ORE EXTENSIONS OF WEAK ZIP RINGS*

LUNQUN OUYANG
Department of Mathematics, Hunan Normal University, Changsha, Hunan 410006, P.R. China Department of Mathematics, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China e-mail: ouyanglqtxy@163.com

(Received 20 August 2008; accepted 22 December 2008)

Abstract

In this paper we introduce the notion of weak zip rings and investigate their properties. We mainly prove that a ring R is right (left) weak zip if and only if for any n, the n-by- n upper triangular matrix ring $T_{n}(R)$ is right (left) weak zip. Let α be an endomorphism and δ an α-derivation of a ring R. Then R is a right (left) weak zip ring if and only if the skew polynomial ring $R[x ; \alpha, \delta]$ is a right (left) weak zip ring when R is (α, δ)-compatible and reversible.

2000 MR Subject Classification. Primary 16S36, Secondary 16S99.

1. Introduction. Throughout this paper R denotes an associative ring with unity, $\alpha: R \longrightarrow R$ is an endomorphism and δ an α-derivation of R, that is, δ is an additive map such that $\delta(a b)=\delta(a) b+\alpha(a) \delta(b)$, for $a, b \in R$. We denote $S=R[x ; \alpha, \delta]$ as the Ore extension whose elements are the polynomials over R; the addition is defined as usual and the multiplication subject to the relation $x a=\alpha(a) x+\delta(a)$ for any $a \in R$. Following Rage and Chhawchharia [14], a ring R is said to be Armendariz in that whenever polynomials $f(x)=\sum_{i=0}^{m} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{n} b_{j} x^{j}$ in $R[x]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for each i, j. Recall that a ring R is called

$$
\begin{aligned}
& \text { reduced if } a^{2}=0 \Rightarrow a=0, \text { for all } a \in R, \\
& \text { reversible if } a b=0 \Rightarrow b a=0, \text { for all } a, b \in R, \\
& \text { semicommutative if } a b=0 \Rightarrow a R b=0 \text {, for all } a, b \in R .
\end{aligned}
$$

The following implications hold:

$$
\text { Reduced } \Rightarrow \text { Reversible } \Rightarrow \text { Semicommutative. }
$$

In general, each of these implications is irreversible (see [13]).
According to Krempa [10], an endomorphism α of a ring R is called rigid if $a \alpha(a)=0$ implies $a=0$ for $a \in R$. We call a ring $R \alpha$-rigid if there exists a rigid endomorphism α of R. Note that any rigid endomorphism of a ring is a monomorphism and α-rigid rings are reduced rings by Hong et al. [7]. Properties of α-rigid rings have been studied in Krempa [10], Hong [7] and Hirano [5]. Let α be an endomorphism and δ an α-derivation of a ring R. Following Hashemi and Moussavi [4], a ring R is

[^0]said to be α-compatible if for each $a, b \in R, a b=0 \Leftrightarrow a \alpha(b)=0$. Moreover, R is called δ-compatible if for each $a, b \in R, a b=0 \Rightarrow a \delta(b)=0$. If R is both α-compatible and δ-compatible, then R is said to be (α, δ)-compatible. A ring R is α-rigid if and only if R is (α, δ)-compatible and reduced (see [6]).

For any subset X of a ring $R, r_{R}(X)$ denotes the right annihilator of X in R. Faith [2] called a ring R right zip provided that if the right annihilator $r_{R}(X)$ of a subset X of R is zero, then there exists a finite subset $Y \subseteq X$ such that $r_{R}(Y)=0$. R is zip if it is right and left zip. The concept of zip rings was initiated by Zelmanowitz [16] and appeared in various papers [1-3]. Zelmanowitz stated that any ring satisfying the descending chain condition on right annihilators is a right zip ring, but the converse does not hold. Extensions of zip rings were studied by several authors. Beachy and Blair [1] showed that if R is a commutative zip ring, then the polynomial ring $R[x]$ over R is a zip ring. The authors in [9] proved that R is a right (left) zip ring if and only if $R[x]$ is a right (left) zip ring when R is an Armendariz ring. In [15], Wagner Cortes studied the relationship between right (left) zip property of R and skew polynomial extensions over R by using the skew versions of Armendariz rings and generalised some results of [9].

Motivated by the above, in this paper we introduce the notion of weak zip rings and study the relationship between right (left) weak zip property of R and skew polynomial extension $R[x ; \alpha, \delta]$ over R. We mainly prove that a ring R is right (left) weak zip if and only if for any n, the n-by- n upper triangular matrix ring $T_{n}(R)$ is right (left) weak zip. Let α be an endomorphism and δ an α-derivation of a ring R. Then R is a right (left) weak zip ring if and only if the skew polynomial ring $R[x ; \alpha, \delta]$ is a right (left) weak zip ring when R is (α, δ)-compatible and reversible.

For a ring R, we denote by $\operatorname{nil}(R)$ the set of all nilpotent elements of R and by $T_{n}(R)$ the n-by- n upper triangular matrix ring over R.
2. Weak zip rings. Let R be a ring. A right (left) weak annihilator of a subset X of R is defined by $N r_{R}(X)=\{a \in R \mid x a \in \operatorname{nil}(R)$ for all $x \in X\}\left(N l_{R}(X)=\{a \in R \mid\right.$ $a x \in \operatorname{nil}(R)$ for all $x \in X\})$. We call a ring R right weak zip provided that $N r_{R}(X) \subseteq \operatorname{nil}(R)$, where X is a subset of R; then there exists a finite subset $Y \subseteq X$ such that $N r_{R}(Y) \subseteq$ $\operatorname{nil}(R)$. We define left weak zip rings similarly. If a ring is both left and right weak zip, we say that the ring is a weak zip ring. Obviously, if a ring R is reduced, then R is a zip ring if and only if R is a weak zip ring.

Let R be a ring. Then by C. Y. Hong [8], there exists an $n \times n$ upper triangular matrix ring over a right zip ring which is not right zip for any $n \geq 2$. But we have the following result:

Proposition 2.1. Let R be a ring and $n \geq 2$. Then $T_{n}(R)$ is a right (left) weak zip ring if and only if R is a right (left) weak zip ring.

Proof. We will show the right case because the left case is similar.
Assume that R is a right weak zip ring and $X \subseteq T_{n}(R)$ with $N r_{T_{n}(R)}(X) \subseteq \operatorname{nil}\left(T_{n}(R)\right)$. Let

$$
Y_{i}=\left\{a_{i i} \in R, \left\lvert\,\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right) \in X\right.\right\}, 1 \leq i \leq n .
$$

Then $Y_{i} \subseteq R, \quad 1 \leq i \leq n$. If $b \in N r_{R}\left(Y_{i}\right)$, then

