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1. Introduction

If A and B are two complex matrices and if U is a complex unitary matrix
such that UAUCT = B (where UCT denotes the conjugate transpose of U),
then A and B are said to be unitarily similar. Necessary and sufficient condi-
tions that two matrices be unitarily similar have been dealt with in [5]
(from the point of view of group representation theory) and in [2] (from the
point of view of developing a canonical form under unitary similarity).

Here the problem of the unitary similarity of two matrices with real
quaternion elements is considered. Any matrix A with real quaternion
elements can be written in the form A = A1-\- jA2 (see [3] and [6], for
example, for related properties) where Ax and A2 are matrices with complex
elements. By definition, such a matrix U = U1 + jU2 is unitary if UUCT = I
= UCTU where UCT = Ux + (jU2)

CT = Ux
CT~jU^, (where Uf denotes

the transpose of the complex matrix U2), and where / denotes an identity
matrix of proper order. Necessary and sufficient conditions on A and B are
to be found so that there exists a unitary U such that UAUCT = B. In the
following the main theorem is obtained and some related results are then
noted.

2. Unitary Similarity of Pairs of Matrices

There is a one-to-one correspondence between all n x n real quaternion
matrices A = A1 + jA2 and all 2M X 2M complex matrices of the form

A*=TAl-;

U2 '
where A f denotes the complex conjugate of the matrix Ax. This correspond-
ence is an isomorphism up to a point (see [3], for instance). For example, if A
is hermitian or unitary then A* is, respectively, hermitian or unitary.
(The isomorphism does not hold up under the ordinary transpose operation;
as an example see [7].) For purposes here any complex matrix of dimension
2M X 2M which has the above form of A* will be said to be "a (complex)

1 The author is indebted to the referee for helpful revisions.
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matrix in *-form." Let £f denote the set of all 2»-rowed matrices in *-form,
and let Jt denote the set of all 2w-rowed complex matrices.

The following are true:
(a) Each X in JK can be written uniquely in the form X = P + iQ where

P and Q are in Sf. For if X = (Xit), P = (P,,), and Q =• {Qi}), where Xu,
Pijt and QH are n x n matrices for i, j = 1, 2 then P n = i(Xxl -\- X22

C)

= P22
C, P* = * (* , ! - Xl2°) = -^12C,<?11 = (2*)-l(*u-*22C) = 022°,

and @2i = (2*)~1(-X 2̂i + -<̂ i2C) = — Qi2C supplies such a representation
for X which is seen to be unique.

(b) Every non-singular matrix Y in Sf can be written uniquely in the
polar form Y = UH where U and H are in *-form and U is unitary and H is
positive definite hermitian (see Theorem 3, [6], where this is also seen to be
true in the singular case).

(c) If W is a unitary matrix in ^ , then W can be written in the form
W = W(I + iK){I + 2£2)~* where A is a complex number of modulus 1,
U is a unitary matrix in *-form, and if is a hermitian matrix in *-form.

The latter may be seen as follows. Let W be expressed in the form of
(a) so that W = P + iQ. If P is singular, the matrix XW, where A is a suitable
scalar of absolute value 1, will have such a representation in which the
matrix P is non-singular; this can be seen by considering the determinant of
the matrix P (for XW) which is a function (of X and I) of such a nature that
this is evident. Let P = UH be the polar form of P as described in (b).
Then UCTW = H + iUCTQ = H + iUCTQH-^H = (/ + iK)H is unitary,
and since (UCT W)CT {UCT W) =1, it follows that

H(I + KCTK)H + iH(K - KCT)H = I,

where H and K are in *-form. Since the sums and products of matrices in Sf
are in £f', the above is the representation of / in the form developed in (a).
Therefore K = KCT and I + K* = (tf"1)2 = H~2, so that W (or XW) =
= U{I + iK)H = U(I + iK) {I + K*)-*, (where X~* denotes the inverse of
the positive definite square root of a positive definite hermitian matrix X)
where all matrices have the required form.

HA,B, and U are quaternion matrices such that UAUCT = B where U is
unitary, then it is easily seen that U*A*(U*)CT = J5*. i.e., that the corre-
sponding complex *-matrices are (complex) unitarily similar. On the other
hand, suppose that A* and B* are two 2w X 2» complex matrices in
*-form which are (complex) unitarily similar under a 2n X 2» complex
unitary matrix which is not necessarily in *-form. The question arises as
to whether or not they are similar under a complex unitary matrix which is
in *-form. This is seen to be true as follows:

THEOREM 1. If A* and B* are two 2n x 2» complex matrices which are
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unitarily similar, then there exists a complex unitary matrix U which is in
*-form such that UA*UCT = B*.

Suppose that WCTA*W = B* where A* and B* are in *-form and W is
unitary but not in *-form. (That this can occur can be seen by a simple
example.) Expressing W in the form developed in (c), this relation becomes:

(7 - iK)UCTA*U{I + iK){I + K2)-* = B*.

Let UCTA*U = C. From part (a) it follows that

(/ + K2)-*[C + KCK]{I + if2)-* = B*

(I + K*)-*[CK - KC]{I + Kty-l = 0

since all matrices are in *-form. From the second equation CK = KC and
from the first B* = C. Hence UCTA*U = C = B* where U is in *-form.

From the above there follows:
THEOREM 2. Two real quaternion matrices A and B are unitarily similar

if and only if the corresponding complex matrices A* and B* are unitarily
similar.

