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The Zeta Function of a Pair
of Quadratic Forms

Laura Mann Schueller

Abstract. The zeta function of a nonsingular pair of quadratic forms defined over a finite field, k, of
arbitrary characteristic is calculated. A. Weil made this computation when char k �= 2. When the pair
has even order, a relationship between the number of zeros of the pair and the number of places of
degree one in an appropriate hyperelliptic function field is established.

1 Introduction

The goal of this paper is to calculate the zeta function of a nonsingular pair of quad-
ratic forms, {F, G}, defined over a finite field of arbitrary characteristic. In 1954,
Weil [11] completed this calculation for the case char k �= 2. Thus, this paper extends
Weil’s work to arbitrary characteristic.

When the order of the pair is odd, our result is a simple extension of Weil’s work.
A detailed treatment is included, and the zeta function appears as Theorem 4.1.

When the order of the pair is even and char k �= 2, Weil gives the zeta function in
terms of the number of places of degree one in the hyperelliptic function field defined
by y2 = det(uF + G).

In order to extend this result to char k = 2, we replace the determinant with the
more complicated Arf invariant. We first relate the number of places of degree one in
the function field defined by y2 + y = Arf(uF + G) to the number of affine solutions
of the defining curve. This argument is more technical than the one relating points
to places in the char k �= 2 case. A careful calculation of this relationship in the
characteristic two case is given in Theorem 3.4, and the known result, as used by
Weil, for the odd characteristic case is given in Equation 4.

Finally, we use these results to calculate the zeta function given in Theorem 4.3.

2 Definitions and Preliminaries

Although our main results are given over finite fields, we make some initial defini-
tions and give some preliminary results for an arbitrary field k. The notation k(t)

denotes the set of t-tuples with elements in k, k∗ denotes the multiplicative group of
nonzero elements of k, and kalg denotes the algebraic closure of k. A quadratic form F
in n variables defined over k is a homogeneous polynomial of degree two in the poly-
nomial ring k[x1, . . . , xn]. Two quadratic forms, F, F ′ ∈ k[x1, . . . , xn], are equivalent
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over k if there exists an invertible n × n matrix

E = (ei j )n×n

with entries in k such that

F ′(x1, . . . , xn) = F(y1, . . . , yn), for yi =
n∑

j=1

ei jx j , 1 ≤ i ≤ n.

The order of F is the minimum m such that there exists a quadratic form F ′ =∑
1≤i≤ j≤m a ′

i jxix j equivalent to F. If m < n, then F is degenerate, and if m = n,
then F is nondegenerate.

Given
F =

∑
1≤i≤ j≤m

ai jxix j ,

let [F] denote the symmetric n×n matrix (αi j)n×n where αi j =




ai j i < j

a ji j < i

2aii i = j

. Thus,

[F] =




2a11 a12 · · · a1n

a12
...

a1n a2n · · · 2ann


 .

Let det(F) = det([F]).
Let {F, G} and {F ′, G ′} be two pairs of quadratic forms defined over k. The pairs

are equivalent over k if both F is equivalent to F ′ and G is equivalent to G ′ by the
same invertible matrix E. The order of the pair {F, G} is the minimum m such that
there exists a pair of quadratic forms{

F ′ =
∑

1≤i≤ j≤m

a ′
i jxix j , G ′ =

∑
1≤i≤ j≤m

b ′
i jxix j

}

equivalent to {F, G}. If m < n, then the pair {F, G} is degenerate, and if m = n, then
the pair {F, G} is nondegenerate.

A nontrivial n-tuple, P, with entries in kalg is a singular zero of the pair {F, G}
if F(P) = G(P) = 0 and the Jacobian of the pair {F, G} evaluated at P has rank at
most one. A pair of quadratic forms {F, G} defined over k is singular if there exists a
singular zero P of the pair. The pair is nonsingular if it is not singular.

It is easy to check that if {F, G} is a degenerate pair of quadratic forms, then the
pair {F, G} is singular.

For the remainder of this paper, assume that {F, G} is a nonsingular pair of quad-
ratic forms in n ≥ 3 variables defined over k = Fq, a finite field with q elements. Let
kr be the unique extension of k of degree r.

The following two results can be found in [7].
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Lemma 2.1 If α, β ∈ kalg are not both zero, then αF + βG has order at least n − 1.

Lemma 2.2 If u and v are indeterminates over k and char k �= 2, then

det(uF + vG)

splits into distinct linear factors over kalg .

2.1 Counting Simultaneous Zeroes of Pairs of Quadratic Forms

Theorem 2.3 Let H be a quadratic form in n variables defined over k. Then H is
equivalent over k to a nondegenerate quadratic form in m variables, for some 1 ≤ m ≤
n, of exactly one of the following three types.