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right) \cdot b E_{i i} \in \operatorname{nil}\left(T_{n}(R)\right)
$$

for any

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right) \in X,
$$

where $E_{i i}$ is the usual matrix unit with 1 in the (i, i)-coordinate and zero elsewhere. Thus, $b E_{i i} \in N r_{T_{n}(R)}(X) \subseteq \operatorname{nil}\left(T_{n}(R)\right)$ and so $b \in \operatorname{nil}(R)$. Hence $N r_{R}\left(Y_{i}\right) \subseteq \operatorname{nil}(R), 1 \leq$ $i \leq n$. Since R is a right weak zip ring, there exists a finite subset $Y_{i}^{\prime} \subseteq Y_{i}$ such that $N r_{R}\left(Y_{i}^{\prime}\right) \subseteq \operatorname{nil}(R), 1 \leq i \leq n$. For each $c \in Y_{i}^{\prime}$, there exists

$$
A_{c}=\left(\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
0 & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & c_{n n}
\end{array}\right) \in X
$$

such that $c_{i i}=c, 1 \leq i \leq n$. Let X_{i}^{\prime} be a minimal subset of X such that $A_{c} \in X_{i}^{\prime}$ for each $c \in Y_{i}^{\prime}$. Then X_{i}^{\prime} is a finite subset of X. Let $X_{0}=\bigcup_{1 \leq i \leq n} X_{i}^{\prime}$. Then X_{0} is also a finite subset of X. If

$$
B=\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
0 & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & b_{n n}
\end{array}\right) \in N r_{T_{n}(R)}\left(X_{0}\right)
$$

then $A^{\prime} B \in \operatorname{nil}\left(T_{n}(R)\right)$ for all

$$
A^{\prime}=\left(\begin{array}{cccc}
a_{11}^{\prime} & a_{12}^{\prime} & \cdots & a_{11}^{\prime} \\
0 & a_{22}^{\prime} & \cdots & a_{2 n}^{\prime \prime} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & a_{n n}^{\prime}
\end{array}\right) \in X_{0} .
$$

Let

$$
U_{i}=\left\{a_{i i}^{\prime} \in R \left\lvert\,\left(\begin{array}{cccc}
a_{11}^{\prime} & a_{12}^{\prime} & \cdots & a_{1 n}^{\prime} \\
0 & a_{22}^{\prime} & \cdots & a_{2 n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & a_{n n}^{\prime}
\end{array}\right) \in X_{0}\right.\right\}, 1 \leq i \leq n .
$$

Clearly, $\quad Y_{i}^{\prime} \subseteq U_{i}$ for all $1 \leq i \leq n$. So $N r_{R}\left(U_{i}\right) \subseteq N r_{R}\left(Y_{i}^{\prime}\right) \subseteq \operatorname{nil}(R)$ for all $1 \leq$ $i \leq n$. Since $A^{\prime} B \in \operatorname{nil}\left(T_{n}(R)\right)$ implies $a_{i i}^{\prime} b_{i i} \in \operatorname{nil}(R)$ for all $1 \leq i \leq n$, we obtain
$b_{i i} \in N r_{R}\left(U_{i}\right) \subseteq N r_{R}\left(Y_{i}^{\prime}\right) \subseteq \operatorname{nil}(R)$. Thus $b_{i i} \in \operatorname{nil}(R)$ for all $1 \leq i \leq n$, and hence $B \in \operatorname{nil}\left(T_{n}(R)\right)$. Therefore $N r_{T_{n}(R)}\left(X_{0}\right) \subseteq \operatorname{nil}\left(T_{n}(R)\right)$, and so $T_{n}(R)$ is a right weak zip ring.

Conversely, assume that $T_{n}(R)$ is a right weak zip ring, and $X \subseteq R$ with $N r_{R}(X) \subseteq \operatorname{nil}(R)$. Let $Y=\{a I \mid a \in X\} \subseteq T_{n}(R)$, where I is the $n \times n$ identity matrix. If

$$
B=\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
0 & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \cdots & \cdots \\
0 & 0 & \cdots & b_{n n}
\end{array}\right) \in N r_{T_{n}(R)}(Y)
$$

then $a I \cdot B \in \operatorname{nil}\left(T_{n}(R)\right)$ for all $a \in X$. Thus $a b_{i i} \in \operatorname{nil}(R)$ for all $1 \leq i \leq n$ and all $a \in X$. Therefore $b_{i i} \in N r_{R}(X)$, and so $b_{i i} \in \operatorname{nil}(R)$ for all $1 \leq i \leq n$. Hence $B \in$ $\operatorname{nil}\left(T_{n}(R)\right)$, and so $N r_{T_{n}(R)}(Y) \subseteq \operatorname{nil}\left(T_{n}(R)\right)$. Since $T_{n}(R)$ is a right weak zip ring, there exists a finite subset $Y_{0}=\left\{a_{1} I, a_{2} I, \ldots, a_{m} I\right\} \subseteq Y$ such that $N r_{T_{n}(R)}\left(Y_{0}\right) \subseteq \operatorname{nil}\left(T_{n}(R)\right)$. Let $X_{0}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \subseteq X$. If $c \in N r_{R}\left(X_{0}\right)$, then $a_{k} I \cdot c E_{11} \in \operatorname{nil}\left(T_{n}(R)\right)$ for all $k=1,2, \ldots, m$. Thus, $c E_{11} \in N r_{T_{n}(R)}\left(Y_{0}\right) \subseteq \operatorname{nil}\left(T_{n}(R)\right)$ and so $c \in \operatorname{nil}(R)$. Therefore, $N r_{R}\left(X_{0}\right) \subseteq \operatorname{nil}(R)$ and so R is right weak zip.

Example 2.2. Let R be a domain; then R is a weak zip ring by definition. Based on Proposition 2.1, any $n \times n$ upper triangular matrix ring over a domain is a weak zip ring.

Given a ring R and a bimodule ${ }_{R} M_{R}$, the trivial extension of R by M is the ring $T(R, M)=R \oplus M$ with the usual addition and the multiplication

$$
\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+m_{1} r_{2}\right)
$$

This is isomorphic to the ring of all matrices $\left(\begin{array}{ll}r & m \\ 0 & r\end{array}\right)$, where $r \in R$ and $m \in M$ and the usual matrix operations are used.

Corollary 2.3. $T(R, R)$ is right (left) weak zip if and only if R is right (left) weak zip.

Proof. The proof is similar to that of Proposition 2.1.
Lemma 2.4 ([12)]. Let R be a semicommutative ring. The nil(R) is an ideal of R.
Lemma 2.5. Let R be semicommutative. Then $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x]$ is a nilpotent element of $R[x]$ if and only if $a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$.

Proof. It is an immediate consequence of [12, Proposition 3.3] and [12, Lemma 3.7].

In [1], it is shown that if R is a commutative zip ring, then the polynomial ring $R[x]$ over R is zip. As to weak zip rings, we have the following:

Proposition 2.6. Let R be a semicommutative ring. Then R is right (left) weak zip if and only if $R[x]$ is right (left) weak zip.

Proof. Suppose that $R[x]$ is right weak zip. Let $Y \subseteq R$ with $N r_{R}(Y) \subseteq \operatorname{nil}(R)$. If $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in N r_{R[x]}(Y)$, then $b f(x)=b a_{0}+b a_{1} x+\cdots+b a_{n} x^{n} \in$
$\operatorname{nil}(R[x])$ for any $b \in Y$. Thus $b a_{i} \in \operatorname{nil}(R)$ by Lemma 2.5 , and so $a_{i} \in N r_{R}(Y)$ for all $0 \leq$ $i \leq n$, and hence $a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$. Therefore $f(x) \in \operatorname{nil}(R[x])$ by Lemma 2.5. So $N r_{R[x]}(Y) \subseteq \operatorname{nil}(R[x])$. Since $R[x]$ is right weak zip, there exists a finite subset $Y_{0} \subseteq Y$ such that $N r_{R[x]}\left(Y_{0}\right) \subseteq \operatorname{nil}(R[x])$. Therefore $N r_{R}\left(Y_{0}\right)=N r_{R[x]}\left(Y_{0}\right) \cap R \subseteq \operatorname{nil}(R)$, and hence R is right weak zip.

