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Abstract. We develop simple topological criteria for the existence of periodic orbits
in maps of the annulus. These are applied to one-parameter families of dissipative
twist maps of the annulus and their attractors. It follows that many of the motions
found by variational methods in area preserving twist maps also occur in the
dissipative case.

Introduction
The study of twist maps of the annulus was initiated by Poincare, in connection
with the 3-body problem. In this case the map is area preserving, and Birkhoff [4]
was able to use a variational formulation to show that it has many periodic orbits.
The variational approach was refined by Aubry [3] and Mather [19], who deduced
the existence of well-ordered periodic orbits, and of quasiperiodic orbits which are
either invariant curves or Cantor sets.

In this paper we are concerned with the existence of such motions in dissipative
twist maps, which have been used as models for various physical processes [2], [7],
[14], [21]. As a consequence of the work of Katok [17], [18], and Hall [12], it
suffices to consider periodic orbits. In the first part of this paper we use a very
simple new technique to deduce the existence of periodic orbits in one-parameter
families of dissipative twist maps. The technique is topological in character, and
reduces the two dimensional fixed point problem of finding periodic orbits to two
essentially one dimensional problems. Our results are reminiscent of those of
Chenciner [10], [11] on the degenerate Hopf bifurcation, though our methods are
different.

In the second part of this paper we focus attention on the orbit structure of the
attractors of dissipative twist maps. It is known that if the map has transverse
homoclinic points, then its attracting set contains orbits whose rotation numbers
form a non-trivial interval [2], [14]. In [5] Birkhoff showed how to define internal
and external rotation numbers for attracting sets of a dissipative twist map, and
gave an example where these two numbers enclose a non-trivial interval. By analogy
with the area preserving case, it is natural to ask if there are orbits on the invariant
set of all rotation numbers lying in this interval. We show that this is indeed the
case if the invariant set satisfies an intersection property which we define. Again,
topological techniques are used to prove this theorem. Using the topology of the
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annulus, and the geometry of the twist we develop a criterion for the existence of
periodic orbits. This criterion represents an improvement on the 'radially translated
curve theorem' of Poincare & Birkhoff [2].

In contrast to proving the existence of strange attractors (which necessarily satisfy
the intersection property), it is easy to prove the existence of invariant sets with the
intersection property. We show that every dissipative twist map contains such a set
which is weakly attracting.

In § 1 we collect definitions and notation used throughout the paper, and study
periodic orbits of parameterized families. In § 2 we prove our results on rotation
intervals for invariant sets with an intersection property. In § 3 we prove that every
dissipative map of the annulus has an invariant set with the intersection property,
which is also weakly attracting.
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1. Families of dissipative twist maps
Notation. We will use the following notation throughout this paper. S1 denotes the
unit circle, and A denotes the unit cylinder S1 x R. We define H to be the set of
compact connected sets A separating S1 x R, i.e. S1 x R - A consists of two unbounded
components Aint and Aext, where Aint (resp. Aext) contains the lower (resp. upper)
end of the cylinder. There is a partial order on H defined by A < f if Acz rim. An
annular region is a set B c A with frontier consisting of two disjoint sets d+B, d~B e H
such that d+B>d~B. A trapping region for a map / of A is a closed annular region
B such that f{B) c interior (B). The lift to R2 of a set S c A is denoted by S, and
all of the above notation lifts in the obvious way.

Definition. A diffeomorphism/:R2->R2 is called a twist map if:
(1) / commutes with T where 7 :R2^R2 is the unit translation T(0, r) = (0+l , r).

It follows that / is the lift of a unique map / : A-* A of the cylinder.
(2) / is orientation preserving, and / is end preserving.
(3) There exists 8>0 such that for all (0, r)eR2, d{vJ(0, r))/dr> 8, where

-» is the projection TT^O, r) = 0.
We call / a dissipative twist map if in addition:

(4) There exists A £ (0,1) such that for all x e U2, 0< Det Df(x) < A.
(5) There exists M e R + such that for all N>M, S 'xf-tyTV] is a trapping

region for/. Note that conditions (1) to (4) do not necessarily imply condition (5).
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In this paper we will be working with a fixed lift / of / , so that rotation numbers
are uniquely defined.

