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Abstract

The effect of randomness on the stability of deep water surface gravity waves in the
presence of a thin thermocline is studied. A previously derived fourth order nonlinear
evolution equation is used to find a spectral transport equation for a narrow band of surface
gravity wave trains. This equation is used to study the stability of an initially homogeneous
Lorentz shape of spectrum to small long wave-length perturbations for a range of spectral
widths. The growth rate of the instability is found to decrease with the increase of spectral
widths. It is found that the fourth order term in the evolution equation produces a decrease
in the growth rate of the instability. There is stability if the spectral width exceeds a certain
critical value. For a vanishing bandwidth the deterministic growth rate of the instability
is recovered. Graphs have been plotted showing the variations of the growth rate of the
instability against the wavenumber of the perturbation for some different values of spectral
width, thermocline depth, angle of perturbation and wave steepness.

1. Introduction

A fourth order nonlinear evolution equation for a surface gravity wave packet in the
presence of a thin thermocline has been obtained by the present authors in a previous
paper [2]. By the use of this equation a deterministic growth rate of the instability has
also been obtained in that paper. The reason for using a fourth order evolution equation
is that according to Dysthe [4] a fourth order evolution equation gives results consistent
with the exact results of Longuet-Higgins [5], [6] for waves of wave steepness up to
0.25.

The effect of randomness on the stability of surface gravity waves has been investi-
gated by Alber [1] and Crawford, Saffman and Yuen [3], and they started respectively
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from the third order nonlinear evolution equation and Zakharov's integral equation [7].
A similar study is made in the present paper for surface gravity waves in the presence
of a thin thermocline and we start from a fourth order nonlinear evolution equation
obtained in our previous paper [2]. A spectral transport equation is derived from
this equation. This spectral transport equation is used to study the stability of an
initially homogeneous more realistic Lorentz shape of spectrum considered by Craw-
ford, Saffman and Yuen [6]. A dispersion relation is obtained for oblique plane wave
perturbation, from which an expression for the growth rate of instability is determined.
This expression shows that a fourth order term in the nonlinear evolution equation,
which is responsible for the wave-induced mean flow, has a contribution in the growth
rate of instability and this produces a decrease in the growth rate of the instability. The
growth rate of the instability decreases with the increase of spectral width, and the
instability vanishes (that is, there is stability) if the spectral width increases beyond
a certain critical value. By setting the spectral band width equal to zero, we recover
the deterministic growth rate of the instability. Graphs are plotted showing the vari-
ations of growth rate against the wavenumber of the perturbation for some different
values of spectral width, angle of perturbation and wave steepness. Graphs are also
plotted showing stable-unstable regions in la -space, where / and a are respectively
the effective wave number and effective band-width parameter.

2. The nonlinear evolution equation

The wave height %(x,y,t) of a weakly nonlinear progressive wave above the
undisturbed free surface of water in the presence of a thin thermocline situated at a
depth d below the undisturbed free surface can be written in the form

, Y, T) exp[i(** - cot)] + $(X, Y, T) exp[-i(kx - cot)]}

+ (zeroth and higher harmonic terms), (1)

where

X = e(x-cgt), Y = ey, T = e2t, (2)

cg = dco/dk being the group velocity of the wave, e being a small parameter indicating
the weakness of the amplitude £i, co and k satisfying the linear dispersion relation

co2 = gk. (3)

The evolution of the complex amplitude £( is governed by the following fourth
order nonlinear evolution equation, which has recently been derived by the present
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authors [2]

dt d2t d3t . dt ndt* d

where f = e£u •+• e2£i2, £n and £12 being the first two terms in the expansion of £1
in powers of e and where it has been assumed that the space variation of the complex
amplitude £ takes place along a line making an arbitrary fixed angle 6 with the direction
of propagation of the wave and £ is the co-ordinate along this line. The quantities
wave amplitude £, space co-ordinate £ and time r have been made dimensionless by
the factors k, k and co respectively. The following are the coefficients of in (4):