Conversely, assume that R is right weak zip. Let $X \subseteq R[x]$ with $N r_{R[x]}(X) \subseteq$ $\operatorname{nil}(R[x])$. Now let Y be the set of all coefficients of elements in X. Then $Y \subseteq R$. If $a \in N r_{R}(Y)$, then $b a \in \operatorname{nil}(R)$ for any $b \in Y$. So for any $f(x)=r_{0}+r_{1} x+\cdots+r_{n} x^{n} \in X$, we have $r_{i} a \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$. Hence $f(x) a \in \operatorname{nil}(R[x])$ by Lemma 2.5 and so $a \in N r_{R[x]}(X) \subseteq \operatorname{nil}(R[x])$. Thus $a \in \operatorname{nil}(R)$ and so $N r_{R}(Y) \subseteq \operatorname{nil}(R)$. Since R is a right weak zip ring, there exists a finite subset $Y_{0} \subseteq Y$ such that $N r_{R}\left(Y_{0}\right) \subseteq \operatorname{nil}(R)$. For each $a \in Y_{0}$, there exists $g_{a}(x) \in X$ such that some of the coefficients of $g_{a}(x)$ is a. Let X_{0} be a minimal subset of X such that $g_{a}(x) \in X_{0}$ for each $a \in Y_{0}$. Then X_{0} is a finite subset of X. Let Y_{1} be the set of all coefficients of elements of X_{0}. Then $Y_{0} \subseteq Y_{1}$, and so $N r_{R}\left(Y_{1}\right) \subseteq N r_{R}\left(Y_{0}\right) \subseteq \operatorname{nil}(R)$. If $g(x)=b_{0}+b_{1} x+\cdots+b_{k} x^{k} \in N r_{R[x]}\left(X_{0}\right)$, then $f(x) g(x) \in \operatorname{nil}(R[x])$ for any $f(x)=a_{0}+a_{1} x+\cdots+a_{t} x^{t} \in X_{0}$. Since

$$
f(x) g(x)=\left(\sum_{i=0}^{t} a_{i} x^{i}\right)\left(\sum_{j=0}^{k} b_{j} x^{j}\right)=\sum_{s=0}^{t+k}\left(\sum_{i+j=s} a_{i} b_{j}\right) x^{s} \in \operatorname{nil}(R[x]),
$$

we have the following system of equations by Lemma 2.5:

$$
\Delta_{s}=\sum_{i+j=s} a_{i} b_{j} \in \operatorname{nil}(R), \quad s=0,1, \ldots, t+k
$$

We will show that $a_{i} b_{j} \in \operatorname{nil}(R)$ by induction on $i+j$.
If $i+j=0$, then $a_{0} b_{0} \in \operatorname{nil}(R), b_{0} a_{0} \in \operatorname{nil}(R)$.
Now suppose that s is a positive integer such that $a_{i} b_{j} \in \operatorname{nil}(R)$ when $i+j<s$. We will show that $a_{i} b_{j} \in \operatorname{nil}(R)$ when $i+j=s$. Consider the following equation:

$$
(*): \Delta_{s}=a_{0} b_{s}+a_{1} b_{s-1}+\cdots+a_{s} b_{0} \in \operatorname{nil}(R) .
$$

Multiplying (*) by b_{0} from left, we have $b_{0} a_{s} b_{0}=b_{0} \Delta_{s}-\left(b_{0} a_{0}\right) b_{s}-\left(b_{0} a_{1}\right) b_{s-1}-\cdots-$ $\left(b_{0} a_{s-1}\right) b_{1}$. By induction hypothesis, $a_{i} b_{0} \in \operatorname{nil}(R)$ for all $0 \leq i<s$, and so $b_{0} a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i<s$. Thus $b_{0} a_{s} b_{0} \in \operatorname{nil}(R)$ and so $b_{0} a_{s} \in \operatorname{nil}(R), a_{s} b_{0} \in \operatorname{nil}(R)$. Multiplying $(*)$ by $b_{1}, b_{2}, \ldots, b_{s-1}$ from left side, respectively, yields $a_{s-1} b_{1} \in \operatorname{nil}(R), a_{s-2} b_{2} \in$ $\operatorname{nil}(R), \ldots, a_{0} b_{s} \in \operatorname{nil}(R)$ in turn. This means that $a_{i} b_{j} \in \operatorname{nil}(R)$ when $i+j=s$. Therefore by induction, we obtain $a_{i} b_{j} \in \operatorname{nil}(R)$ for each i, j. Thus $b_{j} \in N r_{R}\left(Y_{1}\right) \subseteq \operatorname{nil}(R)$ for all $0 \leq j \leq k$, and so $g(x) \in \operatorname{nil}(R[x])$ by Lemma 2.5. Hence $N r_{R[x]}\left(X_{0}\right) \subseteq \operatorname{nil}(R[x])$. Therefore $R[x]$ is a right weak zip ring.

Similarly, we can show that if R is semicommutative, then R is left weak zip if and only if $R[x]$ is left weak zip.
3. Ore extensions over weak zip rings. Let α be an endomorphism of R and $\delta: R \longrightarrow R$ an additive map of R. The application δ is said to be an α-derivation if $\delta(a b)=\delta(a) b+\alpha(a) \delta(b)$. The Ore extension $S=R[x ; \alpha, \delta]$ is the set of polynomials $\sum_{i=0}^{m} a_{i} x^{i}$ with the usual sum, and the multiplication rule is $x a=\alpha(a) x+\delta(a)$. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x ; \alpha, \delta]$. We say that $f(x) \in \operatorname{nil}(R)[x ; \alpha, \delta]$ if and only if
$a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$. Let I be a subset of R. We denote by $I[x ; \alpha, \delta]$ the subset of $R[x ; \alpha, \delta]$, where the coefficients of elements in $I[x ; \alpha, \delta]$ are in subset I, equivalently, for any skew polynomial $\left.\left.f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x ; \alpha, \delta], f(x) \in I\right] x ; \alpha, \delta\right]$ if and only if $a_{i} \in I$ for all $0 \leq i \leq n$. If $f(x) \in R[x ; \alpha, \delta]$ is a nilpotent element of $R[x ; \alpha, \delta]$, then we say $f(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$. For $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x ; \alpha, \delta]$, we denote by $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ the set of coefficients of $f(x)$. Let $a_{i} \in R, 1 \leq i \leq n$; we also denote by $a_{1} a_{2}, \ldots, a_{n}$ the product of all $a_{i}, 1 \leq i \leq n$.

Let δ be an α-derivation of R. For integers i, j with $0 \leq i \leq j, f_{i}^{j} \in \operatorname{End}(R,+)$ will denote the map which is the sum of all possible words in α, δ built with i letters α and $j-i$ letters δ. For instance, $f_{0}^{0}=1, f_{j}^{j}=\alpha^{j}, f_{0}^{j}=\delta^{j}$ and $f_{j-1}^{j}=\alpha^{j-1} \delta+\alpha^{j-2} \delta \alpha+\cdots+\delta \alpha^{j-1}$. The next Lemma appears in [11, Lemma 4.1].

Lemma 3.1. For any positive integer n and $r \in R$, we have $x^{n} r=\sum_{i=0}^{n} f_{i}^{n}(r) x^{i}$ in the $\operatorname{ring} R[x ; \alpha, \delta]$.

Lemma 3.2 ([2]). Let R be an (α, δ)-compatible ring. Then we have the following:
(1) If $a b=0$, then $a \alpha^{n}(b)=\alpha^{n}(a) b=0$ for all positive integers n.
(2) If $\alpha^{k}(a) b=0$ for some positive integer k, then $a b=0$.
(3) If $a b=0$, then $\alpha^{n}(a) \delta^{m}(b)=0=\delta^{m}(a) \alpha^{n}(b)$ for all positive integers m, n.

Lemma 3.3. Let δ be an α-derivation of R. If R is an (α, δ)-compatible ring, then $a b=0$ implies $a f_{i}^{j}(b)=0$ for all $j \geq i \geq 0$ and $a, b \in R$.

