Compositio Mathematica 105: 141-146, 1997. 141
© 1997 Kluwer Academic Publishers. Printed in the Netherlands.

On microfunctions at the boundary
along CR manifolds

ANDREA D’AGNOLO! and GIUSEPPE ZAMPIERI?
!Mathématiques; Univ. Paris 6; 4, Place Jussieu; F-75252 Paris Cedex 05
2Dip. di Matematica, Universita di Padova, via Belzoni 7, 1-35131 Padova, Italy

Received 16 August 1995; accepted in final form 4 December 1995

Abstract. Let X be a complex anaytic manifold, M C X aC? submanifold, @ C M an open set
with G2 boundary S = 952. Denote by uar(Ox) (resp. pa(Ox)) the microlocalization along M
(resp. ) of the sheaf O x of holomorphic functions.

In the literature (cf. [A-G], [K-S 1,2]) one encounters two classical results concerning the
vanishing of the cohomology groups HY par (Ox), for p € Tj,X. The most general gives the
vanishing outside a range of indices j whose length is equal to s°(M,p) (with s™=°(A, p)
being the number of respectively positive, negative and null eigenvalues for the ‘microlocal’ Levi
form Las(p)). The sharpest result gives the concentration in a single degree, provided that the
difference s~ (M,p') — v(M,p') is locally constant for p' € Ty, X near p (with v(M,p) =
dim® (T, X N iT;;X), for z the base point of p).

Thefirst result was restated for the complex po(Ox) in[D’A-Z 2], inthe case codim 5,5 = 1.
Weextend it hereto any codimension and moreover we also restate for ;10 (Ox ) the second vanishing
theorem.

We aso point out that the principle of our proof, related to a criterion for constancy of sheaves
dueto [K-S 1], isaquite new one.
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1. Notations

Let X beacomplex analytic manifoldand M c X aC? submanifold. One denotes
by m: T*X — X and 7: Ty; X — M the cotangent bundle to X and the conormal
bundle to M in X respectively. Let 7*X be the cotangent bundle with the zero
section removed, and let p: M xx T*X — T*M be the projection associated to
the embedding M — X.

For asubset A C X onedefinesthe strict normal coneof Ain X by N*(A) :=
TX\C(X\A,A) where C(-,-) denotes the normal Whitney cone (cf [K-S 1]).

Let z0 € M, p € (T, X)z. Weput TSM = To)M N T M; Ay(p) =
T,T5 X; Mo(p) = Tp(n~tr(p)), v(p) =the complex Euler radial field at p, and
we set y(M,p) = dim®(T3, X N 4T}, X),,. If no confusion may arise, we will
sometimes drop the indices zp or p in the above notations.
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Let ¢ be a C? function in X with ¢ |3,= 0and p = (20, dé(20)). In alocal
system of coordinates (z) at zp in X we define L (2o) asthe Hermitian form with
matrix (0z;0z;$);. Its restriction Ly (p) to TZCOM does not depend on the choice
of ¢ andis called the Levi form of M at p. Let s™—C(M, p) denote the number of
respectively positive, negative and null eigenvaluesof L, (p).

One denotes by D?(X) the derived category of the category of bounded com-
plexes of sheaves of C-vector spaces and by D’(X; p) the localization of D°(X)
ap € T*X, i.e the localization of D’(X) with respect to the null system
{F € D°(X);p ¢ SS(F)} (here SS(F) denotes the micro-support in the sense of
[K-S 2], aclosed conic involutive subset of 7 X).

Remark 1.1. We recall that a complex F which verifies SS(F') C T3, X in
a neighborhood of p € T3,X is microlocaly isomorphic (i.e. isomorphic in
D(X;p)) to a constant sheaf on M. This criterion, stated in [K-S 1] for a C?
manifold M, extends easily to C* manifolds (cf [D’A-Z 1]).

Let Ox bethe sheaf of germs of holomorphic functionson X andC 4, (A C X
locally closed), the sheaf whichiszeroin X'\ A and the constant sheaf withfiber Cin
A. We shall consider the complex p4(Ox) := phom(C 4, Ox) of microfunctions
along A (where phom(-, -) is the bifunctor of [K-S 1]). Special interest liesin the
complexes pp/(Ox) and ua (Ox) for €2 being an open subset of the manifold M
(cf [S]).

2. Statement of theresults

Let X be acomplex analytic manifold of dimensionn, M C X aC? submanifold
of codimension I, Q C M an open set with C? boundary S = 99, and set
r = codim ;S (we assume (2 locally on one side of S for r = 1). Let 20 € M,
p € (T3 X),,- Define

dpy(p) = codimx M + s~ (M,p) —v(M,p),
cu(p) =n—sT(M,p) +v(M,p).

Letusrecall thefollowing classical resultsconcerning the conomology of 1i3/(Ox).

THEOREM A. ([A-G], [K-S 1]) AssumedimR(v(p) N Apr(p)) = 1. Then

Hopp(Ox)p =0 for j ¢ [du(p), car(p)]-

THEOREM B. ([H], [K-S1]) AssumedimR (v(p) N Aps(p)) = 1and s— (M, p') —
v(M,p') = const for p' € Ty, X closeto p. Then

Hopup(Ox)p =0 for j # du(p)-
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Dealing with 1o (Ox) (and choosingnow p € S X s T]’\}X), one knows that

THEOREM C. ([D’A-Z 2]) Assumecodim ;.S = 1anddimR (v(p) N Axs(p)) = 1.
Then

Hj,U«Q(OX)p =0 forj g_ﬁ [dM(p)ch(p)]‘

Theaim of the present noteis, on the one hand, to extend Theorem C to the case
of any codimension for S in M, and, on the other hand, to state the analogue of
Theorem B for the complex o (Ox). We point out that the method of our proof,
based on the criterion of [K-S 1, Proposition 6.2.2] (with its C-variant of [D’A-Z
1]), isaquite new one.