1. x1x2 + x3x4 + · · · + xm−1xm

2. x1x2 + x3x4 + · · · + xm−3xm−2 + (a0x2
m−1 + a1xm−1xm + a2x2

m), ai ∈ k, (a0x2
m−1 +

a1xm−1xm + a2x2
m irreducible over k)

3. x1x2 + x3x4 + · · · + xm−2xm−1 + ax2
m, a ∈ k∗.

From here on, a quadratic form equivalent over k to one of these forms shall be
called Type 1, Type 2, or Type 3, respectively. This well known classification can be
found in [8] or [9].

Definition 2.4 Let χr : kr → C be given by χr(a) = 0, 1,−1 as a is 0, a nonzero
square, or a nonsquare in kr, respectively.

For ease of notation, we write χ(a) for χ1(a). For later use, note that

χ(−1)r = χr(−1).

Definition 2.5 The pencil, Pr(F, G), of the pair {F, G} is the set of all kr-linear com-
binations of F and G. That is,

Pr(F, G) = {uF + vG | u, v ∈ kr}.

Definition 2.6 For each r, we define a function sr : Pr(F, G) → C by

sr(uF + vG) =




1 if uF + vG is Type 1 over kr

−1 if uF + vG is Type 2 over kr

0 if uF + vG is Type 3

1 if u, v = 0.

We note that since a Type 2 form remains Type 2 in a field extension if and only if
the degree of the extension is odd, it follows that

sr(uF + vG) =
(

sd(uF + vG)
) r

d
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for all d|r.
For ease of notation, we write s(uF + vG) for s1(uF + vG).
Given r, let

N =
∣∣{P ∈ k(n)

r | F(P) = G(P) = 0}∣∣ ,
the number of affine zeros of the pair over kr.

An argument given in [6] gives

N = (qr)−2
[

(qr)n +
∑

(u,v)�=(0,0)∈k(2)
r

sr(uF + vG)(qr)n− m(u,v)
2

]

where m(u,v) is the order of the form uF + vG.
We now consider projective zeros. Let Nr denote the number of simultaneous

projective zeros of the pair {F, G} over kr. Then,

Nr =
n−3∑
h=0

(qr)h +
(qr)−2

qr − 1

∑
(u,v)�=(0,0)∈k(2)

r

sr(uF + vG)(qr)n− m(u,v)
2 .

Since the pair {F, G} is nonsingular, it follows from Lemma 2.1 that if m(u,v) �= 0,
then m(u,v) is either n − 1 or n. Since sr(uF + vG) = 0 if m(u,v) is odd, it follows that
if n is odd, then

(1) Nr =
n−3∑
h=0

(qr)h +
(qr)

n−3
2

qr − 1

∑
(u,v)∈k(2)

r
m(u,v)=n−1

sr(uF + vG),

and if n is even, then

(2) Nr =
n−3∑
h=0

(qr)h +
(qr)

n−4
2

(qr) − 1

∑
(u,v)�=(0,0)∈k(2)

r

sr(uF + vG).

2.2 The Arf Invariant

Recall that k is finite and we will assume for this subsection that char k = 2; thus k
is perfect. Also for this subsection, assume n is even. Then, for any quadratic form
H in n variables defined over k, one can check that det(H) = 0 if and only if H is
degenerate.

Denote {x2 + x | x ∈ k}, the Artin-Schreier subgroup of k, by ℘ (k). Given a
nondegenerate quadratic form H in n variables defined over k, the Arf invariant of
H, Arf(H), lies in k. If H ′ is a nondegenerate quadratic form in n variables defined
over k equivalent to H, then Arf(H) − Arf(H ′) ∈ ℘ (k).

A direct calculation gives that Arf(H) ∈ ℘ (k) if H is Type 1 and Arf(H) �∈ ℘ (k) if
H is Type 2.

Suppose u and v are indeterminates over k, then uF + vG is a quadratic form
in n variables defined over k(u, v). In characteristic two, det[F] is always a square.
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Therefore, det(uF + vG) is a square in k[u, v], and it factors into linear factors over
kalg . Therefore, there is a factorization det(uF + vG) = δ2v2l0Πr

i=1(u + aiv)2li �= 0 for
some δ ∈ k, ai distinct in kalg , l0 ≥ 0, and li ≥ 1 for 1 ≤ i ≤ r. The following result
for nonsingular pairs {F, G} can be found in [7], (4.3) and (5.10).