Proof. If $a b=0$, then $a \alpha^{i}(b)=a \delta^{j}(b)=0$ for all $i \geq 0$ and $j \geq 0$ because R is (α, δ) compatible. Then $a f_{i}^{j}(b)=0$ for all i, j.

Lemma 3.4. Let δ be an α-derivation of R. If R is (α, δ)-compatible and reversible, then $a b \in \operatorname{nil}(R)$ implies $a f_{i}^{j}(b) \in \operatorname{nil}(R)$ for all $j \geq i \geq 0$ and $a, b \in R$.

Proof. Since $a b \in \operatorname{nil}(R)$, there exists some positive integer k such that $(a b)^{k}=0.0=(a b)^{k}=a b a b \cdots a b \Rightarrow a b a b \cdots a b a f_{i}^{j}(b)=0 \Rightarrow a f_{i}^{j}(b) a b \cdots a b=0 \Rightarrow$ $a f_{i}^{j}(b) a b \cdots a b a f_{i}^{j}(b)=0 \Rightarrow a f_{i}^{j}(b) a f_{i}^{j}(b) a b \cdots a b=0 \Rightarrow \cdots \Rightarrow a f_{i}^{j}(b) \in \operatorname{nil}(R)$.

Lemma 3.5. Let R be an (α, δ)-compatible ring. If a $\alpha^{m}(b) \in \operatorname{nil}(R)$ for $a, b \in R$, and m is a positive integer, then $a b \in \operatorname{nil}(R)$.

Proof. Since $a \alpha^{m}(b) \in \operatorname{nil}(R)$, there exists some positive integer n such that $\left(a \alpha^{m}(b)\right)^{n}=0$. In the following computations, we use freely the condition that R is (α, δ)-compatible.

$$
\begin{aligned}
& \left(a \alpha^{m}(b)\right)^{n}=\underbrace{a \alpha^{m}(b) a \alpha^{m}(b) \cdots a \alpha^{m}(b)}_{n}=0 \\
& \Rightarrow a \alpha^{m}(b) a \alpha^{m}(b) \cdots a \alpha^{m}(b) a b=0 \\
& \Rightarrow a \alpha^{m}(b) a \alpha^{m}(b) \cdots a \alpha^{m}(b) \alpha^{m}(a b)=0 \\
& \Rightarrow a \alpha^{m}(b) a \alpha^{m}(b) \cdots a \alpha^{m}(b) a \alpha^{m}(b a b)=0 \\
& \Rightarrow a \alpha^{m}(b) a \alpha^{m}(b) \cdots a \alpha^{m}(b) a b a b=0 \\
& \Rightarrow \cdots \Rightarrow a b \in \operatorname{nil}(R) .
\end{aligned}
$$

Lemma 3.6. Let R be (α, δ)-compatible. If R is a reversible ring, then $f(x)=a_{0}+$ $a_{1} x+\cdots+a_{n} x^{n} \in \operatorname{nil}(R[x ; \alpha, \delta])$ if and only if $a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$.

Proof. (\Longrightarrow) Suppose $f(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$. There exists some positive integer k such that $f(x)^{k}=\left(a_{0}+a_{1} x+\cdots+a_{n} x^{h}\right)^{k}=0$. Then

$$
0=f(x)^{k}=\text { 'lower terms' }+a_{n} \alpha^{n}\left(a_{n}\right) \alpha^{2 n}\left(a_{n}\right) \cdots \alpha^{(k-1) n}\left(a_{n}\right) x^{n k}
$$

Hence $a_{n} \alpha^{n}\left(a_{n}\right) \alpha^{2 n}\left(a_{n}\right) \cdots \alpha^{(k-1) n}\left(a_{n}\right)=0$, and α-compatibility and reversibility of R gives $a_{n} \in \operatorname{nil}(R)$. So by Lemma 3.4, $a_{n}=1 \cdot a_{n} \in \operatorname{nil}(R)$ implies $1 \cdot f_{i}^{j}\left(a_{n}\right)=$ $f_{i}^{j}\left(a_{n}\right) \in \operatorname{nil}(R)$ for all $0 \leq i \leq j$. Thus we obtain

$$
\begin{aligned}
& \left(a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}\right)^{k}=' \text { 'lower terms' } \\
& \quad+a_{n-1} \alpha^{n-1}\left(a_{n-1}\right) \cdots \alpha^{(n-1)(k-1)}\left(a_{n-1}\right) x^{(n-1) k}
\end{aligned}
$$

$\in \operatorname{nil}(R)[x ; \alpha, \delta]$ since $\operatorname{nil}(R)$ is an ideal of R. Hence $a_{n-1} \alpha^{n-1}\left(a_{n-1}\right) \cdots \alpha^{(k-1)(n-1)}\left(a_{n-1}\right)$ $\in \operatorname{nil}(R)$ and so $a_{n-1} \in \operatorname{nil}(R)$ by Lemma 3.5. Using induction on n we obtain $a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$.
(\Longleftarrow) Suppose that $a_{i}^{m_{i}}=0, i=0,1, \ldots, n$. Let $k=\sum_{i=0}^{n} m_{i}+1$. We claim that $f(x)^{k}=\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)^{k}=0$. From

$$
\begin{aligned}
\left(\sum_{i=0}^{n} a_{i} x^{i}\right)^{2}= & \left(\sum_{i=0}^{n} a_{i} x^{i}\right)\left(\sum_{i=0}^{n} a_{i} x^{i}\right) \\
= & \left(\sum_{i=0}^{n} a_{i} x^{i}\right) a_{0}+\left(\sum_{i=0}^{n} a_{i} x^{i}\right) a_{1} x \\
& +\cdots+\left(\sum_{i=0}^{n} a_{i} x^{i}\right) a_{s} x^{s}+\cdots+\left(\sum_{i=0}^{n} a_{i} x^{i}\right) a_{n} x^{n} \\
= & \sum_{i=0}^{n} a_{i} f_{0}^{i}\left(a_{0}\right)+\left(\sum_{i=1}^{n} a_{i} f_{1}^{i}\left(a_{0}\right)\right) x+\cdots+\left(\sum_{i=s}^{n} a_{i} f_{s}^{i}\left(a_{0}\right)\right) x^{s} \\
& +\cdots+\left(\sum_{i=n}^{n} a_{i} f_{n}^{i}\left(a_{0}\right)\right) x^{n}+\left(\sum_{i=0}^{n} a_{i} f_{0}^{i}\left(a_{1}\right)+\left(\sum_{i=1}^{n} a_{i} f_{1}^{i}\left(a_{1}\right)\right) x\right. \\
& \left.+\cdots+\left(\sum_{i=n}^{n} a_{i} f_{n}^{i}\left(a_{1}\right)\right) x^{n}\right) x+\cdots+\left(\sum_{i=0}^{n} a_{i} f_{0}^{i}\left(a_{s}\right)+\left(\sum_{i=1}^{n} a_{i} f_{1}^{i}\left(a_{s}\right)\right) x\right. \\
& \left.+\cdots+\left(\sum_{i=n}^{n} a_{i} f_{n}^{i}\left(a_{s}\right)\right) x^{n}\right) x^{s}+\cdots+\left(\sum_{i=0}^{n} a_{i} f_{0}^{i}\left(a_{n}\right)+\left(\sum_{i=1}^{n} a_{i} f_{1}^{i}\left(a_{n}\right)\right) x\right. \\
& \left.+\cdots+\left(\sum_{i=n}^{n} a_{i} f_{n}^{i}\left(a_{n}\right)\right) x^{n}\right) x^{n} \\
= & \sum_{i=0}^{n} a_{i} f_{0}^{i}\left(a_{0}\right)+\left(\sum_{i=1}^{n} a_{i} f_{1}^{i}\left(a_{0}\right)+\sum_{i=0}^{n} a_{i} f_{0}^{i}\left(a_{1}\right)\right) x+\left(\sum_{i=2}^{n} a_{i} f_{2}^{i}\left(a_{0}\right)+\sum_{i=1}^{n} a_{i} f_{1}^{i}\left(a_{1}\right)\right. \\
& \left.+\sum_{i=0}^{n} a_{i} f_{0}^{i}\left(a_{2}\right)\right) x^{2}+\cdots+\left(\sum_{s+t=k}^{n}\left(\sum_{i=s}^{n} a_{i} f_{s}^{i}\left(a_{t}\right)\right) x^{k}+\cdots+a_{n} \alpha^{n}\left(a_{n}\right) x^{2 n},\right.
\end{aligned}
$$