There is a theorem due to Specht [5] which states the following: Two
complex matrices M and N are unitarily similar if and only if for all functions
G(x, y) = xaiyfil. . . xa"yfi» (where a,- and /?,- are non-negative integer ex-
ponents) the trace of G[M, MCT) = the trace oiG(N, NCT). If M = A* and
if AT = B* where A == At + jA2a.ndB = Bx -\- jB2 are quaternion matrices,
G(A*, A*CT) is a matrix in *-form with two diagonal block matrices such
that one is the conjugate of the other so that the trace of such a matrix is
twice the sum of the real parts of the complex numbers which appear along
the diagonal of one of these block matrices. This may be translated in terms
of matrices with real quaternion elements as follows. Any quaternion matrix
A can be written in the form A = A± + jA2 = (An -\- iA12) -f- j(A21 -\-iA22)
where the Ai} are real matrices. Let A1X be referred to as the "real part of A".
Then the following theorem relates the concept of trace with that of semi-
groups of matrices with non-commutative elements (which is of interest in
that the concept of trace generally fails in the non-commutative case).

THEOREM 3. Two real quaternion matrices A and B are unitarily similar
if and only if for all functions G(x, y) = x"1^1. . . x'nyfin (where xt and /S, are
non-negative integer exponents) the trace of the real part of G(A, ACT) =
the trace of the real part of G(B, BCT).

3. Unitary Similarity of Sets of Matrices.

In a recent result [1] A. A. Albert has obtained necessary and sufficient
conditions for the orthogonal equivalence of sets of real n x n symmetric
matrices, {Ax, Ait . . ., A^ and {Alt A%, . . ., A^. The vector space, q>, of
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all matrices A = 2*Liat^t> where the ai are real, is considered, and ^ is
similarly defined. The necessary and sufficient condition involves, among
other properties, a determinant condition, a Jordan algebra isomorphism,
and a trace condition, and it is noted there that the result generalizes to
complex hermitian matrices. By using a combination of' preceding results
(above) necessary and sufficient conditions can be obtained here which take
a somewhat different direction but which apply to sets of general complex
matrices and, because of § 2, to real quaternion matrices also.

Let {A1: A2, . . ., Am} and {A1, A2, . . ., Am] be two sets of m nxn
matrices with complex elements, and let S = {A1, A2, . . ., Am, A^T,
A™, . .., AmCT} and T= {Alt A2,.. ., Am, AX

CT, A™, . . ., A^*}. Let [S]
denote the semigroup generated by S under matrix multiplication and let
[T] be similarly defined. Then:

THEOREM 4. Let {Ax, A2, . . ., Am} and {Alt A2, . . ., Am} be two sets of
tn nxn matrices with complex elements. There exists a unitary matrix U
such that UAJJ01^ = Ait i = 1, 2, . . ., m, if and only if there exists a
(semi-group) isomorphism between [5] and \T] in which Ai^-Ai,
AfT -^•Ai

CT for i = 1, 2, . . ., m, and such that the traces of corresponding
matrices are equal.

The semi-group [S] is such that if a matrix M is in [S], so is MCT; therefore
[5] is completely reducible by Theorem 3 in (4). The same is true of [7"].
If the traces of corresponding elements are equal, there is a non-singular
matrix P such that, in particular, P~M<P = At and P^A^P = AfT for
i = 1, 2, . . ., m. Let H be the uniquely determined positive definite matrix
H such that H2 = PPCT. Set U = H'1 P; this can be verified to be a unitary
matrix such that UCTAiU = At for i = 1, 2, . . ., m. The converse is imme-
diate.

This result extends directly to matrices with real quaternion elements
if it is observed that the matrix W in part (c) determines the U in *-form
which is finally used; if the same W relates all pairs A{ and Ait as above,
then the same U so determined will do the same. It is also evident that the
above need not be restricted to finite sets of A t. (In the statement of Theorem
4 for quaternion matrices "traces of corresponding matrices" is replaced by
"traces of the real parts of corresponding matrices".)

References

[1] Albert, A., On the Orthogonal Equivalence of Sets of Real Symmetric Matrices, J. Math, and
Mech., Vol. 7, (1958), pp. 219—235.

[2] Brenner, J., The Problem of Unitary Equivalence, ActaMath., Vol. 86 (1951), pp. 297—308.
[3] Lee, H. C, Eigenvalues and Canonical Forms of Matrices with Quaternion Coefficients,

Proc. Roy. Irish Acad. Sect. A, Vol. 52 (1949), pp. 253—260.

https://doi.org/10.1017/S1446788700026422 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026422


126 N. A. Wiegmann [5]

[4] Specht, W., Zur Theorie der Gruppen linearer Subsiitutionen, II, Jber. Deutschen Math.
Verein., Vol. 49 (1939), pp. 207—215.

[5] Specht, W., Zur Theorie der Matrizen, II, Jber. Deutschen Math. Verein., Vol. 50 (1940),
pp. 19—23.

[6] Wiegmann, N., Some Theorems on Matrices with Real Quaternion Elements, Canad. J.
Math., Vol. 7 (1955), pp. 191—201.

[7] Wiegmann, N., The Structure of Unitary and Orthogonal Quaternion Matrices, 111. J. Math.,
2 (1958) pp. 402—407.

George Washington University
Washington, D.C.

https://doi.org/10.1017/S1446788700026422 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026422

