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1. In another paper [1] measures determined from base
functions, that have finite right and left limits everywhere and
are of generalized bounded variation in the restricted sense, are
studied and used to define non absolutely convergent integrals of
Denjoy type. In this paper base functions of bounded variation
and the corresponding measures are studied as a background for
that paper. The results supplement parts of [2].

In both papers sequential covering classes of open intervals
and functions o on these classes defined in terms of finite right
and left limits (§ 2 below) are used to associate, with each func-
tion Fe F (i.e., each F that has finite right and left limits
everywhere), a unique Method II positive outer measure u* [2].
Then each function that is of bounded variation on every finite
interval (BV') determines three non-decreasing functions |F]| ,

F+ and F  corresponding to the total, pos1t1ve and negatlve
variations of F . The outer measures H p* and p
|F| Fr F
determined by these functions coincide with the corresponding
variations on open intervals and p* = p* + + p*
|F| F F

It is clear from the definition that each outer measure p*
is independent of the value of F(x) at the points of discontinuity
of F . On the other hand the outer measures determined by the
variation functions are not independent of the values of F at the
points of discontinuity unless these values remain between F(x )

and F(x+) at each x . A function F will be said to have the
intermediate value property (we write F has IVP) if for each

x F(x) hes between F(x ) and F(x ) . We show that when F
has IVP |J. coincides with u™ . An arbitrary F can be
|F|
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expressed in the form
(1.1) F=G+H,

where G has IVP, H(x ) = H(x+) = 0 everywhere and p* (for
F or G) coincides with p* .
|G

Given a signed measure v on a ¢-algebra 4, the Jordan
decomposition ([5], p.11) implies the existence of positive

+ - +
measures v and v on 4 with v =v -v . To v then
corresponds a Hahn decomposition X = Xo U CXo with

(1.2) v(a)=v aNx )-v(ANCX ), Aed.
(o] (0]

If F is BV' with finite positive and/or negative variation,

(1. 3) v = H + - H _
F F
defines a signed measure on ;XF , the H* - measurable sets.
|F|
Defining !v , = v+ +v , G and H as in 1.1, then
p=p = |v|
|G|
+ - :
on Q?F and the Jordan measures v and v  satisfy
+ -
(1.4) VSR L.V =R
G G
If F has IVP then
v+ v
=M ) - R
+ -
F F

and v has a Hahn decomposition. Conversely if F # G, v
cannot have a Hahn decomposition.

2. Functions with finite right and left limits everywhere.

Let J denote the family of real valued functions F with

+ -
F(x ) and F(x ) defined and finite for every x in X = (-0 ,0).
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THEOREM 2.1. Let Fe¢ 7. Then F is continuous in
X with the possible exception of an at most countable set of
points and F is bounded on every finite interval (and on X if
F(x) has finite limits as x=> + ») .

Proof. Let S(F,x) = S(x) = max(,F(x+) - F(x_)l ,

+ -
'F(x) - F(x )I , lF(x) - F(x )l) . Then F is continuous at x
if and only if S(x) = 0 . Assume that there exists d> 0, a
finite interval (a,b) and a countable set of points {xi} in (a, b)

with S(x,)>d, i=1,2,... . There is then a subsequence con-
i
verging to a point x', a<x'<b, and at x' at least one of

+ -
F(x ), F(x ) fails to exist. Similarly, the assumption that F(x)
is unbounded leads to a sequence X, converging to a point x

with lim lF(xi)l = w, contradicting the existence of finite right

and left limits at x .

Let 3 ={Fe¢3: F(x+) = F(x ) =0 everywhere} . Then if
Fe '}O , F(x) = 0 except for at most countably many points which
may be dense in X . Furthermore, if Xi' i=1,2,..., are

the points of (a,b), -o< a<b< o, at which F(x) # 0, then
|F(x,)] = 0 as i—> w. Note that if Fe¢gJ_ , then F has IVP
i

if and only if F =0 .