ft = --(cos2<9 -2sin26>), ft = - — (cos30 - 6cos6> sin26>),
8 16

%y cos2 6 2 cos4 9
A, =2H ^- , A2 = -6cos<9, A3 = -cos0 , A4 = —-—

cos2 9 — Aykd cos2 6

The Hilbert transform operator H is given by

and y is given by y = Sp/p, Sp being the density increase through the thermocline.
As the coefficients A i and A4 contain the factor cos2 6 —Aykd in their denominators,

the evolution equation (4) does not remain valid when cos2 6 = Aykd, which is the
resonance condition. Moreover since the evolution equation (4) has been derived on
the assumption that kd is finite, the results for kd ->• oo cannot be obtained from the
evolution equation (4).

3. The equation for the correlation function

We assume that the complex amplitude £(£, r) is a random function of £. We now
find an equation for the slow variation of the two point space correlation function,

p(£i.&,r) = «;(£,,rK*($2lr)), (7)

where the angular bracket denotes ensemble average. To obtain this equation we adopt
the method followed by Alber [1].

Equation (4) can be written as
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where

^ | + iA3f ^ + A 4 H^(£n . (9)
of of of

To obtain an equation for the slow variation of the two-point space correlation
function p denned by (7), the equation (8) at the point £i is multiplied by f*(f2, *)•
Next the complex conjugate of (8) at £2 is multiplied by £(§i, r). Finally subtracting
the last equation from the former and then taking the ensemble average we get the
equation

°f 1 °f2

r)r(f2 , r) • [r(f,, r) - r*(f2, r)]>. (10)

Introducing average and spatial separation of coordinates (X, r),

X = ^+h), ^=f. "f2, (ID

(10) can be expressed as follows, where to evaluate fourth order correlation terms
we assume that %(X, T) corresponds initially to a Gaussian random process and we
further assume that the evolving random statistical amplitude field retains the same
Gaussian statistical properties [1]. For Gaussian statistics the fourth order cumulant
vanishes, allowing us to write the fourth order correlation in terms of the products of
second order correlations:

i^T+fa(A2P ~ B2P) + iPi(A3p + B3p)dz
o

= 4A,psinh(M)a2(Ar, r) + /A2pcosh(M)—a~2(X, r)
oX

+ i A2-4 cosh(M)^(A-, T) + 2/A2— sinh(M)^(X, r)
aX dr

+ 2iA3pcosh(M)a2(X,r) + — - sinh(M) / —2 ^(f'.r),
* J-oo I ' - x a?'

where the operators A, B, M are defined by

1 3 9 1 3 3 1 3
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and a2(X, r) is the ensemble averaged mean square amplitude given by

)?(X,T)). (14)

4. Spectral transport equation

The wave-envelope power spectral density F(p, X, r) is defined by the Fourier
transform of the two-point correlation function and is given by

K,z) = -~l e-prpdr, (15)

where

H*(*+H**(x~H)- (l6)
Taking the Fourier inversion of (15) we get

p=f F{p,X,x)eiprdp, (17)
J—oo

from which on setting r = 0 the following relation is obtained:
/»0O

a~2(X,z)= F(p,X,r)dp. (18)

Now taking the Fourier transform of (12) with respect to r, we get the following
transport equation for F.

8F 8F /133F ,3F\

^ + 2^p- + ^^ -—-3^- j
- 3a2

= 4A, sin(L)Fa2 + A2cos(L)F —
3A

dF — —
A2 cos(L)-— a1 - 2A2 sin(L)pFa2

oX

^ + ^ 1 sin(L)F f
dX n

f ^ ^ « ' . r),
where

1 32

( 2 0 )
2

and where 3/3X operates on a2 and d/dp on F.

https://doi.org/10.1017/S0334270000012467 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000012467


[6] The effect of randomness on the stability of deep water surface gravity waves 195

5. Stability analysis

The nonlinear transport equation (19) has one basic solution

F = F0(p) (21)

which is independent of X and x and is the random counterpart of the uniform
amplitude Stokes wavetrain of deterministic theory. To investigate the stability of
this homogeneous solution to small amplitude oblique plane wave perturbation, we
assume a perturbed solution of (19) in the form

