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PERIODS FOR TRIANGULAR MAPS

LLUIS ALSEDA AND JAUME LLIBRE

We study the sets of periods of triangular maps on a cartesian product of arbitrary
spaces. As a consequence we extend Kloeden's Theorem (in a 1979 paper) to a class
of triangular maps on cartesian products of intervals and circles. We also show
that, in some sense, this is the more general situation in which the SharkovskiT
ordering gives the periodic structure of triangular maps.

1. INTRODUCTION

n

In what follows X will denote the following cartesian product of sets: [J Xi. A
t=i

map / : X —» X will be called triangular if its i-th component function /* only depends
on the first i variables for i = 1,2,... ,n; that is, ft(xi,X2,. • • ,xn) = f%(xi,X2,... ,Xi)
for all (xi,a52»- • • txn) G X and all t = 1,2,... , n.

A fixed point of a map / : X —* X is a point x £ X such that f(x) = x. We
say that x G X is an m-periodic point of / if x is a fixed point of fm but is not a
fixed point of /* for any 1 < k < m. The set {x,f(x),... . / "^ (a ; )} will be called an
m-periodic orbit of / . We denote by Per(/) the set of periods of all periodic points of
/ •

This paper deals with the problem of determining the possible sets of periods of
triangular maps. By using ideas of Kloeden (see [11]) we shall show that, for these
maps, each periodic orbit can be decomposed into a "product" of periodic orbits (see
Proposition 2.2). From this fact we shall obtain a characterisation of the possible sets
of periods of triangular maps (see Corollary 2.3). It turns out that this characterisation
is rather complicated and difficult to use. However, if we restrict our attention to a
particular class of triangular maps, a much nicer characterisation of the set of periods
can be obtained. To be more precise we have to introduce some notation.

Assume that X{ is a closed interval / of the real line or a circle S1 for each
i = 1,2,... ,n. Clearly, if all the Xi are intervals, then X is an n-dimensional rectangle
and if all the Xi are circles then it is the n-dimensional torus. Otherwise, X is an
n-dimensional generalised cylinder. In what follows, when we do not need to distinguish
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42 L. Alseda and J. Llibre [2]

between these three cases we shall simply say that X is a cylinder. We endow X with
the product topology. Then, a continuous triangular self-map of a cylinder will be called
a cylinder map. In the case when a cyhnder X has (topological) dimension one then
instead of talking about cyhnder maps we shall talk about interval maps if X is an
interval or circle maps if it is the circle. If a cyhnder X has dimension two then we shall
talk about rectangle maps if X is a rectangle, torus maps if it is a torus and annulus

maps in the remaining cases.

The structure of the sets of periods of triangular maps on an interval or the cir-
cle (that is, of interval and circle maps) is well-known. We shall describe them for
completeness.

To describe the structure of the set of periods for interval maps we introduce the
Sharkovskii ordering ,> on the set N, =NU {2°°} as follows (we have to include the
symbol 2°° in order to ensure the existence of supremum of every subset with respect
to the ordering »>):

3 5> 5 ,> 7 ,> ... ,> 2 • 3 ,> 2 • 5 ,> 2 • 7 ,> . . . ,> 4 • 3 .> 4 • 5 ,> 4 • 7 ,>

. . . „ > . . . , > 2n • 3 ,> 2" • 5 „> 2n • 7 . > . . . . > 2°° .>

. . . ,> 2n
 5> . . . ,> 16 ,> 8 ,> 4 ,> 2 ,> 1.

We shall also use the symbol , ^ in the natural way. For a G N, we denote by

S(«) the set {k G N : a ,^ k}. Now we can state the Sharkovsku Theorem [14].

THEOREM 1 . 1 . For every interval map f there exists a G N. such that Per(/) =

S(s). Conversely, for every « e N , there exists an interval map f such that Per(/) =
S(»).

Now we shall describe the structure of the set of periods of a circle map having
fixed points (see [10, 8, 7, 2, 4]). To this end we shall denote by Noo the set NU {oo}.
Then for each b G N we set B(b) = {k € N : b < k}. Additionally we set JB(OO) = 0.