Let Fe J and define H(x) = 0 if x is a point of continuity
of F or if F(x) lies between F(x+) and F(x ) . Elsewhere
define H(x) = F(x) - max {F(x+) , F(x )} i F(x)> F(x+), F(x );

+ - -
= min{ F(x'), F(x )} - F(x) if F(x)< F(x), F(x ).
Then HeF and measures at each x the distance F(x) lies

above or below the interval determined by the points F(x+) ,
F(x ). If G=F-H, G has IVP and completes (1.1).
Let € and Cd denote the collections of all finite open in-

tervals and all open intervals of length less than d respectively.
Then &€ and Cd are covering classes for X in the terminology

of Munroe [2]. Define 1(¢) = 0 (¢ the empty set),
r(a,b) = |F(b ) - F(a+)l on €. Then (&,7) and, for each

d>0, (C’d,'r) determine Method I outer measures on £ (X),
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the subsets of X . We shall denote them by p* and p*
F, o F,d
If dil 0 (i.e., d, >d, >..., lim d, =0) then

= 0® = lim B
F,0 F i»o F,d

determines a Method II outer measure. It is easy to verify that
p;‘ does not depend on the sequence {di} . When a base function

F has been fixed we shall abbreviate p;‘i to u*

¥ Fej |, p* wvanishes identically on X . The functions
o

F1 , F2 determine the same outer measures if they differ by the

sum of a constant and a function in JF .
o)

Since for each FeJF , p* = p}‘? is a Method II outer measure

it follows from [2] that:

b

I. u* is a metric outer measure ([2], Theorem 13.3);

Al

II. Every Borel set is Carathéodory measurable for p*
([2], Cor. 13.2.1);

Iom. If AT A (i.e., AACA_C..., A=|J A ) then
. n 1 2 n n
p"‘(An)T pnr(A) ([2], Cor. 12.1.1) ;

If An , n=1,2,..., are Carathéodory measurable,

if Ani A and there exists n with p(An) < w0, then p(An)l w(A)

IV. Given A there exists a G6 set B DA with
pw(B) = W"(A), i.e., p* is a regular outer measure ([2], p.108);

V. If there exists an open set U containing A with
(U) < o then, given € > 0, there exists an open set U' DA
with p*(A) < u(U") +¢ .

When p* is a Method I outer measure the definition and
finiteness of p*(A) imply the existence of U' in V from which

IV follows. If F(x) = x sin x_1 , x#0; F(0) =0, F is contin-
uous but not of bounded variation on any open set containing the
origin. Then p({0}) =0 but Theorem 4.1 implies that p(U) = o
for every open set containing 0 . For Method II outer measures
IV implies that there exists {Un} with each Un open and con-

taining A and with Unl B . Thenif U contain: A and
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W(U) <, UNU_| B, BOB'DA, w(B) = p¥(a), w(UN U )| p*(a)
by III, and V follows.

The outer measures p* and p* need not coincide.
F,d
Consider F(x) = sinx . Every set can be covered by intervals
of length 2w (on which T vanishes). Thus, using ¢ or €,

with d > 27, p* (X) =0 and p* vanishes identically.
F,d F,d

Theorem 4.1 will show that for this F , u(a, b) coincides with

the total variation of F on (a,b) .

THEOREM 2.2. If ¥ is non-decreasing, -wo<a<b<w, then

n

H* (a,b) = 7(a, b) F(b-) - F(a+) and p* coincides with
,d
o) , 0<d< o,

, d

%

H

Proof. If (a,b) is a covering set we obtain

p.* (a,b) < T(a, b)
F,d
take a sequence of points of continuity x, with a< x1 < x2
i

- +
F(b ) - F(a ) trivially. If 0<d< b-a

1

<x <b with x, - x. <d, x -a<d, b-x <d. There
n i i-1 1 n

1 1

then exist points of continuity x.' with x < x ', x1 - a,
i i i
L <d,
T %
+oo +
F(x,")-F(a )+ = {F(x.")-F(x. ,)} -[F(x,)- F(a)
1 . 1 i-1 1
i=2
n
+ Z F - F <
[ {FGy)  Fly )<

n
Then (a, b) C(a, X'll)U (xn, b)Y {iL:JZ (Xi— L xi')} and

n

ale + -
p; d(a,b) < F(xi') -F(a )+ F(b ) - F(xn) +i:22 {F(xi') - F(Xi—i)}
+ n
<F() - F(a) +F(x1) - F(xn) + Z {F(x) —F(xi_1)} te
i=2
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- +
= F(b)-F(a)+te.
Passing to the limit as d = 0, p(a,b) = 7(a,b) as well.