Proposition 2.7 Suppose {F, G} is a nonsingular pair over k in n variables. Using the
notations above,

Arf(uF + vG) =
r∑

i=1

2li−1∑
j=0

ci j(u + aiv) j v2li− j

(u + aiv)2li
+

2l0−1∑
j=0

c0 ju2l0− jv j

v2l0
+ c0,2l0 ,

where each ci j ∈ kalg is uniquely determined and

ci1 �=
{

0 if li ≥ 2√
ci0 if li = 1.

Sometimes we set v = 1. In this case, we write

Arf(uF + G) =
f (u)

g(u)2

where g(u)2 = det(uF + G), f (u) ∈ k[u], and for any ai , 1 ≤ i ≤ r, (u + ai)2 doesn’t
divide f (u) since ci0 and ci1 are not both zero.

Proposition 2.8
Arf(uF + G) �∈ ℘

(
k(u)

)
.

Proof Suppose, in contradiction, that

Arf(uF + G) =
f (u)

g(u)2
=

h1(u)

h2(u)
+

(
h1(u)

h2(u)

) 2

for h1, h2 ∈ k[u] with h1 and h2 having no common factors over kalg .
By Proposition 2.7, we can write

Arf(uF + G) =
f (u)

g(u)2
=

r∑
i=1

2li−1∑
j=0

ci j(u + ai) j

(u + ai)2li
+

2l0∑
j=0

c0 ju
2l0− j ,

where each ci j ∈ kalg is uniquely determined and

ci1 �=
{

0 if li ≥ 2√
ci0 if li = 1.

https://doi.org/10.4153/CMB-2001-024-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2001-024-7


Zeta Function of a Pair of Quadratic Forms 247

For 1 ≤ i ≤ r, (u + ai)li |g. By cross multiplying, (u + ai)2li | f h2
2. Since (u + ai)2

does not divide f (u), it follows that (u + ai)2li−1|h2(u)2 and (u + ai)li |h2(u). Thus,
g|h2. Since h1 and h2 are relatively prime, it is easy to show that h2|g. Thus, without
loss of generality, we can assume h2 = g.

There exist unique di j ∈ kalg such that

h1

g
=

r∑
i=1

li−1∑
j=0

di j(u + ai) j

(u + ai)li
+

l0∑
j=0

d0 ju
l0− j .

Since
∑r

i=0 2li = n, it follows for some i, 0 ≤ i ≤ r, that li ≥ 1. We now argue by

equating coefficients in f
g2 and h1(u)

g(u) + ( h1(u)
g(u) )2. If li = 1, then ci1 = di0 and ci0 = d2

i0.
If li ≥ 2, then ci1 = 0. Thus

ci1 =

{
0 if li ≥ 2√

ci0 if li = 1.

This is a contradiction, and the result follows.

2.3 The Half Determinant

For this subsection, assume n is odd. Knus, [4], states that the notion of the half-
determinant was first introduced by Kneser, [3]. Given a quadratic form H in n
variables defined over k of arbitrary characteristic, Knus, [4], defined the half de-
terminant of H, ( 1

2 − det)(H). A careful discussion of the half determinant and its
properties can be found in [7]. Here we are interested only in the following two
results.

Proposition 2.9 Let u, v ∈ kr. Then, ( 1
2 − det)(uF + vG) = 0 if and only if uF + vG

is degenerate over kr.

Proposition 2.10 Let u, v be indeterminates over k. Then, ( 1
2 − det)(uF + vG) splits

into distinct linear factors over kalg .

It is interesting to note that if char k �= 2, then

( 1

2
− det

)
(uF + vG) =

1

2

(
det(uF + vG)

)
.

3 Places of Degree One

In this section, assume that n is even. We relate the number of solutions, Np, in k(2)

of {
y2 + y = Arf(uF + G) char k = 2

y2 = det(uF + G) char k �= 2
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to the number of places of degree one in the hyperelliptic function field k(u, y) de-
fined by {

y2 + y = Arf(uF + G) char k = 2

y2 = det(uF + G) char k �= 2.

Lemma 2.2, when char k �= 2, and Proposition 2.8, when char k = 2, give that k(u, y)
has degree two over k(u).

For α ∈ k, let Pα denote the place of k(u) at α with corresponding valuation vα.
Let v ′

α denote a normalized valuation of k(u, y) that lies above vα, and let eα be the
ramification index of v ′

α over vα. Note that eα does not depend on the choice of
v ′
α since k(u, y)/k(u) is a Galois extension. Let |Pα| denote the number of places of

degree one in k(u, y) lying over Pα. Similarly, define v∞, v ′
∞, e∞, and |P∞| with

respect to the infinite place P∞. Let NP denote the total number of places of degree
one in k(u, y).