THEOREM 1 . 2 . Let f be a circle map of degree d. Then we have

(a) If d<£ {-2, - 1 , 0 , 1 } then Per(/) = N.
(b) If d= - 2 then Per(/) is either N or N \ {2}, and both possibilities can

occur.
(c) Suppose that d € {-1,0}. Tien tiere exists a G N, suci that Per(/) =

S(a). Conversely, for every a G N, tiere exists a circJe map g with degree
either - 1 or 0 such that Pei(g) = S(a).

(d) Suppose d=l and 1 G Per(/). Then there exists a G N. and 6 G Noo
such that Per(/) = S(s)\jB(b). Conversely, for every a G N. and i 6 N « ,
there exists a circle map g with degree 1 such that Per(«f) = 5(a) U B(b).
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The complete description of the sets of periods of circle maps of degree one was
given by Misiurewicz by using the notion of rotation interval (see [13]).

After Theorem 1.2 we see that the degree of a circle map plays a crucial role in the
description of its set of periods. For cylinder maps of dimension greater than one this
role will be played by the degree vector which we define as follows.

n

Let / = ( Z 1 , / 2 , . . . , / n ) be a cylinder map on Yl •*»• If A"< is an interval
t=i

then we set dj = 0. Suppose now that Xi is a circle. Since / (and consequently
/*(xi,a!2 • • • )3»-i>")) is continuous, the degree d< of /*(xi,Z2 ••• »*t-i>0 depends
continuously on (x1,x2... ,Xi-i). But, since the degree of a circle map is an inte-
ger, then d; is independent on (x±,X2 ... ,Xi-i). Then we can define the degree vector
of / as d = (di,d2,... ,dn) £ Z n . In the particular case of a triangular map / on the
n-dimensional torus T n it is not difficult to see that if (di, d?.,... , dn) is the degree
vector of / , then the homomorphism /«i induced by / on the first homological group
of T n is given by the following n X n upper triangular matrix of integers:

0 dn/

We shall also be interested in the following property of triangular maps. A trian-

gular map / = ( Z 1 , / 2 , . . . , / n ) will be called closed if for each i = 1,2,. . . ,n and for
t-i

each (xi,X2, • •. , ajj-i) 6 Yl Xj ^ae m a P fx(xi>X2 • • • >x%-i> •) belongs to a class which
i=i

is closed under composition and such that each map from this class has a fixed point.

It is well-known that any interval map and any circle map of degree different from
one has fixed points. On the other hand, the class of circle maps with degree different
from —1 and 1 is closed under composition. Therefore, each cylinder map whose degree
vector has all components different from ±1 (with the exception of the first one which
can also be —1) is an example of a closed triangular map.

Later on (in Section 3; Lemma 3.2) we shall see that a closed triangular map always

has fixed points. However, it is not difficult to see that the converse is not true.

For closed cylinder maps we get the following nice characterisation of the sets of

periods.

THEOREM 1 . 3 . Let f be a closed cylinder map. Then the following hold.

(a) If some component of the degree vector is different from — 2 , — 1 , 0 a n d
1 tien Per(/) = N.

(b) If some component of the degree vector is —2 tiien Per(/) is either N or
N \ {2}, and both possibilities can occur.
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(c) If the degree vector of f is either (0,0,. . . , 0) or ( -1 ,0 , . . . , 0) then there

exists a 6 N, such that Per(/) = S(s). Conversely, for every a 6 N, there

exists a closed cylinder map g vrith degree vector either (0,0, . . . , 0) or

( -1 ,0 , . . . ,0) such that Per(S) = S(a).

Statement (c) of Theorem 1.3 in the particular case in which X is an n-dimensional

rectangle was proved by Kloeden (see [11]).

Theorem 1.3 will be proved in Section 3.

After Theorem 1.3 it is not difficult to characterise the set of periods of cylinder
maps (without being closed) but, in this case, the characterisation we get is not so nice.
As an example, in Section 3, we provide this characterisation in the particular case of
the 2-dimensional cylinders (see Theorem 3.3).

It is important to note that the fact that for cylinder maps we can characterise the
set of periods depends crucially on the fact that the structure of the sets of periods for
interval and circle maps is well-known and has an easy description. Therefore, when-
ever the structure of the set of periods is known for some class of maps, we can extend
the results of this paper to appropriate classes of triangular maps on the corresponding
spaces. Thus, the results from [3, 6, 9, 1, 12], for instance, can be extended to ap-
propriate classes of triangular maps where the spaces X,- can be the Y, the m-od, the
m-sphere, the m-torus, and the Klein bottle.