To prove that > holds, let a', b' be points of continuity
of F, a<a'<b'<b with F(a') - F(at)< ¢/2 and
F(b') - F(b')< e/2 . Then u* (a,b)>p* [a',b'] and itis
F,d F,d
sufficient to show that

M?d[a',b']z F(b') - F(a") > F(b") . pa™) - ¢

By compactness, any covering of [a',b'] by open intervals in
&y can be replaced by a finite subcovering, and simple arithmetic

shows that

p[a',b']zp’; g2t b 12 F(b) - Fa') .

It follows that p* coincides with p% q° 0<d< «, on the

Borel sets. Both }.L* and “*F,d are regular outer measures,
hich implies that p* = % .
which implies that p pF, 4
We note that when F is not monotone the Borel sets, and
in fact open intervals, need not be p;‘ q- measurable,

0<d<ow. Let F(x) =0, x<0 and x>1;=x, 0<x<141. Then

F is BV and has IVP, but p’; 1/2(0,1)=1,p? 1/2[1,2)=1/2,

* = * * .

p"l‘? 12" measurable. However, we have

THEOREM 2.3. I Fed is continuous, then the Borel
sets are Carathéodory measurable for each outer measure
p’; gr d4>0.

Proof. It is sufficient to show that for an arbitrary open
interval (a,b), €¢> 0, and any set B with H’i}: 4 (B) < w0,

* % £
B)> - €.,
pF’d( ) > pF,d(Bﬂ (a,b)) + pF,d(Bﬂ C(a,b)) - ¢
Given B, there exist intervals (ai’bi) in Cd covering
B with
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* 0 _
uF,d(B)z z, 'r(ai,bi) e/2 .

We shall show that the collection {(ai, bi)} can be replaced by
collections {(a; , b;)} and {(ai', b;')} with the first of these

covering B[] (a,b), the second covering B[] C(a,b) . If
,b.)C(a,b), set (a',b') = S th t
(ai i) (a,b), se (ai’ i) (ai’ bi) , (5\i b, ) = ¢ , the empty
set. I (a,b)CC(a,b), set (a.,b)=¢, (a',b.')=(a,b,).
i i’ i’ i1

Assume that a, <ac< bi <b, F(ai) < F(bi) < F(a) . The
ES
% , i 1
a < a, <a with F(a¥) = F(b.) . We replace (a.,b,) by (af ,b.)
i i i i i i’
1

and (a.',b'') with a . =a*, b'=b''"=b., a'"=a. . Then
1 1 1 1 1 1 1 1 1

continuity of F(x) implies the existence of a point a

’

1 1 (] 1
T =
(a;,b.) =r(a;,b,) + (@, ,b,).

If F(ai) < F(a) < F(bi) we can take a;' =a,, b. = b. and
determine b;' > a, ai' < a with

r(a,b') + 7@, b") - r(a,b.) < e/2 T
1 1 1 1 1 1

Other possibilities can be treated similarly. Then

% 0 1 1 "o
"LF,d(B) _>_Z'1 fr(ai,bi) -€/2 > Z'r(ai,bi) +Z'r(ai ,bi ) - €,
ZHF,d(Bn(a’b)) +HF,d(BnC(a)b)) - €.

COROLLARY. If Fed is continuous, then for each
d > 0 Properties I-V hold for p’;, d

Since open intervals are measurable the Borel sets are
measurable and ([2], Exercise (a), p.104) gives I. IV comes
from ([2], Corollary 12.3.1), UI from Corollary 12.1.1.

3. Measures determined by functions of bounded variation.
For X = (-o, ) we define

:}BV= {FeF:F is BV on X};
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F

BYV! = {FeF:F is BV on every finite interval} ;

§ =(Fc9:F has IVP) .
For ACX define
VF(A) = sup ¥ [F(b) - F(a)] ,
PVF(A)= sup = {F(bi) - F(ai)} )
NVF(A)= sup = {F(ai) - F(bi)} ,

where the suprema are taken over all finite collections of non-
overlapping intervals (a.,b.), b, > a., withall a, bi in A .
i1 i i i

These values will be called the total, positive and negative varia-
tions of F over A respectively,.

(3.1) VF(A) = PVF(A) + NVF(A) for every ACX . (Compare
[4], Theorem 6.24.)

(3.2) If aeA, VF(A) = VE(AN (-»,a]) + VE(A[] [a, «)) .
There are analogous results for PVEF and NVEF.