it is easy to check that the coefficients of $\left(\sum_{i=0}^{n} a_{i} x^{i}\right)^{k}$ can be written as sums of monomials of length k in a_{i} and $f_{u}^{v}\left(a_{j}\right)$, where $a_{i}, a_{j} \in\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ and $v \geq u \geq 0$ are positive integers. Consider each monomial

$$
\underbrace{a_{i 1} f_{s_{2}}^{t_{2}}\left(a_{i_{2}}\right) \cdots f_{s_{k}}^{t_{k}}\left(a_{i_{k}}\right)}_{k+1},
$$

where $a_{i_{1}}, a_{i_{2}}, \cdots a_{i_{k}} \in\left\{a_{0}, a_{1}, \cdots, a_{n}\right\}$, and $t_{j}, s_{j}\left(t_{j} \geq s_{j}, 2 \leq j \leq k\right)$ are non-negative integers. We will show that $a_{i 1} f_{s_{2}}^{t_{2}}\left(a_{i_{2}}\right) \cdots f_{s_{k}}^{t_{k}}\left(a_{i_{k}}\right)=0$. If the number of a_{0} in $a_{i 1} f_{s_{2}}^{t_{2}}\left(a_{i_{2}}\right) \cdots f_{s_{k}}^{t_{k}}\left(a_{i_{k}}\right)$ is greater than m_{0}, then we can write monomial $a_{i 1} f_{s_{2}}^{t_{2}}\left(a_{i_{2}}\right) \cdots f_{s_{k}}^{t_{k}}\left(a_{i_{k}}\right)$ as

$$
b_{1}\left(f_{s_{01}}^{t_{01}}\left(a_{0}\right)\right)^{j_{1}} b_{2}\left(f_{s_{02}}^{t_{02}}\left(a_{0}\right)\right)^{j_{2}} \cdots b_{v}\left(f_{s_{0_{v}}}^{t_{0}}\left(a_{0}\right)\right)^{j_{v}} b_{v+1}
$$

where $j_{1}+j_{2}+\cdots+j_{v}>m_{0}, 1 \leq j_{1}, j_{2}, \ldots, j_{v}$ and $b_{q}(q=1,2, \ldots, v+1)$ is a product of some elements choosing from $\left\{a_{i 1}, f_{s_{2}}^{t_{2}}\left(a_{i_{2}}\right), \ldots, f_{s_{k}}^{t_{k}}\left(a_{i_{k}}\right)\right\}$ or is equal to 1 . Since $a_{0}^{j_{1}+j_{2}+\cdots+j_{v}}=0$ and R is reversible and (α, δ)-compatible, we have

$$
\begin{aligned}
& 0=a_{0}^{j_{1}+j_{2}+\cdots+j_{v}}=\underbrace{a_{0} a_{0} \cdots a_{0}}_{j_{1}+j_{2}+\cdots+j_{v}} \\
\Rightarrow & a_{0} a_{0} \cdots\left(f_{s_{01}}^{t_{01}}\left(a_{0}\right)\right)=0 \\
\Rightarrow & \left(f_{s_{01}}^{t_{01}}\left(a_{0}\right)\right) a_{0} \cdots a_{0}=0 \\
\Rightarrow & \left(f_{s_{01}}^{t_{01}}\left(a_{0}\right)\right)^{j_{1}} a_{0} \cdots a_{0}=0 \\
\Rightarrow & \cdots \\
\Rightarrow & \left(f_{s_{01}}^{t_{01}}\left(a_{0}\right)\right)^{j_{1}}\left(f_{s_{02}}^{t_{02}}\left(a_{0}\right)\right)^{j_{2}} \cdots\left(f_{s_{0 v}}^{t_{0 v}}\left(a_{0}\right)\right)^{j_{v}}=0 \\
\Rightarrow & b_{1}\left(f_{s_{01}}^{t_{01}}\left(a_{0}\right)\right)^{j_{1}} b_{2}\left(f_{s_{02}}^{t_{2} 2}\left(a_{0}\right)\right)^{j_{2}} \cdots b_{v}\left(f_{s_{0 v}}^{t_{0 v}}\left(a_{0}\right)\right)^{j_{v}} b_{v+1}=0 .
\end{aligned}
$$

Thus $a_{i 1} f_{s_{2}}^{t_{2}}\left(a_{i_{2}}\right) \cdots f_{s_{k}}^{t_{k}}\left(a_{i_{k}}\right)=0$. If the number of a_{i} in $a_{i 1} f_{s_{2}}^{t_{2}}\left(a_{i_{2}}\right) \cdots f_{s_{k}}^{t_{k}}\left(a_{i_{k}}\right)$ is greater than m_{k}, then similar discussion yields that $a_{i 1} f_{s_{2}}^{t_{2}}\left(a_{i_{2}}\right) \cdots f_{s_{k}}^{t_{k}}\left(a_{i_{k}}\right)=0$. Thus each monomial appears in $\left(\sum_{i=0}^{n} a_{i} x^{i}\right)^{k}$ equal to 0 . Therefore $\sum_{i=0}^{n} a_{i} x^{i} \in R[x ; \alpha, \delta]$ is a nilpotent element.

Hirano observed relations between annihilators in a ring R and annihilators in $R[x]$ (see [6]). In this note we investigate the relations between right (left) weak annihilators in a ring R and right (left) weak annihilators in skew polynomial ring $S=R[x ; \alpha, \delta]$. Given a ring R, we define $N r \operatorname{Ann}_{R}\left(2^{R}\right)=\left\{N r_{R}(U) \mid U \subseteq R\right\}, N r \operatorname{Ann}_{S}\left(2^{S}\right)=\left\{N r_{S}(V) \mid\right.$ $V \subseteq S\}, N l \operatorname{Ann}_{R}\left(2^{R}\right)=\left\{N l_{R}(U) \mid U \subseteq R\right\}, N l \operatorname{Ann}_{S}\left(2^{S}\right)=\left\{N l_{S}(V) \mid V \subseteq S\right\}$. Given a skew polynomial $f(x) \in R[x ; \alpha, \delta]$, let C_{f} denote the set of all coefficients of $f(x)$, and for a subset V of $R[x ; \alpha, \delta]$, let C_{V} denote the set $\bigcup_{f \in V} C_{f}$.

Lemma 3.7. Let R be a reversible and (α, δ)-compatible ring. Then for any subset $U \subseteq R$, we have the following:
(1) $N r_{S}(U)=N r_{R}(U)[x ; \alpha, \delta]$.
(2) $N l_{S}(U)=N l_{R}(U)[x ; \alpha, \delta]$.