2. TRIANGULAR MAPS

In this section we shall study the set of periods of general triangular maps. We
shall start by studying the particular case of triangular maps on the cartesian products
of two sets.

First of all we have to fix the notation. Let / — (g, h) be a triangular self-map from
YxZ and let P = {yo,yi,... , yr-i} be an r-periodic orbit of g such that g(yj) = yj+i

for j = 0 , 1 , . . . ,r — 2 and g(yr-i) = yQ. Then we define hp : Z —> Z by

h(yr-i, h(yr-2, • • • , h(yi, h(y0, • ) ) . . . ) ) .

If, in addition, Q = {zo,Z\,... ,z,-i} is an s-periodic orbit of hp such that hp(zj) =

Zj+i for j — 0 ,1 , . . . , a — 2 and hp(z,-i) = zo then we define the product of P by Q,

denoted by P • Q, as follows. First we define a sequence of ra points in Z by setting

f zi H3=0,

for i = 0,1, . . . ,« — 1. Now we define P -Q = {(yj, £ir+j) : i = 0 ,1 , . . . , r — 1 and i =

0 , 1 , . . . , s - 1}. Notice that P Q CY xZ and it has cardinality rs.
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The following result is the basis of our study. Its proof is based on the ideas of
Kloeden (see [11]).

LEMMA 2 . 1 . Let f = (g,h) : Y x Z -? Y x Z be a triangular map. Then t i e
following hold.

(a) If g has a periodic orbit P and hp has a periodic orbit Q, then P • Q is

a periodic orbit of f.

(b) Conversely, each periodic orbit of f can be obtained as a product of a
periodic orbit P of g by a periodic orbit of hp.

PROOF: Suppose that P and Q are as in the hypotheses of statement (a). We shall
use the notation from the definition of P • Q. Then, from the definition of the points tj

we know the image by h of all points of P • Q except for the points (yr_i , t ,y+r_i) for
i = 0 , 1 , . . . ,s — 1. Now we compute the images of these points. For t = 0 , 1 , . . . ,s — 2
we have

- h(yr-1,h(yr-2,... ,h(y1,h(y0,tir))•••))

= hp(iir) — hp(zi) = Zf+i = t(i+i)r-

In a similar way we obtain that / i(yr-i)^(»-i) r+r-i) = ô •
The last step in the proof of (a) is to compute the image by / of the points of

PQ. We have

f(yj,Ur+j) = {yj+i,tir+j+i) for j = 0 , 1 , . . . ,r-2 and i = 0 , 1 , . . . , a - l ;

f{yr-i,tir+r-i) = (yo,i(i+i)r) for i = 0 , 1 , . . . , a - 2 ;

f(yr-i,i(.-i)r+r-i) =(yo,to)-

Therefore, P • Q is an ra-periodic orbit of / .

Now we prove (b). Let R = {(yo,zo),(yi,z1),... , (y m _ i , z m _! )} be an m-

periodic orbit of / such that f((yk,zk)) = (yk+1,zk+i) for k = 0 , 1 , . . . ,m - 2
and f{(ym-i,zm-i)) = (yojZo)- Since g(y,z) = g(y), y0 is an r-periodic point of
g with r a divisor of m. Then P = {yo,yi,... ,yr^i} is an r-periodic orbit of g
such that g(yj) — yj+x for j = 0 , 1 , . . . , r - 2 and g(yr-i) = 2/o- We note that
yir+j = g(yir+i-i) = 52(y.r+,-2) = . . . = gir(yj) = yj for all j = 0 , 1 , . . . ,r - 1
and i = 0 , 1 , . . . ,s — 1 where a — m/r. Therefore, since R is a periodic orbit of /
we get zir+j = hfar+j-i^ir+j-i) = h(yj-i,zir+j-i) for all j = 0,1,... ,r - 1 and
* = 0 , 1 , . . . , « — 1. Then, to prove (b), it only remains to show that Q = {zjr : i =
0 , 1 , . . . ,s — l } is an s-periodic orbit of hp.

https://doi.org/10.1017/S0004972700012247 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012247


46 L. Alseda and J. Llibre [6]

For i = 0 , 1 , . . . ,8 — 2 we have

Moreover, in a similar way we obtain

ZQ — h{ym-l,Zm-l) = A(l/(,_1)r+T._1,2(,_1)r+r_1) = hp (z(,_!)r).