As a motivating example, consider the two parameter family fmk of dissipative
twist maps given by (1.1), where A e (0,1) is fixed.

Lk(0, r) = [ 6 + w + A.r sin (2TT0), Ar -

\ 2TT

^ sin (2770)) (1.1)

If there is a (0, r) e R2 such that fq(6, r) = {6 + p, r) where peZ,qeZ+,we call (0, r)
a pi q periodic point. Then define the 'Arnold Tongues' Ip/q by (1.2)

Ip/q = {(<•>, fr)eR2|/o,,fc has a p/q periodic orbit} (1.2)

We will also be interested in the sets la, < r e R - Q defined by (1.3):

/„. = {(«, k) G R2 \fwk has an Aubry-Mather set of rotation number a} (1.3)

(An Aubry-Mather set is a closed f T invariant set M which is minimal, and on
which TT, is injective, and / is order preserving: for all x, x'eM, Tr1(x)<TTl(x')
implies T T , ( / ( X ) ) < 7T-,(/(X')). It follows that M has a well defined rotation number,
and is either an invariant curve or a Cantor set [17], [18]).

When k = 0, the circle r = 0 is an attracting invariant set forf^k. It is also normally
hyperbolic, and therefore persists for |fc| sufficiently small. It may then be deduced
that in this range of k, Ip/qnUx{k}^0 for all p/qeQ, and that the /„. are curves
of the form a> = u(k), where u is a continuous function. When \k\ is large, it is
known that smooth invariant curves do not exist [6]. However it is a consequence
of the next theorem that all the sets Iw, weR persist for arbitrarily large k, though
they may overlap. This is illustrated in figure 1.

FIGURE 1

THEOREM 1.1. Let Rm:U2-*U2 be the rigid rotation Rw(6, r) = (0 +w, r), and letf be
a dissipative twist map. Then for all p/q eQ and 0oeR, there exists W G R such that
R^ of has a p/q periodic point on the line {0O} x R. Moreover, for all cr e R - Q, there
exists weU such that R^^fhas an Aubry-Mather set of rotation number a.

Proof. Fix 0oe R, and let/„ = Ra,°f For w,<w 2 , define the closed set Dpq by

(1.4)
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and define the continuous function A: R2 -» R2 by

r)~r) (1.5)

We claim that (see figure 2):
(i) Dpq contains a connected subset D*q intersecting both {w,} x R and {«2} x R.

(ii) There exists K > 0 such that if &>! < -K and w2> K, then A(D*,) intersects
the set R x {0} in at least one point (to*, 0).
Then from the definition of Dpq and A, it follows that /„• has a p/ q periodic point
on the line {0o}xR.

o,r)

FIGURE 2

To verify (i), consider the open set O, defined by (1.6)

O, = {(w, r)e[W l ,<o2]xR|77-1 /!(<V)<0o + />}. (1-6)

The set O, is shown shaded in figure 2. From the twist condition, /„ rotates points
arbitrarily much in the positive direction near the upper end of A, and arbitrarily
much in the negative direction near the lower end of A Thus there exists N e R
such that [wi, w2] x [N, oo) <= O\ and [«! , w2] x (-oo, - N ] ^ O;. Let O2 be the com-
ponent of Ou containing [cjlt w2]x(-oo, -N] and O3 be the component of
([(D,, o>2]xR)-Cl (O2) containing [« , , w2]xf7V, oo). Then O3 is simply connected,
and therefore has a connected frontier F, so that D*9 = Dpq n F has the required
properties.