When char k = 2, let Ng denote the number of elements α ∈ k such that g(α) =
det(αF + G) = 0. For later use, note that

Ng =
∣∣{u ∈ k | det(uF + G) = 0}∣∣

=
∣∣{u ∈ k | uF + G is Type 3}∣∣ .

We define a quantity NF that depends on the Type of F over k by

(3) NF =




1 + χ(−1)
n
2 if F is Type 1

1 − χ(−1)
n
2 if F is Type 2

1 if F is Type 3.

If char k = 2, then χ(−1)
n
2 = 1 and

NF =




2 if F is Type 1

0 if F is Type 2

1 if F is Type 3.

If char k �= 2, then NF = χ
(

det(F)
)

+ 1.

3.1 Characteristic Two

For this subsection, assume that char k = 2.

Lemma 3.1

Np =
∑
α∈k

vα(Arf(uF+G))≥0

|Pα|.
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Proof By Proposition 2.7, given α ∈ k, vα

(
Arf(uF +G)

) ≥ 0 if and only if g(α) �= 0.

Choose such an α. The equation y2 + y = Arf(uF + G) = f (u)
g(u)2 gives that y is integral

over the place Pα. If ȳ is the image of y in the residue field, then ȳ2 + ȳ = f (α)
g(α)2 .

If f (α)
g(α)2 ∈ ℘ (k), then y2 + y = f (α)

g(α)2 factors into two distinct linear factors. Other-

wise, y2 + y = f (α)
g(α)2 is irreducible.

Using Kummer’s theorem (Theorem III.3.7 [10]), we see that if f (α)
g(α)2 ∈ ℘ (k), then

|Pα| = 2, and |Pα| = 0 otherwise. Thus |Pα| is equal to the number of points on
y2 + y = f (u)

g(u)2 with u = α. The result follows by summing over all α ∈ k with
g(α) �= 0.

Lemma 3.2
Ng =

∑
α∈k

vα(Arf(uF+G))<0

|Pα|.

Proof Since g(α) = 0 if and only if vα

(
Arf(uF + G)

)
< 0, it is sufficient to show

that if vα

(
Arf(uF + G)

)
< 0, then |Pα| = 1. We consider the cases vα

(
Arf(uF + G)

)
odd and even separately.

First, suppose α ∈ k with vα

(
Arf(uF + G)

)
< 0 and odd. We have that

v ′
α(y2 + y) = eα

(
vα

(
f (u)

g(u)2

))
< 0.

So, v ′
α(y2 + y) = 2v ′

α(y). Since vα( f (u)
g(u)2 ) is odd, it follows that eα = 2. Thus, there is

exactly one (ramified) place of degree one over Pα. That is, |Pα| = 1.
Now, suppose α ∈ k with vα

(
Arf(uF + G)

)
< 0 and even. Since g(α) = 0, by

Proposition 2.7, we can write

Arf(uF + G) =
f (u)

g(u)2
=

c0 + c1(u − α)

(u − α)2l
+

(u − α)2 fα(u)

g(u)2
,

for some fα(u) ∈ k[u] where l ≥ 1, (u − α)l is the largest power of (u − α) that

divides g(u), and c1 �=
{

0 l ≥ 2√
c0 l = 1

. Define z(u) =
√

c0

(u−α)l .

If l = 1, then

vα

(
Arf(uF + G) + z(u) + z(u)2

)
= vα

(
c1 +

√
c0

(u − α)
+

(u − α)2 fα(u)

g(u)2

)
= −1 = 1− 2l.

If l ≥ 2, then

vα

(
Arf(uF + G) + z(u) + z(u)2

)
= vα

(
c1

(u − α)2l−1
+

√
c0

(u − α)l
+

(u − α)2 fα(u)

g(u)2

)
.
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Since,

vα

(
c1

(u − α)2l−1

)
= 1 − 2l,

vα

( √
c0

(u − α)l

)
= −l > 1 − 2l,

and

vα

(
(u − α)2 fα(u)

g(u)2

)
≥ 2 − 2l > 1 − 2l,

it follows that

vα

(
c1

(u − α)2l−1
+

√
c0

(u − α)l
+

(u − α)2 fα(u)

g(u)2

)
= 1 − 2l.

Thus, vα(Arf(uF + G) + z2 + z) = 1 − 2l is a negative odd integer. A theorem
on Artin-Schreier extensions (Theorem III.7.8 in [10]) implies that all places over Pα

must be ramified, and we have that |Pα| = 1.

Lemma 3.3 NF = |P∞|.