(3.3) If b<ow, VF(a,b]=VF(a,b)+ |F(b)-F((d )|,
PVF(a,b] = PVF(a, b) + max {0, F(b) - F(b )},
NVF(a, b] = NVF(a, b) + max {0, F(b") - F(b)} .
Analogous results hold for [a,b) .

(3.4)  VF(a,b) = im  VF(gp)= lm VF[o, B] .
a>at,p—>b a>at, p=>b”

Assume Fe¥ with F(0)=0. If F(0) # 0 we consider
F(x) - F(0) . Define

3]

|F|(0) = F7(0) = F7(0) = 0; |F|(x) = VF[0, x], F (x) = PVF[0,x],

F (x) = NVF[0,x], x> 0 ;

|F|(x) = -VF[x, 0], Fix) = -PVF[x, 0], F (x) = -NVF[x, 0], x<0 .

From (3.1)

|F|(x) = F+(x) +F (x)< o,
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with both sides finite for every x when FegBV' . Below we

shall assume that Fe &'BV' unless we specify otherwise.

(3.5) F(x) = Fl(x) - F (x)
for every x whence

Flx) = % (|F|(x) + F(x)} , F (x) = _;'{IFI(X) - F(x)} .

The equalities in (3.5) are immediate if x = 0 . Assume
x>0 . Given €> 0 there is a partition 0 = xo<x1< co.<x_=x
n

with

0< PVF[0,x] - T {F(x) - F(x,_,)} <¢/2,

0 < NVF[0, x] - EN{F(Xi-i) - F(Xi)} <e/2 .
Then

i n
F(x) =, {Flx) - Flx,_,)}; ’f {FGx) - Flx,_,))

- (PVF[0,x] - NVF[0,x])] = [F(x) - {F (x) - F (x)} | <c .
A similar argument holds if x< 0 . We next observe
- VF[a,b] = |F|(b) - |F|(a), PVF[a,b] = F'(b) - F(a) ,
3.

NVF[a,b] = F (b) - F (a) .

n

If a<0<b, VF[ab]=VF[a, 0]+ VF[0,b] by (3.2)
|F[(b) - |F|(a) .

If 0<a<b, VF[0,b]=VF[0,a] + VF[a,b] leads to the result.

n

|F|(x') = lim VF[0,x']=VF[0,x), x> 0, using (3.4),

x!—>x"

lFI(x+) = lim |F|(x") = 1im+VF[0, x'] = VF[0,x] +

x!'—>x x!'—+x
+
(3.7) lim VF[x,x']= ,Fl(x)+|F(x)—F(x )I,xZO.
x!'—+x
215
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IF|(x") = - VF(x, 0], x< 0,
|F|(x )= - VF[x,0] - |F(x) - F(x )] =
- |F|(x) - |F(x) - F(x )|, x<0.

+ -
There are similar results for F and F . With (3.2) they lead
to

VF(a,b) = |F|7) - |F|a) > |[F®7) - FaH] |
(3.8) PVF(a,b)=F (b )-F (ah),

—

- -+
NVE(a,b)=F (b )-F (a ).
Applying Theorem 2.2 to the non-decreasing functions IF] )
+ -
F and F we obtain
HIFl(a,b) = VF(a:b) ’
(3.9) p_+ (a,b) = PVF(a,b) ,

F
HF_ (a,b) = NVF(a,b), - w<a<b< w.

We then obtain easily

I

wpp (19 = [F6) - P +[Feo - P

(3.10)

I

!F(x+)— F(x )| if F has IVP at x;
(.11)  pyp[a,b] = VFa,b] + IFb) - Fb)| + |F(a) - F(a')] .

There are equalities similar to (3.10) and (3.11) for PVF
and NVF . We show

* ¥ *
(3'12) }.LIF| =|~LF+ +|.LF_

Using the countable additivity of the measures and (3.9) ,
(3.12) holds on open sets and therefore, using III, on bounded

G6 sets. Since the intersection of three G6 sets is a G6 set,

IV implies that there exists a Gé set B DA with
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®) - F (a . %
ay )—plFl( ) HF+(B)—MF+(A), HF_(B)~HF_(A)-

Thus (3.12) holds for arbitrary bounded sets and finally, using
III, for all subsets of X .

* * *
We show that if u By o B, are outer measures with
* * * ® *
v :|¢1+|¢2 and if ,J,,Ji,zfz denote the p , My and

%
Ky -measurable sets respectively, then )J= Jnkf

That /D )J N ;J is terlal Assume that Ae}lf
(B) < ®. Then p (B = n (Bﬂ A) +p (Bﬂ CA) . The assumption
of additivity implies that

b %k % £ £
Wy (B) - 1 (BN A) - p (BN CA) = - (i (B)- 1, (BN A)- w (BN CA)) .