Let M € R satisfy condition (5) for the m a p / It follows that M satisfies condition
(5) for all of the maps / „ , w e R. To verify (ii), we first show that if w is sufficiently
negative, and (a>, r)eDpq, then r>M. Suppose by contradiction that r<M. Let
TrJo(&o, M) = L. Then TTJ0( 60, r) < L, and TTJ^OO, r) < L + co. Since fJS* x {M}) <
S 'x{M}, we have by induction that TTif^,(d0, r)<q(L+a)). Now choose a> so that
q(L+a>)<p, to contradict the hypothesis that («, r)e Dpq. Thus if &;, is sufficiently
negative, it follows from the definition of M that ^ / ^ ( fy , , r)<r, so that A(D*,)
intersects the lower half-plane. Similarly, if CJ2 is sufficiently positive, A(D*,)
intersects the upper half-plane. Then since A is continuous, and D*q is connected,
it follows that A(D*,) is connected, and must intersect the line Rx{0}.

It remains to deduce the existence of the Aubry-Mather sets. Following [18],
define an orbit

r = {(6n,rn)=fn(60,r0)\neZ}<=A
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to be a special orbit if there exists a homeomorphism g: S1 ̂  Sl such that g"(60) = 0n

for all neZ. F has a well defined rotation number p(F) = p(g). A result of Hall
[12] asserts that if / is a twist map, and has a p/q periodic orbit, then / has a
special orbit of rotation number p/ q. Hence from the first part of the theorem, given
any creU-Q, and a sequence of rationals {pm/qm\meZ+} converging to a; there
exists a sequence of reals {wm | m e Z+} such that fWm has a special orbit fm =
{flm(0m, rm)\ n eZ} of rotation number pm/qm. By condition (5) the sets f m, m eZ+

all lie in the compact subset S'x[-M,M] of S1 x R, and the wm, m e Z+ are bounded.
Thus, if necessary by going to a subsequence, the sequence {(0m, rm, wm)\meZ+}
can be chosen to converge to a point (d,r,co) as m-»oo. If we can show that
f = {fl(6, r)| n e Z} is a special orbit of rotation number cr, the proof of theorem
1.1 will be complete, since the co-limit set of the orbit f is an Aubry-Mather set of
rotation number a.

The proof is now almost identical to that in [18]. The function >}im: 7r,Fm -* [a, b],
which assigns 7r2/£m(0m, rm) t 0 ^ifZm(^m, rm) is Lipshitz, with Lipshitz constant
L independent of m. Extend î m by linear interpolation to a map 4>'m:Sl^[a, b],
also with Lipshitz constant L. The space I of Lipshitz maps from S1 to [a, b] with
Lipshitz constant L is compact in the topology of uniform convergence. Thus, if
necessary by going to a subsquence, we can find tjj'e I such that limbec 4>'m = $'.
By the definition of convergence in L, we have f c graph ((£')• The circle map
g = 7r,o/o(idx î ') is order preserving, so that T is special. By construction,
limbec p(fm) = a, so that for every k, the order of the first k points for the rigid
rotation by Ra is the same as the rotation by RP(tm), for sufficiently large m. Thus
since p(f) is well defined, it follows that p(f) = a. D

2. Rotation Intervals
In this section we explore the possibility of periodic orbits coexisting on invariant
sets of a dissipative twist map / Let FGH be an invariant set for/ Then as in [5],
we associate with F two real numbers, its internal and external rotation numbers
pint(r) and Pext(r), defined as follows. Let L = {(6, r)eU2\deU,r= r0} be a horizon-
tal line lying above F. Denote by F' those points x in F for which the vertical line
joining x to L contains no other points of F, and let TT be the (bijective) vertical
projection from L to F'. Then pext(r) is defined to be -p(g) where p(g) is the
rotation number of the map g:L->L defined by g(0) = Tr~x°f1°Tr{B). It can be
shown that /^^F^cF' , so that g is well defined [5]. Moreover it can be seen that
g is the lift of a circle map, and that g is monotonic, so that p(g) is well defined
[20]. Similarly, pint(F) is defined by considering pre-images of points on F vertically
accessible from a horizontal line lying below F.