Proof. (1) Clearly, $N r_{R}(U)[x ; \alpha, \delta] \subseteq N r_{S}(U)$. For any skew polynomial $f(x)=a_{0}+$ $a_{1} x+\cdots+a_{n} x^{n} \in N r_{S}(U)$, we have $r f(x)=r a_{0}+r a_{1} x+\cdots+r a_{n} x^{n} \in \operatorname{nil}(S)$ for any $r \in U$. So $r a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$ and all $r \in U$ by Lemma 3.6, and hence $a_{i} \in N r_{R}(U)$ for all $0 \leq i \leq n$. Thus $f(x) \in N r_{R}(U)[x ; \alpha, \delta]$ and so $N r_{S}(U) \subseteq N r_{R}(U)[x ; \alpha, \delta]$. Therefore we obtain $N r_{S}(U)=N r_{R}(U)[x ; \alpha, \delta]$.
(2) For any $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in N l_{R}(U)[x ; \alpha, \delta], a_{i} r \in \operatorname{nil}(R)$ for all $0 \leq$ $i \leq n$ and any $r \in U$. Then $a_{i} f_{s}^{t}(r) \in \operatorname{nil}(R)$ for $0 \leq i \leq n$ and all positive integers s and t with $t \geq s$ by Lemma 3.4. Thus,

$$
\begin{aligned}
& f(x) r=\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right) r \\
& \quad=\sum_{i=0}^{m} a_{i} f_{0}^{i}(r)+\left(\sum_{i=1}^{m} a_{i} f_{1}^{i}(r)\right) x+\cdots+\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}(r)\right) x^{s}+\cdots+a_{n} \alpha^{n}(r) x^{n} \in \operatorname{nil}(S)
\end{aligned}
$$

by Lemma 3.6, and so $N l_{R}(U)[x ; \alpha, \delta] \subseteq N l_{S}(U)$.
Conversely, assume that $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in N l_{S}(U)$. Then

$$
\begin{aligned}
f(x) r & =\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right) r \\
& =\sum_{i=0}^{m} a_{i} f_{0}^{i}(r)+\left(\sum_{i=1}^{m} a_{i} f_{1}^{i}(r)\right) x+\cdots+\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}(r)\right) x^{s}+\cdots+a_{n} \alpha^{n}(r) x^{n} \\
& =\Delta_{0}+\Delta_{1} x+\cdots+\Delta_{n} x^{n} \in \operatorname{nil}(S)
\end{aligned}
$$

for all $r \in U$. Then we have the following system of equations by Lemma 3.6:

$$
\begin{align*}
& \Delta_{n}=a_{n} \alpha^{n}(r) \in \operatorname{nil}(R), \tag{1}\\
& \Delta_{n-1}=a_{n-1} \alpha^{n-1}(r)+a_{n} f_{n-1}^{n}(r) \in \operatorname{nil}(R) \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\Delta_{s}=\sum_{i=s}^{m} a_{i} f_{s}^{i}(r) \in \operatorname{nil}(R) \tag{3}
\end{equation*}
$$

From equation (1), we obtain $a_{n} r \in \operatorname{nil}(R)$ by Lemma 3.5, and so $a_{n} f_{s}^{t}(r) \in \operatorname{nil}(R)$ by Lemma 3.4. From equation (2), we have $a_{n-1} \alpha^{n-1}(r)=\Delta_{n-1}-a_{n} f_{n-1}^{n}(r) \in \operatorname{nil}(R)$ and so $a_{n-1} r \in \operatorname{nil}(R)$. Continuing this procedure yields that $a_{i} r \in \operatorname{nil}(R)$ for all $0 \leq$ $i \leq n$. Hence $a_{i} \in N l_{R}(U)$ for all $0 \leq i \leq n$, and so $f(x) \in N l_{R}(U)[x ; \alpha, \delta]$. Therefore $N l_{S}(U)=N l_{R}(U)[x ; \alpha, \delta]$.

With the above Lemma 3.7, we have maps: $\phi: \operatorname{Nr} \operatorname{Ann}_{R}\left(2^{R}\right) \longrightarrow \operatorname{Nr} \mathrm{Ann}_{S}\left(2^{S}\right)$ defined by $\phi(I)=I[x ; \alpha, \delta]$ for every $I \in N r \operatorname{Ann}_{R}\left(2^{R}\right)$ and $\psi: N l \operatorname{Ann}_{R}\left(2^{R}\right) \longrightarrow$ $N l \mathrm{Ann}_{S}\left(2^{S}\right)$ defined by $\psi(J)=J[x ; \alpha, \delta]$ for every $J \in N l \mathrm{Ann}_{R}\left(2^{R}\right)$. Obviously, ϕ and ψ are injective.

Theorem 3.8. Let R be a reversible and (α, δ)-compatible ring. Then we have the following:
(1) $\phi: \operatorname{NrAnn}_{R}\left(2^{R}\right) \longrightarrow \operatorname{NrAnn}_{S}\left(2^{S}\right)$ defined by $\phi(I)=I[x ; \alpha, \delta]$ for every $I \in \operatorname{NrAnn} n_{R}\left(2^{R}\right)$ is bijective.
(2) $\psi: N \operatorname{NlAnn}_{R}\left(2^{R}\right) \longrightarrow \operatorname{NlAnn}_{S}\left(2^{S}\right)$ defined by $\psi(J)=J[x ; \alpha, \delta]$ for every $J \in N l A n n_{R}\left(2^{R}\right)$ is bijective.

Proof. (1) It is only necessary to show that ϕ is surjective. Let $f(x)=\sum_{j=0}^{n} b_{j} x^{j} \in N r_{S}(V) \in N r \operatorname{Ann}_{S}\left(2^{S}\right)$. Then we have $g(x) f(x) \in \operatorname{nil}(S)$ for every
$g(x)=\sum_{i=0}^{m} a_{i} x^{i} \in V$. Since

$$
\begin{aligned}
g(x) f(x)= & \left(\sum_{i=0}^{m} a_{i} x^{i}\right)\left(\sum_{j=0}^{n} b_{j} x^{j}\right)=\left(\sum_{i=0}^{m} a_{i} x^{i}\right) b_{0}+\left(\sum_{i=0}^{m} a_{i} x^{i}\right) b_{1} x \\
& +\cdots+\left(\sum_{i=0}^{m} a_{i} x^{i}\right) b_{n} x^{n} \\
= & \sum_{i=0}^{m} a_{i} f_{0}^{i}\left(b_{0}\right)+\left(\sum_{i=1}^{m} a_{i} f_{1}^{i}\left(b_{0}\right)\right) x+\cdots+\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{0}\right)\right) x^{s} \\
& +\cdots+a_{m} \alpha^{m}\left(b_{0}\right) x^{m}+\left(\sum_{i=0}^{m} a_{i} f_{0}^{i}\left(b_{1}\right)+\left(\sum_{i=1}^{m} a_{i} f_{1}^{i}\left(b_{1}\right)\right) x+\cdots\right. \\
& \left.+\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{0}\right)\right) x^{s}+\cdots+a_{m} \alpha^{m}\left(b_{1}\right) x^{m}\right) x \\
& +\cdots+\left(\sum_{i=0}^{m} a_{i} f_{0}^{i}\left(b_{n}\right)+\left(\sum_{i=1}^{m} a_{i} f_{1}^{i}\left(b_{n}\right)\right) x+\cdots+a_{m} \alpha^{m}\left(b_{n}\right) x^{m}\right) x^{n} \\
= & \sum_{i=0}^{m} a_{i} f_{0}^{i}\left(b_{0}\right)+\left(\sum_{i=1}^{m} a_{i} f_{1}^{i}\left(b_{0}\right)+\sum_{i=0}^{m} a_{i} f_{0}^{i}\left(b_{1}\right)\right) x+\cdots \\
& +\left(\sum_{s+t=k}\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{t}\right)\right)\right) x^{k}+\cdots+a_{m} \alpha^{m}\left(b_{n}\right) x^{m+n} \in \operatorname{nil}(S) .
\end{aligned}
$$

Then we have the following equations by Lemma 3.6:
(4) $\Delta_{m+n}=a_{m} \alpha^{m}\left(b_{n}\right) \in \operatorname{nil}(R)$,
(5) $\Delta_{m+n-1}=a_{m} \alpha^{m}\left(b_{n-1}\right)+a_{m-1} \alpha^{m-1}\left(b_{n}\right)+a_{m} f_{m-1}^{m}\left(b_{n}\right) \in \operatorname{nil}(R)$,
(6) $\Delta_{m+n-2}=a_{m} \alpha^{m}\left(b_{n-2}\right)+\sum_{i=m-1}^{m} a_{i} f_{m-1}^{i}\left(b_{n-1}\right)+\sum_{i=m-2}^{m} a_{i} f_{m-2}^{i}\left(b_{n}\right) \in \operatorname{nil}(R)$,
\vdots
(7) $\Delta_{k}=\sum_{s+t=k}\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{t}\right)\right) \in \operatorname{nil}(R)$.