F(p,X,T) = F0(p) + Fl(p,X,r), (22)

a^ = al + a]{X,x). (23)

According to (18), a\ and a\ satisfy the relations

/>OO /-OO

a\= \ F0(p)dp, a\=\ Fi(p,X,x)dp. (24)
J — oo J — oo

Substituting (22) and (23) in (19) and then linearizing we get

= 4A, sin(L)Foaj + A2cos(L)F0-^
0 A

o p
+ A2 cos(L)—-j-a? - 2A2 si

aX

+ 2A3 cos(L)Fo^ + ̂  sin(L)F0 [ ^L±a^\ r).
dX it J 1 X d$

Taking the Fourier transform of (25) with respect to X defined according to

Fi = f Fl(X,r)e-'exdX,
J -oo

Ax= ra]{X,x)e-ilxdX, (26)
J — oo

and then assuming r-dependence of F\(j) and /*i(r) to be of the form exp(—i
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I -I— Fo
\2 SpJ

+ A2£A,cosh( -I— Fo2 %p,
1 3 \

— 4 A i A \ sinh

~^ -2A 2 / l 1 s inh ( -£— )(PFO)

— (\ 3 \ - / I 3 \
+ 2A3IAX cosh -t— I Fo - 2A4|€|i4, sinh -t— 1 Fo.\2 dp J \2 dp J

Similarly taking the Fourier transform of the second equation (24) we get

/»OO

Ax = / P] dp.
J —oo

Now in view of the relations (Alber [1])

cosh I -I—

(27)

(28)

sinh I —I— k') ~ F°
\i) -F" (p - i

(27) can be written as

where

h(p)F0

(29)

(30)

g(p) = -2A, + A2p

h(p) = 2A, - A2p +

3e + A4\i\,

- A4\i\.

From (30) we get

/ F\dp = Ax I
•/—oo J— o •HP)

(31)

(32)
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which in view of (28) gives the following dispersion relation determining Q:

J-c
!—^dp = l. (33)

Now let

g(p) = -2A,

= 2A,+eA,(p), (34)

where <9(e) terms originate from the fourth order terms in the evolution equation (4)
and are given by

= -p\l ( V -

A4|£|. (35)

Substituting the expressions (34) for / ( p ) , g(p), h(p) in (33) and keeping terms
up to order e, the equation determining Q can be expressed as

2A,
Q - 2ptep

-er8](P)Fo{p-^-;r- ^'<ip. (36)
J — OO a - 2$\ip

For F0(p) we assume a Lorentz shape of spectrum in the form

n
(37)

where a is the width of the spectrum and a\ is the mean square wave steepness.
Now we shall first determine the roots of the dispersion relation (36) neglecting

0(e) terms, which is given in subsection-A. The roots of the same equation including
order e terms will be determined in following subsection-B.
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(A) Roots of the dispersion relation neglecting O(e) terms
terms the dispersion relation (36) becomes

[9]

Neglecting O(e)

Setting £2 = Qr + i£2,, where Qr and S2, are real and imaginary parts of £2, and using
the property that F0(p) given by (37) is an even function of p, we can very easily
prove that Qr = 0. So Q is purely imaginary. Therefore replacing Q by iQ, where Q
is real, and substituting Fo given by (37) the dispersion relation (38) can be written as

| dp

J-0

dp
= 0, (39)

where we have set fi\ = —fi.
Since we are interested in the solution of the dispersion relation (39) for which the

perturbation F\ in F grows with time, that is, for which there is instability, we must
have £2 > 0. Keeping this in mind we perform the integrals appearing in (39) by
contour integration. We thus get the following solution for Q,.

(40)

The dispersion rela-

(41)

+ 1 (42)

This will be the solution of (39) if £2, > 0.