Hence Q is a t-periodic orbit hp with < dividing s. Suppose that t < s. Then, in
view of (a), P • Q would be an ri-periodic orbit of / contained in a periodic orbit of /
of larger period; a contradiction. Therefore Q has period a. D

Now we are going to consider the general case. The following result is the natural
extension of Lemma 2.1 to this setting.

PROPOSITION 2 . 2 . Let f = (Z 1 , / 2 , . . . , / n ) be a triangular map. Then the
following hold.

(a) Iff1 has a periodic orbit Px and fPl.p2.p3.....Pi_l = / ( ' . . . ( ( P ^ P , ) ^ ) . . . , ) ^ . !

has a periodic orbit Pi for i = 2,3 , . . . ,n , then P\ • P% • P$ • ... • Pn is a
periodic orbit of f.

(b) Conversely, each periodic orbit of f can be obtained as a product Pi •
Pi • Ps • • • • • Pn of a periodic orbit Pi of f1 by periodic orbits Pi of
fkp,P3~Pi-i foT * = 2,3, . . . ,n.

PROOF: We shall only prove statement (a). Statement (b) follows similarly. The
proof is by induction on n.

If n — 2 then, by Lemma 2.1(a), we get that Pi • P^ is a periodic orbit of the
triangular map (/x, / 2 ) : Xi x X2 —»-X"i X X2 • Now assume that Pi • P2 • Ps •. . . • Pn- i

n- l n-1

is a periodic orbit of (Z 1 , / 2 , . . . , / n ~ 1 ) • U. xi ~* H Xi- Again by Lemma 2.1(a)
• ' 1

we get that Pj • P2 • Ps • . . . • Pn is a periodic orbit of (f1, f 2 , . . . , fn) : J] xj -> II Xi
(here we take g = (f\f2,... .Z""1) and h= f n ) . i = 1 i = 1 D

The following corollary follows immediately from Proposition 2.2 and gives the
characterisation of the set of periods for triangular maps. Prior to stating it we shall
introduce new notation. Let g : Y —» Y be a map. We shall denote the set of all
periodic orbits of g by Orb(p). Also, if P is a periodic orbit of g, then the period
of P will be denoted by |P | . Let A C N and r € N. We shall denote by rA the set
{ra : a £ A}.
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COROLLARY 2 . 3 . Let f = (/*, / 2 , . . . , fn) be a triangular map. Then

Per(/) =
i )

We shall end this section with a weaker but simpler version of the previous corollary
for closed triangular maps.

COROLLARY 2 . 4 . Let f - (P,f2,... ,fn) be a dosed triangular map and let

P1-P2-...Pn be a periodic orbit of f where Px G Orb^1) and i* £ Orb(/plp3.....p,_1)

for * = 2,3 , . . . ,n . Tien

Per(/) D Per(/1) U u
i=2 \i=l

PROOF: The proof is by induction on n. If n = 1 then the statement is trivially
true. Now assume that the statement holds for n — 1 and prove it for n. By Proposition
2.2(a), the triangular map g = (f1,/2,... , / n - 1 ) has Pi • P2 • ... • Pn-i as a periodic
orbit. Therefore, by the induction hypotheses we get

n-l /t-l1) U (J I JJ \Pj\ \ Per(/Pi.Pj... ..^

If Q is a periodic orbit of g then the map fq is a composition of maps of the form
n- l

/"(-,•) : JTn —> Xn with the first argument in Y\ Xi • Therefore, since / is closed, the

map fq has a fixed point. Hence, in view of Corollary 2.3, we get

Per(/) - Per((«7,D) = UQeOrb( f f ) ) B 6 O r b ( / n ) IQI • \R\ D UQeOrb(ff) \Q\-1 = Per(</)-

( II

/n-l \
On the other hand, since / is triangular so is the map (g, fn) : I J\ X% )

\»=i /

II Xi) x X*- Thus, again by Corollary 2.3, we get

\Pl-Fi-...-Pn-l\-\R\

- t I • Per

This ends the proof of the corollary. D
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3. CLOSED CYLINDER MAPS

The goal of this section is to prove Theorem 1.3. Prior to doing this we shall prove
some preliminary results. The first one states a number-theoretical property of the
Sharkovskii ordering.