Our results, valid for any » = codim ,, S, go asfollows.

THEOREM 2.1, Assume
dim®(v(p) N As(p)) = 1. (2.1)
Then

Hlpo(Ox), =0 for j ¢ [du(p),cm(p) +r—1]. (2.2)

When M is areal analytic manifold of dimension » and X a complexification
of M, then Theorem 2.1 states the concentration in degree n for o(Ox),. This
should be proved as well by the aid of Proposition 3.1 of [S]. In fact, since 2
has C?-boundary, then M \ Q is C*-convex (i.e. convex in suitable real analytic
coordinates at z,).

THEOREM 2.2. Assume (2.1) and moreover
s~ (M,p') — (M, p') isconstant for p’ € Q x,; T}, X near p,
s~ (S,p") — (S, p') is constant
for p' € TEX N p~H(NM(Q)°%) near p,
s~ (M,p) —y(M,p) = s7(S,p) = (5, p).
Then

(2.3)

H'po(Ox), =0 for j ¢ [du(p),du(p) +r — 1.

Remark 2.3. We notice that the sets appearing in (2.3) are very natura in this
context; one hasin fact

Ty, X NSS(Cq) = Q xn Tj/ X,
TEX NSS(Cq) = TEX Np Y(NM(Q)°9).
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3. Proofsof theresults
Proof of Theorem2.1. Weset @~ = M \ Q and use the distinguished triangle

1s(Ox) = pa(Ox) = pa(Ox) ® o (Ox) 5. (34)

We remark that by its own definition: Ls(p) = Ly (p) (p €8S xn T X).

Thisgives:

|TZ((:)S,

st(S,p) < s (M,p) <sT(S,p) + (dim TEM —dim TES)
= sT7(S,p) + (r +v(M,p) — v(S,p)).

Thusif theintegerscy,(p), das(p) and cs(p), ds (p) aredefined asin Section 2, we

have at once
em(p) <es(p) <cm(p) +r, (3.5)
dy(p) <ds(p) <dp(p) +r. |

Thevanishing of (2.2) for j > ¢y (p) +r — 1 then followsby applying Theorem
AtoM andS.

The vanishing of (2.2) for j < dj/(p) isimmediate for ds(p) > das(p) dueto
Theorem A and (3.1).

When ds(p) = ds(p) it remains to be proven that

H% P pug(Ox), — H™ Py (Ox),  isinjective (3.6)

To this end we perform a contact transformation y near p which interchanges
(setting ¢ = x(p))

THX T~ X codimM =1,s (M,q) =0,
{ M M (M,4) 3.7)

TX - TEX  codimS =1,

(cf. [D’A-Z 3]). Let M+ and S be the closed half spaces with boundary M and
S and inner conormal ¢q. We have

PROPOSITION 3.1. Let dg = dj;. Then in the above situation

{ s (S,q) =0, 39

Stc M.
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Proof. Quantizing x by a kernel K € Ob(D°(X x X)) we get by [K-S 1,

Proposition 11.2.8]
{asK(cM)%cmdM(p)— ] inD*(X;q),
$x(Cs) = Cg,[ds(p) — s (S,9) = 1] inD(X;q).

Moreover the natural morphism C,; — Cg is transformed via ¢ to anon null
morphism C ., [du (p) — 1] = C5,[ds(p) — s (S,q) —1]. Thus

HOMos x10) (C g7 [das (p) — 1, Ci, [ds(p) — 5~ (5,0) — 1))
= HORT 57, (Cz.)ylds(p) — dr(p) — s~(5.)))
40,

wherey = 7 (q). Since we are assuming d,; (p) = ds(p), (3.5) follows. O

End of the proof of Theorem2.1. From the proof of Proposition 3.1 it follows
that ¢ transforms the morphism (3.3) in

H%+(OX)y - IH:]L/\ZJF(OX)Z]’ (3-9)

where y = 7(q), which is clearly injective. The proof of Theorem 2.1 is now
complete. O

Proof of Theorem2.2. From now on wewill drop p in our notations, due to the
constancy assumptions (2.3).

If r > LonehasQ = M and NM(Q)°® = T*M. Thus, by (2.3), we enter the
hypotheses of Theorem B for both M and S. The claim follows in this case from
(3.1), (3.3) and from the inequalities (3.2).

We may then assume r = 1. The problem in this case is that (2.3) holds only
along SS(Cq).

Let x: T*X — T*X be acontact transformation from a neighborhood of p to
aneighborhood of ¢ = x(p), such that

Ty X - T5X  codmM = 1,
T5X = TEX codimS =1,s7(S,q¢') = 0.

Noticethat, for y = 7 (q), Ty1\7 = Ty§. Quantizing x by akernel K, we thus have
that either ¢ (Cg) or ¢x(Cq) is asimple sheaf along the conormal bundle to a
¢! submanifold Y c X. Sincedy; = dg — 1, thens~(M,q) =0, M+ c St and
¢k (Cq) = Cy[dr — 1]. Denoting by W the open domain with boundary Y and
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exterior conormal ¢, we have by Lemma 3.3 of [Z] that W is pseudoconvex at v,
and one concludes since

~ 71
Xxh(Ox )g[—dn] = i\ (Ox)y, 0
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