In [5] Birkhoff gave an example of a dissipative twist map with an invariant set
FeH for which p^iV)^pext(F). By analogy with area preserving twist maps and
non-invertible circle maps [16], it is natural to ask whether/has p/q periodic orbits
for all p/q e [pint(F), pext(n]. That this need not be the case is shown in [14]: there
are examples of dissipative twist maps constructed as Poincare return maps of
differential equations which have the following orbit structure. Referring to figure 3,
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in which ab is to be identified with cd, the map / has an invariant curve C with
rotation number w^O, and an unstable hyperbolic fixed point x, with stable and
unstable manifolds W(x), W"(x). All other points are either attracted to another
fixed point y (shaded region), or are attracted to the invariant curve C. Then the
invariant set F = C u W(x) has [pint(F), Pext(O] = [0, a>], but there are no p/q
periodic orbits for p/q e (0, w).

FIGURE 3

The above example motivates the following definition.

Definition. We say that an/-invariant set FeH has the intersection property if given
any set C e H with C n I V 0 , then C nf(C) * 0 .

Remark. If F e H has a dense orbit, then it will necessarily satisfy the intersection
property.

The next theorem states that if an invariant set has the intersection property then
it possesses an 'interval of rotation numbers'.

THEOREM 2.1 Let f be a twist map, and F be an invariant set with the intersection
property. Then f has a p/q orbit for all p/qe[pint(T), pext(F)], and an Aubry-Mather
set of rotation number w for all ID e [pint(r), pext(O].

The essential idea in the proof of theorem 2.1 is to consider the sets Cpq, peZ,
qeZ+, defined by (2.1)

pq (2.1)

We first p rove a l emma which gives a criterion for the existence of per iodic points

in terms of the sets Cpq. Define Ppq to be the set of p/q per iodic points o f /

LEMMA 2.1 Let f be a twist map, then for allp e Z, qeZ+ we have Ppq = Cpq f^f{Cpq).

Proof. Evidently Ppq <= Cpqnf(Cpq). To show the converse, take a point (80, r0) in
Cpqr\f{Cpq) and consider its orbit {(&„, rn)|«eZ}. By hypothesis 0q = 0o + P and

https://doi.org/10.1017/S0143385700003916 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003916


Periodic orbits for dissipative twist maps 171

0,_! = 0_i + p, and it remains to show that rq = r0. S ince/ is a twist map, (0O, r0) is
given by the unique intersection of the bi-infinite vertical line through 0O with the
image of the bi-infinite vertical line through 0_!. But/commutes with the translation
Tp, hence the same process applied to the bi-infinite vertical lines through 0q and
0,_! must yield rq = r0. Thus Cpq nf(Cpq) c ppq as required. •

Remark. After proving lemma 2.1, it was pointed out to us that similar ideas are
used in the 'radially translated curve theorem' of Poincare & BirkhofI [1]. In fact
they derive Ppq = Cpq r\f(Cpq), butthis is only true for sufficiently small non-linearity
(dependent on q). In this sense lemma 2.1 is a more powerful criterion for the
existence of periodic orbits.

The next lemma indicates that lemma 2.1 will be useful, by establishing a topologi-
cal property of the sets Cpq.

LEMMA 2.2 Let f be a twist map and take p € Z, q e Z+. Then the set Cpq is non-empty,
and has a component C*q in H.

Proof. Consider the open set O, <= U2 defined by (2.2)

(2.2)

From the twist condition, / rotates points arbitrarily much in the positive direction
near the upper end of A, and arbitrarily much in the negative direction near the
lower end of A Thus there exists NeU such that R x [ N , o o ) c O J and Rx
(-oo, -JV] <= Ox. Let O2 be the component of Ox containing R x (-oo, -N] and O3

be the component of R2-C1(O2) containing Rx[JV, oo). Then O3 is simply con-
nected, and therefore has a connected frontier C*q <= Cpq. Since Ox is invariant under
the translation T, so is Cpq, and it follows that Cpq e H. •

Proof of theorem 2.1 Let p/q e [pint(D, pex,(r)]. We first show that C*q <£ re x t . From
the definition of pex,(F), there exists a point y = (6, r) e F satisfying (2.3).

7Tlr
q(y)^eo-qPcxt(T) (2.3)

Let L be the vertical line through y given by L = {(0, r ) eR 2 |# = 60, r>r0), and
consider its image under f~q. If Cpq were a subset of Fext, then f~q(L) would
necessarily intersect it at some point z = (0, r). Since / is a twist map, one deduces
that 0<TT1r

q(y) [13]. Then using inequality (2.3), and p/q^peM(Y), we derive
irjq(z)> 77-,(z) + />, which contradicts zeC*q. Hence C*,^r c x t .