LEMMA 3 . 1 . For each a, b G N we have S(ab) C S(a) U aS(b).

PROOF: Let a = 2lt with I ^ 0 and t ^ 1 odd. I f O l then ab is of the form
2l+rs with s odd, s ^ t and r ^ 0. So a ,^ ab and, consequently, S(ab) C S(a) C
S(a) U aS(b). Now, consider the case t = 1; that is, a — 2' with I ^ 0.

If b = 2T with r ~£ 0 then

5(a) U a5(6) = { 1 , 2 , 2 2 , . . . , 2'} U 2 ' { 1 , 2 , 2 2 , . . . , 2"}

If 6 = 2ps with r ^ 0 and a > 1 odd, then

5(6) = {2* : i ^ 0} U { 2 ^ : i > r and Jfe > 1 odd} U {2rJfe : Jfe ̂  s odd}.

Therefore,

aS(6) = {2i : i > f} U { 2 ^ : i > r + I and Jfe > 1 odd} U {2r+'fc : Jfe ̂  s odd}.

Thus,

S(a) U o5(6) = {2i :i^0}U {2*Jfe : t > r + I and Jfe > 1 odd} U {2r+'jfe : k ^ s odd}

= S(ab).

D
LEMMA 3 . 2 . Let f be a closed triangular map. Then f has a fixed point.

PROOF: Let / = ( Z 1 , / 2 , . . . , / n ) . Since / is closed then f1 has a fixed point.

Let Pi be the periodic orbit consisting of this fixed point. Then, again since / is closed,

/p^ has a fixed point. Let Pi be the periodic orbit consisting of this fixed point. By

iterating this process we get a sequence P{ of periodic orbits which consist of a fixed

point of the map /p1.p2.....pj_1 for x = 2 , 3 , . . . , n . In view of Proposition 2.2(a), / has

a fixed point. 0

P R O O F OF THEOREM 1.3: Let / = ( Z 1 , / 2 , . . . , / n ) and let d = (d1}d2,... ,dn)

be the degree vector of / . By Lemma 3.2 and Proposition 2.2(b) the map / has a
periodic orbit Pi • P2 •... • Pn consisting of a fixed point such that Pi is a periodic orbit
of f1 and Pj is a periodic orbit of /px . P j .....p. for x = 2 , 3 , . . . , n , and all these orbits
consist of a fixed point of the corresponding map.
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Suppose there exists d,-^{—2, —1,0,1} for some * £ {1,2,... ,n} . If i = 1 then,
by Theorem 1.2(a) and Corollary 2.4, we obtain N = Per(/1) C Per(/). Now assume
that t ^ 2. Since the class of circle maps with degree different from —2, —1, 0 and 1
is closed under composition and the map fPl ,p3. ,P. is a composition of such maps
we get that fp ,p . .p._ has degree different from —2, —1, 0 and 1. Thus, since
|Pi| • |Pa| • . . . • |P<-i| = 1, again by Theorem 1.2(a) and Corollary 2.4, we get that
N = P^(fp1.p1.....pi_1) C Per(/). This ends the proof of (a).

In a similar way we prove that if some component of the degree vector is —2
then Per(/) is either N o r N \ {2}. To end the proof of (b) we still have to show
that both possibilities can occur. We shall show this by constructing examples of both
situations. In view of Theorem 1.2(b) there exist circle maps g1 and h1 of degree —2
such that Per^1) = N and Per^1) = N \ {2}. Now we construct closed cylinder
maps g - (p\ff2,... ,gn) and h = (fc1,^2,... ,hn) on S1 x / x . . . x / by setting
9%{zi,Z2,... ,zn) = hl(z!,z2,... ,zn) - (zi,z2,... ,Zi) f o r a l l (zi,z2,... ,zn) £ S 1 X
/ x . . . x / and t = 2 , 3 , . . . , n . Clearly, in view of Corollary 2.3, we get that Per(p) = N
and Per(/i) = N \ {2}. Hence (b) is proved.