Assuming one side to be different from zero implies that
one of the differences is greater than zero, contradicting the
countable subadditivity of the corresponding outer measure. Thus
sC 'J'l n ;82 . From (3.12) we obtain

(3.13) A= 4N JF_

|F| F
If He 5‘0 , }JIHI = (X). Thus, for the decomposition (1.1),

(3.14) o =4

7|~ "Gl
* *
4. The relation between the outer measures p = b and
* . .
HIFI where FE?BV' . With each Feng' we have associated
* * * *
outer measures p = Fp o pIFI » By and p . I F does not

F'oy «F
have IVP it follows from (3.10) that p # HIF, .

THEOREM 4.1. If FeJF and F =G +H as in (1.1) then
for every interval (a,b) over which F is of bounded variation

p(a, b) = VG(a, b) .
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If Fe gBV' then for every a, b, -©0<a<b< o,

w(a, b) = VG(a, b) ,

* * * * .
B :plGI and p :HIFI if and only if F has IVP .

Proof. To prove the first part set (_}O(x) = G(x) ,
- : + — — —
a<x<b;=G(a), x<a;=Gb), x>b;Gx) =GO(X) - GO(O) .

Then (_}e'sl' ﬂ‘}BV . Let 7(a, B) = I(_}I(ﬁ—) - |G'(a+) . Then if

a<a<p<b,
- =1 ,." =~ + =, - =, T - +
F(a,p) = |Gl(B)- |Gl(@) > |G(E )-Gla )] = |[F(B7)-Fla)]|=1(a, B).

It follows that for a<a'<b'<b, AC(a',b'), d<(b-b',a'-a),
* & " «

_ A B . .
lbLIG'I,d( )2 PLF,d(A) and thus “lGl(A)ZH (A) . Using III, §2,

HTGI > p* on subsets of (a,b) and in particular

»

pla, b) < plél(a,b) = VG(a, b) .
Note that if FeF ot
Bv' ' F = H|g| -
We next show that p(a,b) > VG(a, b) and obviously may

assume that p(a,b) < . We assume initially that G 1is continuous.
Fixing €> 0, there exist non-overlapping intervals (xi, v.),
i

i=1,2,...,n, with

n-1
(4.1) 0< VG(a,b) - = IG(yi) - G(x,)| < e/4 .
i=1 !
Using (3.8), this implies
n-1
(4.2) 0<V(a,b) - Z VG(x.,y.)< €/4
i=1 ol
and
(4.3) E'NVG(xi, yi) + Z"PVG(xi, yi) < ef4,

where X' denotes summation over the intervals with
G(Yi) > G(x), Z" over those with G(y.) < G(x.) .
i i i
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By continuity there exist points xi' , yi' X, < xi' < yi' < v,

i=1,2,...,n, with

(4.4) o< |z lGly) - GGl - =, 1Gly,") - Glx, ] < e/4 .

2
x'!'-x, 1i=1,2,...,n}, every covering of E by subsets of

Let E=U.[x.', v.'] . Thenfor d <4 min {yi - yi' ,
it i

&g can be replaced by a finite subcovering where each covering
interval intersects one and only one of the intervals [x.',y.'] and
177

where no point of E is in more than two of the covering intervals,
no point x ',y ' in more than one ([3], Lemma 2, p.57). Denote
i

i
the intervals covering [Xi" Yi'] by (a/ij’ Bij) v j=12,..,m() .
Then

Zj{G(Bij) - G(ozij)} = Gly,") - Gl ") +Glx,") - G(“ij) +G(Bin(i))

- Gly,") + =, {Glp, ) - Gle, )}
and, if G(y.')> G(x.'),
i i
(4.5) Zj]G(ﬁij) - G(O‘ij” > Gly,") - G(x,") - NVG(x,, y,)
with a similar relation using PVG if G(yi') < G(xi') .

There exists such a covering with

I

sk
“G’d(E)> izj [G(ﬁij) - G(aij)[ - €/4
n
> 2 lG(yi') - G(xi')l - €/4 - Z'NVG(xi, yi)- Z“PVG(xi, Yi)
i=1
o 3
> = ,G(yi) - G(xi)[ i
1

> VG(a,b) - € ;
pla, b) > w(E) > bo d(E) > VG(a,b) - €.