(B) Roots of the dispersion relation including O(e) terms
tion (36) including O(e) terms can be put in the form

where

and

~ F0(p + U)

_ r~£,
J — oo

(p)F0 (p - \ 0 {p (43)
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We have already seen in subsection-A that there exists a root of the equation

<j>(Sl) = 0 (44)

of the form

V = iQh (Qj > 0). (45)

So let the root of (41) be

£2 = /fi(- + efi,. (46)

Substituting this in (41) we find that Q, in the lowest order is given by

n, = iK/fl/Wan,-). (47)

We easily find that

Mi) = 2A,(/, - h) - (h + h), (48)

/, _ /2), (49)
n

where

dp
-oo (p2 + a2) (in,- + /S£2 + 2pipf'

-F
J-0

7 r2
2 + a2)(iQi-

h = —
a2) (ifl,

~°t.
Contour integration now gives Qt; we get

Since the growth rate of instability y{ is equal to Im(£2), from (46) and (51) we get
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where £2, is given by (40). The second term in (52) is the contribution from the fourth
order term in the nonlinear evolution equation, and this term produces a decrease in
the growth rate of instability. £2, is the growth rate of the instability obtained from
the third order nonlinear evolution equation and this decreases with the increase in
bandwidth a.

The deterministic growth rate of the instability obtained in our previous paper [2]
is recovered from (52) by setting a = 0. Since by setting a = 0 in (52) we get

Y\ - ",o -p. . (53)
" I O

where

pP. (54)

From equation (45) in [2] we get the following expression for the deterministic growth
rate of the instability:

/
— " , o I 1

\
Y\ — " , o I 1 —5 I = S2,o jr (55)

(expanding binomially and then neglecting higher order small terms). Equation (55)
is same as (53) if a\ is identified with a\.

Introducing the effective modulation wave number £ and the effective bandwidth
parameter a by

P=L, a2 = L, (56)

the effective growth rate of the instability y = y\ l<^\ can be expressed as follows
according to (52):

where

(58)
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FIGURE 1. Effective growth rate of instability y against effective modulation wave number I;
curves represent third order results.
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la Figures l(a)—l(f) y has been plotted against the effective modulation wavenum-
ber I for some different values of effective bandwidth parameter a and also for some
different values of dimensionless thermocline depth kd, perturbation angle 9 and root-
mean square wave steepness a0. The third order growth rate of the instability £2, is
shown by broken lines. The curve for a = 0 gives the deterministic growth rate of
the instability.

From the graphs it is clear that there is no instability if the slope of the growth rate
of the instability curve is negative at £ = 0. This gives the following condition for
stability

/ • / • . , . \

< 0. (59)

Evaluating the derivative (dy\ldl)t=a from the expression for yx given by (52) we get
the following condition for stability:

(60)

This implies that there is stability, if band-width exceeds a certain critical value.
The y = 0 curves given by (57) for fixed values of 0, kd, a0 separate the la— plane

into stable-unstable regions. Such curves have been drawn in Figures 2(a), 2(b).

6. Conclusion

The effect of randomness of the stability of deep water surface gravity waves
in the presence of a thin thermocline has been investigated. Following Alber [1]
a spectral transport equation for narrow band surface gravity wave trains, slowly
varying with space co-ordinates and time, is derived from the nonlinear evolution
equation obtained by Bhattacharyya and Das [2], which includes the existence of a thin
thermocline. Stability analysis is then made from this transport equation for an initially
homogeneous Lorentz shape of spectrum to a small long wavelength perturbation. An
expression for the growth rate of the instability has been obtained, which coincides
with the deterministic growth rate of instability when the band-width vanishes. It is
found that the growth rate of the instability decreases with the increase of spectral
width. The fourth order term in the evolution equation, which is responsible for the
wave-induced mean flow, produces a decrease in the growth rate of the instability. The
instability vanishes if the spectral width increases beyond a certain critical value. The
growth rate of the instability against the wave number of the perturbation has been
shown graphically for some different values of the spectral width, thermocline depth,
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FIGURE 2. Curves separating stable-unstable regions in la curves represent third order results.
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angle of perturbation and mean square wave steepness. Stable-unstable regions in the
(perturbation wave number)-(spectral width) plane are also shown graphically.
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