Now we prove (c). To prove the first statement of (c) we only have to show that if

m £ Per(/) then S(m) C Per ( / ) . By Proposition 2.2(b) the map / has an m-periodic

orbit Pj • P2 • . . . • P n such that Pi is a periodic orbit of f1 and Pi is a periodic orbit

°f /pj P2 -...Pi-i for t = 2 , 3 , . . . 1 n • Moreover, |Pi | • |P21 • . . . • \Pn \ = m. By using again

the same argument of the proof of (a) we get that fPi ,Pj. ,p. t is either an interval

map or a circle map of degree 0 for all i = 2 , 3 , . . . , n . Therefore, by Theorems 1.1 and

1.2(c), we have 5(|Pa|) C P e r ( / 0 and S(|P<|) C P e r ^ . p , . . . p . J for i = 2 , 3 , . . . ,n .

Thus, by Corollary 2.4 we obtain

Per(/)
. = 2

Then, by a repetitive use of Lemma 3.1 we have S(m) = S(|Pi| • |P2| • . . . • \Pn\) C
Per(/). In short, the first statement of (c) is proved.

The proof of the second statement of (c) follows in a similar way to the proof of
the second statement of (b). D

From Theorem 1.3 and Corollary 2.3 we obtain the following result which gives
the characterisation of the set of periods of the triangular maps on a 2-dimensional
generalised cylinder.

THEOREM 3 . 3 . Let f — (f1,/2) be a triangular map on a 2-d!imensionaJ gen-
eralised cylinder X. Then the following hold.

(a) If X is a rectangle then there exists s £ N, such that Per(/) = S{s).
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(b) Suppose X = S1 x I and let (d,0) be the degree vector of f. Then

Per(/) is

N if d£{-2,-1,0,1},

NorN\{2} ifd=-2,

S{a) for some s € N. if d G {-1,0},

| J \Pi\-\F>\
Pl€Orb(/l),

(c) Suppose X = I x S1 and let (0,d) be the degree vector of f. Then

Per(/) is

N if d£{-2,-1,0,1},

NorN\{2} ifd = -2,

S(s) for some 8 G N. if d - 0,

(d) Suppose that X is the torus and let (d i , ^ ) be the degree vector of f.

Then Per(/) is

N if{dud2}t {-2,-1,0,1},

NorN\{2} if -2G{d1,d2},

5(s) for some s G N, if {dud2) G {(-1,0),(0,0)},

| J lAH-Pzl if |di|< 1, |*| <1

Pi€Orb(/i),

Moreover, each set of one of the above forms can occur as a set of periods of a cyHnder

map on a 2-dimensional generalised cyHnder.

It is important to notice that the fact that the Sharkovskii Theorem extends to
cylinder maps with degree vector (0,0, . . . ,0) and (—1,0,... ,0) is due to the follow-
ing two facts. First, to the structure of the periodic orbits of triangular maps (see
Proposition 2.2 and Corollary 2.3) and second, to the number-theoretical property of
the Sharkovskii ordering stated in Lemma 3.1. However, these two facts play different
roles in this extension, namely, the special structure of the periodic orbits of triangular
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maps allows us to use the known periodic structure of the underlying one dimensional
maps (in the case of cylinder maps the interval and circle maps) to obtain the periodic
structure of the class of triangular maps under consideration. However, the number-
theoretical property of the Sharkovskii ordering is the responsible for the fact that the
periodic structure is preserved when going from one dimensional maps to closed tri-
angular maps. It would be very nice if this situation were general. That is, that the
"underlying periodic structure" were always preserved when considering closed trian-
gular maps. Unfortunately, in general this is not true. We shall see this in the next
section.

4. A N EXAMPLE WHERE THE PERIODIC STRUCTURE IS NOT PRESERVED

Let C be the class of all continuous maps from Y = {z G C : zs £ [0,1]}. Of
course this class is closed under composition and each map from C has a fixed point
because Y is a contractible space. The characterisation of the set of periods for this
class of maps is known (see [6, 3, 5]). We shall describe it for completeness.