From equation (4) and Lemma 3.5, we obtain $a_{m} b_{n} \in \operatorname{nil}(R)$, and so $b_{n} a_{m} \in \operatorname{nil}(R)$. Now we show that $a_{i} b_{n} \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$. If we multiply equation (5) on the left side by b_{n}, then $b_{n} a_{m-1} \alpha^{m-1}\left(b_{n}\right)=b_{n} \Delta_{m+n-1}-\left(b_{n} a_{m} \alpha^{m}\left(b_{n-1}\right)+b_{n} a_{m} f_{m-1}^{m}\left(b_{n}\right)\right) \in \operatorname{nil}(R)$ since the $\operatorname{nil}(R)$ of a reversible ring is an ideal. Thus by Lemma 3.5, we obtain $b_{n} a_{m-1} b_{n} \in \operatorname{nil}(R)$, and so $b_{n} a_{m-1} \in \operatorname{nil}(R), a_{m-1} b_{n} \in \operatorname{nil}(R)$. If we multiply equation (6) on the left side by b_{n}, then we obtain $b_{n} a_{m-2} f_{m-2}^{m-2}\left(b_{n}\right)=b_{n} a_{m-2} \alpha^{m-2}\left(b_{n}\right)=$ $b_{n} \Delta_{m+n-2}-b_{n} a_{m} \alpha^{m}\left(b_{n-2}\right)-b_{n} a_{m-1} f_{m-1}^{m-1}\left(b_{n-1}\right)-b_{n} a_{m} f_{m-1}^{m}\left(b_{n-1}\right)-b_{n} a_{m-1} f_{m-2}^{m-1}\left(b_{n}\right)-$ $b_{n} a_{m} f_{m-2}^{m}\left(b_{n}\right)=b_{n} \Delta_{m+n-2}-\left(b_{n} a_{m}\right) \alpha^{m}\left(b_{n-2}\right)-\left(b_{n} a_{m-1}\right) f_{m-1}^{m-1}\left(b_{n-1}\right)-\left(b_{n} a_{m}\right) f_{m-1}^{m}\left(b_{n-1}\right)$ $-\left(b_{n} a_{m-1}\right) f_{m-2}^{m-1}\left(b_{n}\right)-\left(b_{n} a_{m}\right) f_{m-2}^{m}\left(b_{n}\right) \in \operatorname{nil}(R)$ since $\operatorname{nil}(R)$ is an ideal of R. Thus
we obtain $a_{m-2} b_{n} \in \operatorname{nil}(R)$ and $b_{n} a_{m-2} \in \operatorname{nil}(R)$. Continuing this procedure yields that $a_{i} b_{n} \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$, and so $a_{i} f_{s}^{t}\left(b_{n}\right) \in \operatorname{nil}(R)$ for any $t \geq s \geq 0$ and $0 \leq i \leq m$ by Lemma 3.4. Thus it is easy to verify that $\left(\sum_{i=0}^{m} a_{i} x^{i}\right)\left(\sum_{j=0}^{n-1} b_{j} x^{j}\right) \in \operatorname{nil}(S)$. Applying the preceding method repeatedly, we obtain that $a_{i} b_{j} \in \operatorname{nil}(R)$ for all $0 \leq i \leq m, 0 \leq j \leq n$. So $b_{j} \in N r_{R}\left(C_{V}\right)$ and $f(x) \in N r_{R}\left(C_{V}\right)[x ; \alpha, \delta]$, and hence it is easy to see that $N r_{S}(V)=N r_{R}\left(C_{V}\right)[x ; \alpha, \delta]=\phi\left(N r_{R}\left(C_{V}\right)\right)$. Therefore ϕ is surjective.
(2) The proof of (2) is similar.

Corollary 3.9. Let R be reversible. Then we have the following:
(1) $\phi: \operatorname{NrAnn}_{R}\left(2^{R}\right) \longrightarrow \operatorname{NrAnn}_{R[x]}\left(2^{R[x]}\right)$ defined by $\phi(I)=I[x]$ for every $I \in$ $\operatorname{NrAnn}_{R}\left(2^{R}\right)$ is bijective.
(2) $\psi: N \operatorname{NlAnn}_{R}\left(2^{R}\right) \longrightarrow \operatorname{NlAnn}_{R[x]}\left(2^{R[x]}\right)$ defined by $\psi(J)=J[x]$ for every $J \in N l A n n_{R}\left(2^{R}\right)$ is bijective.

Proof. Let $\alpha=1_{R}$ be the identity endomorphism of R and $\delta=0$. Then $R[x ; \alpha, \delta] \cong$ $R[x]$. Hence we complete the proof by Theorem 3.8.

Actually, as to polynomial ring $R[x]$, the condition that R is reversible in Corollary 3.9 can be replaced by that R is semicommutative. We have the following:

Corollary 3.10. Let R be semicommutative. Then we have the following:
(1) $\phi: \operatorname{NrAnn}_{R}\left(2^{R}\right) \longrightarrow \operatorname{NrAnn}_{R[x]}\left(2^{R[x]}\right)$ defined by $\phi(I)=I[x]$ for every $I \in$ $\operatorname{NrAnn}_{R}\left(2^{R}\right)$ is bijective.
(2) $\psi: \operatorname{NlAnn}_{R}\left(2^{R}\right) \longrightarrow \operatorname{NlAnn}_{R[x]}\left(2^{R[x]}\right)$ defined by $\psi(J)=J[x]$ for every $J \in \operatorname{NlAnn}_{R}\left(2^{R}\right)$ is bijective.

Proof. (1) For any subset $U \subseteq R$, it is easy to see that $N r_{R}(U)[x] \subseteq N r_{R[x]}(U)$. Also for any polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in N r_{R[x]}(U)$, we have $r f(x)=$ $r a_{0}+r a_{1} x+\cdots+r a_{n} x^{n} \in \operatorname{nil}(R[x])$ for any $r \in U$. Then $r a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$ by Lemma 2.5, and so $a_{i} \in N r_{R}(U)$ for all $0 \leq i \leq n$. Thus $f(x) \in N r_{R}(U)[x]$ and so $N r_{R[x]}(U) \subseteq N r_{R}(U)[x]$. Therefore $N r_{R[x]}(U)=N r_{R}(U)[x]$, which implies that ϕ is well defined. Obviously, ϕ is injective. So it is necessary to show that ϕ is surjective. Let $f(x)=\sum_{j=0}^{n} b_{j} x^{j} \in N r_{R[x]}(V) \in N r \operatorname{Ann}_{R[x]}\left(2^{R[x]}\right)$. Then we have $g(x) f(x) \in \operatorname{nil}(R[x])$ for every $g(x)=\sum_{i=0}^{m} a_{i} x^{i} \in V$. Since

$$
g(x) f(x)=\left(\sum_{i=0}^{m} a_{i} x^{i}\right)\left(\sum_{j=0}^{n} b_{j} x^{j}\right)=\sum_{k=0}^{m+n}\left(\sum_{i+j=k} a_{i} b_{j}\right) x^{k} \in \operatorname{nil}(R[x]),
$$

similar to the proof of Proposition 2.6, we obtain $a_{i} b_{j} \in \operatorname{nil}(R)$ for each i, j. So $b_{j} \in N r_{R}\left(C_{V}\right)$ and $f(x) \in N r_{R}\left(C_{V}\right)[x]$, and hence $N r_{R[x]}(V)=N r_{R}\left(C_{V}\right)[x]=$ $\phi\left(N r_{R}\left(C_{V}\right)\right)$. Therefore ϕ is bijective.
(2) Similarly we can proof (2).