When G is not continuous (3.8) asserts that
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- +
VGla, ) > |G(B) - Gla')| but may be strictly less than
,G(B) - G(oz)' so that (4.1) does not imply (4.2). Assuming G
not continuous, let {xi} denote the points of discontinuity in

(a,b) . Then, if S'(xi) = lG(xi+) - G(xi—), ,
z S'(xi) < VG(a,b) < o.
i
Let {(ai, b), i=1,2,...,k+1} denote the intervals in (a,b)
i
complementary to {xi, i=1,2,...,k} . For each k there

exist non-overlapping intervals (xiJ., Yij)’ i=1,2,...,n(i) in

(ai,b‘), i=1,2,...,k+ , with
1

k+1
. ! Z y . - Z .o - .o .
(4.1") 0< Z {VGa;b,) JIG(yU) G(xlj)l} < ¢/8
i=1
Now
- + ©
Z1G(y..) - G(x..)| - [G(y.. ) - G(x.. )| |< Z SYx.),
{1Gly;) - G ] - Gl ) - Gl H_k+1 (x,)
so that for k sufficiently large we have
k+1 )
(4.1") 0< = {VG(a,b,)- =, |Gly.. ) - G(x,. )|} < ¢/4 .
) i1 J ij 1]

With (4.1") replacing (4.1) the preceding argument with minor
modifications gives

k+1 k
”{U1 (ai’bi)} > 21 VG(ai, bi) - €,

k+1 k k+1 k
pla,b) = Z pla,,b.) +Z p({x.})> Z VG(a,,b,) +ZTS'(x,) - ¢
i’ i i i i
1 1 1 1
=VG(a,b) - €.

Since ¢ is arbitrary we have proved that p(a,b) =VG(a,b) .

¥ FeF

ayr GeFNF o0, ulab) = k| |(2:P) = VGla, b)

for every open interval, finite or infinite. Thus p* = H;A"Gl on

the open sets. From V they coincide on all bounded sets and
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Al

finally, from III, ¥ = “TG[ .

I Fed Nagy
H(x) # 0, HIF‘({x} ) =u,G|({x} ) + 2| H(x)| > u({x}) .

F =G and p*szFl. If F#G and

We observe that if ACX contains an interval (a,b) on
which G is not BV , that is a union of intervals on each of

which G is BV then, using III, ;.L'P(A)_>_ p(a,b) = o. In particular

if F(x)=xsinx_1 , x#0; F(0) =0, p(U) = o if U is an open
set containing 0 . Our methods do not prove that VG(a, b) = »
always implies that p(a,b) = w. There exist continuous functions
(e.g. the Weierstrasse continuous non-differentiable function) for
which G is not BV on any interval.

5. Signed measures and Jordan and Hahn decompositions.
Assume that Fe J and that at least one of PVF(x), NVF(x)

BV!
is finite. On JF = Zle, = ;JF+HJF_ define the set function

v =v(F)=p Lk
F F

Then v is a signed measure on ij . The Jordan decomposition
+
([5], p.11) implies the existence of positive measures (pF) and

(“F)- on JF with

(hp) (A) = sup v (e), () (&)= sup [-v_(e)] .

eem"F eed
eCA eCA
Set
+ -
vl =lv )= () + ) .
Then lv l is a positive measure on JF and
+
(hp) (A) = sup v(e) = sup [p (e)-p (e)]
eCA eCA F F
< sup p (o) < p (A);
eCA F F
221
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(bp) (&) < p (A)5 [v[(A) < g (a)
F

We observe that strict inequality may occur. For example
let F(0) =1, F(x) =0, x# 0. Then Fe 10(] ?BV , HF_I_({O} )

=p ({0}) =1, v({0}) =0, plFl({O})zz.

F
In general write F = G +H as in (1.1). Then if AeXF
poo(A)=p (A)+p (A),
+ +
F G u'
B _(A)=p (A)+p (A)
F G H
Now +(A) = n _(A) = = ,H(X), , where H(x) =0,
H H (i:x. ¢ A) !
1

x#tx, i=1,2,... . Itfollows that

A = (1) (A (o) (A) = (wg) (A)

v [(F)(A) = |v [(G)A) .

