H2) hold, there exists a number b > 0 such that
the following conditions:
(i) ‖f (t, u, u(β(t)))‖ + (A + 1)I(b) > 1+A

A ‖u‖ for σb ≤ ‖u‖ ≤ b, t ∈ �;
(ii) f 0 + I0 < 1

B , f ∞ + I∞ < 1
B

hold. Then the system (1.1) has at least three positive ω-periodic solutions for

1
(A + 1)ω

< λ <
1
ω

.

Proof. By the second inequality in (ii), one can find an ε > 0 such that

1
B − (f ∞ + I∞)

2
> ε > 0.

By the definitions of f ∞ and I∞, there exists a C0 > b such that

‖f (s, u, u(β(t)))‖ ≤ (f ∞ + ε)‖u‖,
q∑

k=1

‖Ik(u)‖ ≤ (I∞ + ε)‖u‖,

where ‖u‖ > C0.
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Let C1 = C0/σ , if x ∈ K , ‖x‖ > C1, then ‖x‖ > C0 and we have

‖�x‖ = sup
t∈[0,ω]�

n∑
i=1

|(�ix)(t)|

≤
n∑

i=1

[
λB

∫ t+ω

t
fi(s, x(s), x(β(s)))�s + B

∑
k:tk∈[t,t+ω]

Iik(x(tk))
]

= λB
∫ t+ω

t
‖f (s, x(s), x(β(s)))‖�s + B

∑
k:tk∈[t,t+ω]

‖Ik(x(tk))‖

≤ λB
∫ t+ω

t
(f ∞ + ε)‖x‖�s + B(I∞ + ε)‖x‖

≤ (
λB(f ∞ + ε)ω + B(I∞ + ε)

)‖x‖
< ‖x‖. (1)

Take KC1 = {x| = x ∈ K, ‖x‖ ≤ C1}, then the set KC1 is a bounded set. Since �

is completely continuous, � maps bounded sets into bounded sets and there exists a
number C2 such that

‖�x‖ ≤ C2 for any x ∈ KC1 .

If C2 ≤ C1, we deduce that � : KC1 → KC1 is completely continuous. If C1 < C2, by
(3.1), we know that for any x ∈ KC2\KC1 , ‖x‖ > C1 and ‖�x‖ < ‖x‖ < C2 hold. Thus,
� : KC2 → KC2 is completely continuous. Now, take c = max{C1, C2}, obviously c > b,
then � : Kc → Kc is completely continuous.

Take the positive continuous concave functional α(x) = ∑n
i=1 mint∈[0,ω]� |xi(t)|.

First, we let a = σb and take xi ≡ a+b
2 , x ∈ K(α, a, b), α(x) > a, then the set {x ∈

K(α, a, b)} �= ∅. By (i) if x ∈ K(α, a, b), then α(x) ≥ a, and we have

α(�x) =
n∑

i=1

min
t∈[0,ω]�

{
λ

∫ t+ω

t
Gi(t, s)fi

(
s, x(s), x(β(s))

)
�s +

∑
k:tk∈[t,t+ω]

Gi(t, tk)Iik(x(tk))
}

≥
n∑

i=1

min
t∈[0,ω]�

{
λA

∫ t+ω

t
fi(s, x(s), x(β(s)))�s + A

q∑
k=1

Iik(x(tk))
}

≥ λA
∫ ω

0
‖f (s, x(s), x(β(s)))‖�s + A

q∑
k=1

‖Ik(x(tk))‖
}

> λAω

(
A + 1

A
α(x) − (A + 1)I(b)

)
+ AI(b)

> α(x) ≥ a.

Hence condition (1) of Lemma 2.3 holds.
Secondly, by the first inequality of condition of (ii), one can find ε > 0 such that

1
B − (f 0 + I0)

2
> ε > 0
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and there exists a 0 < d < a such that

‖f (s, u, u(β(t)))‖ ≤ (f 0 + ε)‖u‖,
q∑

k=1

‖Ik(u)‖ ≤ (I0 + ε)‖u‖,

where 0 ≤ ‖u‖ ≤ d. If x ∈ Kd = {x|‖x‖ ≤ d}, we have

‖�x‖ = sup
t∈[0,ω]�

n∑
i=1

|(�ix)(t)|

≤
n∑

i=1

[
λB

∫ t+ω

t
fi(s, x(s), x(β(s)))�s + B

∑
k:tk∈[t,t+ω]

Iik(x(tk))
]

= λB
∫ t+ω

t
‖f (s, x(s), x(β(s)))‖�s + B

∑
k:tk∈[t,t+ω]

‖Ik(x(tk))‖

≤ λB
∫ t+ω

t
(f 0 + ε)‖x‖�s + B(I0 + ε)‖x‖

≤ (λB(f 0 + ε)ω + B(I0 + ε))‖x‖
< ‖x‖ ≤ d.

That is, condition (2) of Lemma 2.3 holds.
Finally, if x ∈ K(α, a, c) with ‖�x‖ ≥ b, by the definition of the cone K , we get

b < ‖�x‖ ≤
n∑

i=1

[
λB

∫ t+ω

t
fi(s, x(s), x(β(s)))�s + B

∑
k:tk∈[t,t+ω]

Iik(x(tk))
]

= λB
∫ ω

0
‖f (s, x(s), x(β(s)))‖�s + B

∑
k:tk∈[t,t+ω]

‖Ik(x(tk))‖,

which implies that

α(�x) =
n∑

i=1

min
t∈[0,ω]�

{
λ

∫ t+ω

t
Gi(t, s)fi(s, x(s), x(β(s)))�s +

∑
k:tk∈[t,t+ω]

Gi(t, tk)Iik(x(tk))
}

≥
n∑

i=1

min
t∈[0,ω]�

{
λA

∫ ω

0
fi(s, x(s), x(β(s)))�s + A

q∑
k=1

Iik(x(tk))
}

≥ λA
∫ ω

0
‖f (s, x(s), x(β(s)))‖�s + A

q∑
k=1

‖Ik(x(tk))‖

≥ σ‖�x‖ > σb = a.

So the condition (3) of Lemma 2.3 holds. Therefore, by Lemma 2.3, we obtain that
the operator � has at least three fixed points in Kc. The proof of Theorem 3.1 is
complete. �

COROLLARY 3.1. Using the following

(ii∗) f 0 = 0, I0 = 0, f ∞ = 0, I∞ = 0

instead of (ii) in Theorem 3.1, the conclusion of Theorem 3.1 remains true.
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4. An example.
Consider the following equation:⎧⎨

⎩x′(t) = −1
2

x(t) + λx2(t)e−x(β(t)), t �= tk,

�x(tk) = 0.1x2(tk)e−2x(tk), t = tk = 2k, k ∈ �,
(1)

where λ is a non-negative parameter. Clearly, A > 0, B > 0. According to Corollary
3.1, (4.1) has at least three positive periodic solutions.
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