Theorem 3.11. Let R be (α, δ)-compatible. If R is reversible, then the following statements are equivalent:
(1) R is right (left) weak zip.
(2) $S=R[x ; \alpha, \delta]$ is right (left) weak zip.

Proof. We will show the right case because the left case is similar.
(1) \Longrightarrow (2) Suppose that R is right weak zip. Let $X \subseteq S$ such that $N r_{S}(X) \subseteq \operatorname{nil}(S)$. For a skew polynomial $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in S, C_{f}$ denotes the set of coefficients of $f(x)$,
and for a subset V of S, C_{V} denotes the set $\bigcup_{f \in V} C_{f}$. Then $C_{V} \subseteq R$. Now we show that $N r_{R}\left(C_{X}\right) \subseteq \operatorname{nil}(R)$. If $r \in N r_{R}\left(C_{X}\right)$, then $a r \in \operatorname{nil}(R)$ for any $a \in C_{X}$. So for any skew polynomial $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in X$, we obtain $a_{i} r \in \operatorname{nil}(R)$ and so $a_{i} f_{s}^{t}(r) \in \operatorname{nil}(R)$ by Lemma 3.4. Hence $f(x) r \in \operatorname{nil}(S)$ by Lemma 3.6 and so $r \in N r_{S}(X) \subseteq \operatorname{nil}(S)$. Thus $r \in \operatorname{nil}(R)$ and so $N r_{R}\left(C_{X}\right) \subseteq \operatorname{nil}(R)$. Since R is right weak zip, there exists a finite subset $Y_{0} \subseteq C_{X}$ such that $N r_{R}\left(Y_{0}\right) \subseteq \operatorname{nil}(R)$. For each $a \in Y_{0}$, there exists $g_{a}(x) \in X$ such that some of the coefficients of $g_{a}(x)$ are a. Let X_{0} be a minimal subset of X such that $g_{a}(x) \in X_{0}$ for each $a \in Y_{0}$. Then X_{0} is a finite subset of X. Let Y_{1} be the set of all coefficients of elements of X_{0}, then $Y_{0} \subseteq Y_{1}$ and so $N r_{R}\left(Y_{1}\right) \subseteq N r_{R}\left(Y_{0}\right) \subseteq \operatorname{nil}(R)$. If $f(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k} \in N r_{S}\left(X_{0}\right)$, then $g(x) f(x) \in \operatorname{nil}(S)$ for any $g(x)=b_{0}+$ $b_{1} x+\cdots+b_{t} x^{t} \in X_{0}$. Using the same method in the proof of Theorem 3.8, we obtain $b_{i} a_{j} \in \operatorname{nil}(R)$ for each i, j. Thus $a_{j} \in N r_{R}\left(Y_{1}\right) \subseteq \operatorname{nil}(R)$ for $0 \leq j \leq k$ and so $f(x) \in \operatorname{nil}(S)$ by Lemma 3.6. Hence $N r_{S}\left(X_{0}\right) \subseteq \operatorname{nil}(S)$. Therefore $S=R[x ; \alpha, \delta]$ is a right weak zip ring.

Conversely, suppose that $S=R[x ; \alpha, \delta]$ is right weak zip. Let Y be a subset of R such that $N r_{R}(Y) \subseteq \operatorname{nil}(R)$. If $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in N r_{S}(Y)$, then $a_{i} \in$ $N r_{R}(Y) \subseteq \operatorname{nil}(R)$ for all $0 \leq i \leq n$ by Lemma 3.7, and so $f(x) \in \operatorname{nil}(S)$ by Lemma 3.6. Hence $N r_{S}(Y) \subseteq \operatorname{nil}(S)$. Since $S=R[x ; \alpha, \delta]$ is right weak zip, there exists a finite set $Y_{0} \subseteq Y$ such that $N r_{S}\left(Y_{0}\right) \subseteq \operatorname{nil}(S)$. Hence $N r_{R}\left(Y_{0}\right)=N r_{S}\left(Y_{0}\right) \cap R \subseteq \operatorname{nil}(R)$. Therefore R is a right weak zip ring.

Corollary 3.12. Let R be reversible. Then we have the following:
(1) If R is α-compatible, then the skew polynomial ring $R[x ; \alpha]$ is right (left) weak zip if and only if R is right (left) weak zip.
(2) If R is δ-compatible, then the differential polynomial ring $R[x ; \delta]$ is right (left) weak zip if and only if R is right (left) weak zip.

Proof. By virtue of Theorem 3.9, we complete the proof.

REFERENCES

1. J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful, Pacific J. Math. 58(1) (1975), 1-13.
2. C. Faith, Rings with zero intersection property on annihilator: zip rings, Publ. Math. 33 (1989), 329-338.
3. C. Faith, Annihilator ideals, associated primes and Kash-McCoy commutative rings, Comm. Algebra 19(7) (1991), 1867-1892.
4. E. Hashemi and Moussavi, Polynomial extensions of quasi-Baer rings, Acta. Math. Hungar 151 (2000), 215-226.
5. Y. Hirano, On the uniqueness of rings of coefficients in skew polynomial rings, Pub. Math. Debrecen 54 (1999), 489-495.
6. Y. Hirano, On annihilator ideal of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), 45-52.
7. C. Y. Hong, N. K. Kim and T. K. Kwark, Ore extensions of Baer and P.P-rings, J. Pure Appl. Algebra 151 (2000), 215-226.
8. C. Y. Hong, N. K. Kim and T. K. Kwak, Extensions of zip rings, J. Pure Appl. Algebra 195(3) (2005), 231-242.
9. C. Huh, Y. Lee and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), 751-761.
10. J. Krempa, Some examples of reduced rings, Algebra. Colloq. 3(4) (1996), 289-300.
11. T. Y. Lam, A. Leory and J. Matczuk, Primeness, semiprimeness and the prime radical of Ore extensions, Comm. Algebra 25(8) (1997), 2459-2516.
12. Z. K. Liu and R. Zhao, On weak Armendariz rings, Comm. Algebra 34 (2006), 26072616.
13. P. P. Nielsen, Semicommutativity and McCoy condition, J. Algebra 298 (2006), 134-141.
14. M. B. Rage and S. Chhawchharia, Armendariz rings, Proc. Jpn Acad. Ser. A Math. Sci. 73 (1997), 14-17.
15. Wagner Cortes, Skew polynomial extensions over zip rings, Int. J. Math. Math. Sci. 10 (2008), 1-8.
16. J. M. Zelmanowitz, The finite intersection property on annihilator right ideals, Proc. Am. Math. Soc. 57(2) (1976), 213-216.

[^0]: *This research is supported by the Scientific Research Fund of the Hunan Provincial Education Department (07c268; 06A017), the National Natural Science Foundation of China (10771058), and the Hunan Provincial Natural Science Foundation of China (06jj20053).