THEOREM 5.1. If Fe’:"fBV, AEJF, then
[vIa) =) g (a)

Proof. We have seen that < holds. We first show that
> holds for every open interval. Let (a,b) be a finite open
interval, €> 0 arbitrary.

There exist points x,, 1i=1,2,...,n, with v <v ,
i i i+1
n-1
(5.1) 0< VF(a,b)- = |F(x,) - F(xi 1)| < e,
S i _
1

and the inequalities remain valid if additional points are added to

the sequence. We show that the IVP(F ¢ :\;BV) implies that we

can assume the points x. to be points of continuity. If x is a
1 1

point of discontinuity we can assume (adding points if necessary)

that x, , x, are points of continuity with
i-1 i+l
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,F(xi_H) - F(xi+), + IF(Xi_1) - F(xi')l <¢e/2n.

-

Then, since Fe 7,

)| - S'(xi)l < ¢/2n,

1B Gy, ) - F Oy

) |

S'(x,) - e/2n< |F(xi+1) - F(xi)l + IF(xi) - Flx,

< S'(xi) +¢e/2n ,
HF(Xi+1) - F(xi_i)l - |F(Xi+1) - F(xi), - IF(xi) - F(xi_i)H
< ¢/n .

It follows that we can drop x:,l from the sequence without

changing the sum by more than e/n and thus can remove all
points of discontinuity of {x.}, i=1,2,...,n, without changing
i

the sums by more than €.

+ -
Where £ and Z denote summation over the terms with
positive and negative increments respectively, (5.1) implies that

]z+ lF(xi) - Flx, )| - PVF(a,b)| <,

-1

=7 |F(x,) - F(x, ,)| - NVF(a,b)| < ¢ .
i i-1

+ ..
We can assume that the intervals in £ are disjoint and let U
denote their union. Then

+ tn o+, +
“F+(U) - “F+(Xi-1’xi) = Ep L G) - F by )]
Z+ F F
SEMEICS YN
> Z+ PVF(xi—‘l’Xi) - 2e=p +(U) - 2¢
EF
>p (a,b) - 3¢
F+
po (U)< g,
.~
+
(k) (@,b) > p (U)-p (U) > p (a,b) - 4e.
F F+ F F+
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+
Since € is arbitrary (HF) (a,b) > +(a,b) . By a similar
F
argument we show that (pF)-(a,b) > _(a,b) and conclude

F
that Ivl(a,b) = HIFI(a,b) .

+
The additivity of the measures (pLF) and p + implies
F
that they coincide on all open sets. Similarly (HF)_ =p _ on
F

open sets and thus !v ,(U) = HIFI (U) for every open set. If
+ +
ith t U U A
Unl A, with each se L, open, (HF) ( n) ! (HF) (A)

([2], Corollary 10.3.1), p (U )|l ,(A) by II and
+ n +
F F
(pF) (A) = p +(A) . Finally, if B is an arbitrary measurable
F

set there exists a G6 set A thatis a measurable cover for B,
A=BU(A-B), p _I_(A) =W +(B) , +(A-B) =0 . Then

F F F

+ + +
(i) (B = (8, ep) (AB) < (A-B) =0 and ap) (B) =k ().
Similarly (pF)-(B) = p _(B) whence lv’(B) = plF'(B) for every
F
Be J

P

COROLLARY. If Fe¥ and one of PVF(x), NVF(x)

BV!
is finite then always p = lvl = HIGI and they coincide with plFl

~

if and only if Fe%¥

BV’
- P X = X =
If Fe'}'BV, ?BV and PVF(X) = NVF(X) = oo,
BT need not be defined on unbounded sets. Writing v

F
and |vl as before v need not be a signed measure on 'JF .
However the above discussion and equalities are valid where v
is defined.

Again let FeJ and assume one of PVF(X), NVF(X)

BV!
to be finite. Then the Hahn- Lebesgue decomposition ([5], p.32)
gives the existence of a measurable set X' with

+

v(A) = (b)) (A), (HF)_(A) =0, ACX';

¥
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v (A) = - (pF)_(A) , (HF)+(A) =0, ACCX', Thus, if F has

IVP , there exists a measurable set X' such that for every

A )
«

1

p(a) = [v](a) () =k (ANX) +p (allcx

F F
[v(an x1) - [v][(aNcxr) .

HIF

v (A)

1

For 0# Fe 70 such a decomposition is not possible for p,Fl .
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