Similarly Cpq <£ Tinx, and we obtain C*q n T 5̂  0 . By lemma 2.2, C*q e H, and since
F is assumed to satisfy the intersection property, we have C*qr\f(Cpq)^0. Thus
by lemma 2.1, we conclude t h a t / has a p/q periodic point. As in theorem 1.1, the
existence of the Aubry-Mather sets follows directly from the results of Hall [12],
and Katok [17]. •

3. Sets with the intersection property
In this section we construct invariant sets with the intersection property for a
dissipative twist map. We will also be interested in the attracting properties of these
sets; to be precise we make some definitions.

https://doi.org/10.1017/S0143385700003916 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003916


172 M. Casdagli

Definition. We say that a closed /-invariant set F is weakly attracting if for any
neighbourhood N of F, there is a neighbourhood M of F contained in N such that
/ ( M ) c M. If in addition M may be chosen so that T = O™=0f

n(M), we say that
F is attracting.

Let B be a trapping region for a dissipative twist map / Then the invariant set
F(B) = O™=0f{B), is attracting and is a member of H.

Definition. The set j8(/) = cl (Fint(B)) n cl (Fext(B)) is called the Birkhoff attractor of

/
It may be verified that B(f) is well denned (i.e. independent of the choice of B),
is a member of H, and satisfies the intersection property [8], However B{f) need
not be even weakly attracting [9].

We propose to focus attention instead on another set which turns out to have
some nicer properties. Define H± by H+ = { C e H | / ( C ) c Cext} and HT =
{C € H|/(C)<= Cint}. Since/is dissipative, given C± e H*, we have C+ < C~, so that
C± bound an annular region R(C~, C+). The set a(f) that we are interested in is
defined to be the intersection over all annular trapping regions, i.e. a ( / ) =
Pi R(C~, C+) where the intersection runs over all C± in H*.

THEOREM 3.1 The set a(f) is a member of H, satisfies the intersection property, and
is weakly attracting.

Proof. To exploit compactness properties, we work in A, but for ease of notation,
drop the superscript . We verify the required three properties for <*(/).

(i) a(f) e H. By construction a(f) is a closed and bounded set, thus is compact.
The complement of a{f) is given by Rintu R^t where Kint = UCeni+ ^m a n d R^t =

UceHT Cexf Since / is dissipative, we deduce that RintnReM = 0, and that a{f)
disconnects A into these two components only. It remains to show that a{f) is
connected. From its definition, <*(/) is seen to be equivalent to a nested intersection
of compact connected sets, and is therefore connected [15].

(ii) a(f) satisfies the intersection property. Let C e H be such that a(f)nC # 0 .
If we can show that C is not a member of H + u HI", then it follows that Cnf{C)^<Zi
as required. Suppose by contradiction that C eHP, and take a point xea(f)r\C.
But then x would lie above f(C) which itself is a member of HT. This contradicts
the hypothesis that xe a(f). Similarly, we cannot have CeH + .

(iii) a{f) is weakly attracting. Take any neighbourhood N of a(f). We must
show that there exists a neighbourhood M of a(f) such that M e N a n d / ( M ) c
interior (M). Assume, by going if necessary to a subset of N, that N is an annular
neighbourhood of «( / ) . We construct M as follows. Take a point x in d+ N. Then
x is not in a ( / ) , so there exists C(x)eH such that xe C(x)ext. Let 9+N(x) be a
non-empty open connected subset of 8+N containing x such that C(x)r\d+N(x) =
0 . Since d+N is compact, d+N = U"=i N(x,) for some n and x , , . . . , xn in d+N.
Consider the set S = P|"=i c(*.)int- By construction S n d+N = 0 , and/(S) c S. Then
8+M is taken to be the frontier of S. Defining 8~M similarly, the set M is taken to
be the open set bounded by d±M. By construction M c TV, and/(M) c interior (M).

•
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