The set of periods of a map from C can be expressed as a union of three sets.
One of them is a set of the form 5(a) with s E Ns = N, and the other two sets are
constructed similarly by using the following two total orderings. The first one, called
the green ordering, is the following ordering of NG = N \ {2} U {3 • 2°°} :

5 9 >8 9 >4 9>11 fl>14 9 >7 9>17 g>20 9>10 9>23 9>26 9>13 g>

... 9 > 3 • 3 9 > 3 • 5 9 > 3 • 7 g> ... 9 > 3 - 3 - 2 9 > 3 - 5 - 2 9 > 3 • 7 • 2 9 >

... fl>3•3•4 9 > 3 • 5 • 4 9 > 3 • 7 • 4 g>... g>... g > 3 • 3 • 2 " s > 3 • 5 • 2 " a > 3 • 7 • 2 n
 g>

... 9 > 3 • 2°° 9 > . . . 9 > 3 • 2 n
 g> ... 9 > 3 • 16 9 > 3 • 8 9 > 3 • 4 g >3 • 2 9 > 3 • 1 9 > 1 .

The rule for writing the first part of this ordering is simple. Write the arithmetic
progression: 5,8,11,14,17,20,23,. . . and after each even number n insert n / 2 . The
second part is the same as the Sharkovskii ordering but all numbers are multiplied by
3. At the very end of the ordering there is 1. Prom now on, given t € NG we shall
denote by G(t) the set {fc G N : t g^ k}.

The second one, called the red ordering, is the following ordering of N.R — N \
{2,4} U {3-2°°} :

7 r > 10 r > 5 r > 13 r > 16 r > 8 P > 19 r > 22 r > 11 r > 25 r > 28 r > 14 r >

. . . r > 3 • 3 r > 3 • 5 r > 3 • 7 r > . . . r > 3 • 3 • 2 r > 3 • 5 • 2 P> 3 • 7 • 2 P>

. . . r > 3 • 3 • 4 r > 3 • 5 • 4 P> 3 • 7 • 4 P> . . . r > . . . r > 3 • 3 • 2n
 r > 3 • 5 • 2n

 r > 3 • 7 • 2" r >

. . . P > 3 • 2°° r > . . . r > 3 • 2" r > . . . P > 3 • 16 r > 3 • 8 r > 3 • 4 r > 3 • 2 r > 3 • 1 r > 1.

https://doi.org/10.1017/S0004972700012247 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012247


52 L. Alseda and J. Llibre [12]

This ordering is obtained in the same way as the green ordering, the only difference
being that we start from 7 instead of from 5. From now on, given r £ NR we shall
denote by R(r) the set {Jb £ N : r r ^ Jb}.

For each map (p £ C there exist a £ N5, t £ No and r £ N.R such that Per(^) =
S(s) U G(t) U R(T) . Furthermore, each set of this type is the set of periods of some
continuous map from C.

Then the natural extension of Theorem 1.3 to this setting would be the following
result. Let T be the class of triangular maps f = ( Z 1 , / 2 , . . . >/") such that f1 £ C

and the map fx{x\,Zi • • • t
xi-ii') ^ C for each (*i)a;2, • • • i^ t - i ) £ YxY x .. .xY and

i — 2 , 3 , . . . ,n (note that each map from T is closed). Then, for each f £ T there exist

B £ N s , t £ NG and r £ NH such that Per(/) = S(a)UG(t)UR(r). Furthermore, each

set of this type is the set of periods of some continuous map from T. Unfortunately,
this statement in general is not true. Let us see why.

If we try to prove the above assertion, we can proceed as in the proof of Theorem
1.3(c) and we shall find that Per(/) contains a set of the form (here we assume n = 2
for simplicity):

(S(\P\) U G(\Q\) U R(\T\)) U (\P\ Per(#) U |Q| Per(/* ) U

which can be written as

Sr(«i)UG(*i)U.R(r1)

Then we need a result to play the role of Lemma 3.1 in this case; it is the following
one. Assume that T, A £ {5, G, R}. Then, for each o £ Nr and b £ NA there exists

* £ {5, G, R} such that ab £ N* and *(a6) C T(a) U oA(6). This assertion is not
true and this is actually the reason why we cannot assure that the periodic structure
of C is preserved in T . To see this, consider a set of the form 5(2") U 2nG(k) with
n > 0 and Jb > 2. Since 2gN G , clearly we get that 2n + 1gS(2n) U2nG(Jb). On
the other hand it is also dear that 3g5(2n) U2nG(fc). However, 2"+ 1 £ 5(2"Jb),
3 £ G(2nJb) and 3 £ J?(2nJb). Therefore, there does not exist * £ {5, G, R} such that
¥(2nJb)cS(2n)U2nG(Jb).
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