Proof We have three cases depending on the Type of F over k.
Suppose F is Type 3. Then, F is degenerate, and by Proposition 2.7 we can write

Arf(uF + G) =
f (u)

g(u)2
=

f0(u)

g(u)2
+

2l∑
j=0

c ju
2l− j ,

where deg( f0) < deg(g2) < n, 2l = n − deg(g2) > 0, and c1 �=
{

0 l ≥ 2√
c0 l = 1

.

Define z(u) =
√

c0ul.
If l = 1, then

v∞
(

Arf(uF + G) + z(u) + z(u)2
)

= v∞

(
(c1 +

√
c0)u + c2 +

f0(u)

g(u)2

)
= −1 = 1 − 2l.

If l ≥ 2, then

Arf(uF + G) + z(u) + z(u)2 = (c1u2l−1 + · · · + c2l−1u1 + c2l) +
√

c0ul +
f0(u)

g(u)2
,

and
v∞
(

Arf(uF + G) + z(u) + z(u)2
)

= 1 − 2l.

Thus, v∞
(

Arf(uF + G) + z2 + z
)

= 1− 2l is a negative odd integer. A theorem on
Artin-Schreier extensions (Theorem III.7.8 in [10]) implies that all places over P∞
must be ramified, and we have that |P∞| = 1.
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Now, suppose F is either Type 1 or Type 2. Then, F has order n by Lemma 2.1 and
is nondegenerate, and we can write

Arf(uF + G) =
f (u)

g(u)2
=

f0(u)

g(u)2
+ c0,

where deg( f0) < deg(g2) = n and c0 = Arf(F).
Thus, v∞

(
Arf(uF + G)

) ≥ 0, and y is integral over P∞. If ȳ is the image of y in
the residue field, then ȳ2 + ȳ = c0. By comments from Subsection 2.2, we have that
ȳ2 + ȳ = c0 splits into distinct linear factors if F is Type 1 and is irreducible if F is
Type 2. By Kummer’s theorem (Theorem III.3.7 in [10]), we see

|P∞| =

{
2 if F is type 1

0 if F is type 2.

Theorem 3.4
NP = Np + Ng + NF.

Proof Since every place of degree one in k(u, y) lies over a place of degree one in
k(u), we have

NP = |P∞| +
∑
α∈k

|Pα|.

Separating the second summation and substituting from Lemmas 3.1, 3.2, and 3.3
gives

NP = |P∞| +
∑
α∈k

vα(Arf(uF+G))<0

|Pα| +
∑
α∈k

vα(Arf(uF+G))≥0

|Pα|

= NF + Ng + Np.

3.2 Odd Characteristic

If we assume char k �= 2, then the relationship

(4) NP = Np + NF

is known. It is used implicitly by Weil, [11], and can be proved using methods similar
to those in Subsection 3.1. In particular,

NF = |P∞|, and Np =
∑
α∈k

|Pα|.
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4 Zeta Functions

In this section, we recount the arguments given by Weil in [11] to calculate the zeta
function of a nonsingular pair of quadratic forms defined over k when char k �= 2,
and we give the corresponding arguments to find the zeta function of a nonsingular
pair of quadratic forms when char k = 2.

4.1 Preliminaries

The zeta function, Z(u), of the pair {F, G} is defined by

Z(u) = exp
( ∞∑

r=1

Nrur

r

)
.

It is easy to show that if

Nr =
∑

i

γr
i −

∑
j

βr
j γi, β j ∈ C,

then

(5) Z(u) =

∏
j(1 − β ju)∏
i(1 − γiu)

.

The converse is also true and the proof of both implications can be found as Propo-
sition 11.1.1 in [2].

4.2 Number of Variables Odd

When n is odd, Weil’s calculation of the zeta function of {F, G} when char k �= 2
can be generalized to include k of arbitrary characteristic. Weil defines φ(u, v) =
det(uF + vG). We define

φ(u, v) =
( 1

2
− det

)
(uF + vG).

Recall that if char k �= 2, then ( 1
2 − det)(uF + vG) = 1

2

(
det(uF + vG)

)
. Thus, in this

case, we have changed φ only by a nonzero constant factor.
In this Subsection (4.2), assume n is odd. Suppose u, v ∈ kr, not both zero. Then

uF + vG has order n − 1 over kr if and only if φ(u, v) = 0. Thus, Equation 1 gives

Nr =
n−3∑
h=0

(qr)h +
(qr)

n−3
2

qr − 1

∑
(u,v)�=(0,0)∈k(2)

r
φ(u,v)=0

sr(uF + vG).

Factoring over k, we have φ(u, v) =
∏l

λ=1 pλ(u, v), for distinct, irreducible factors
pλ ∈ k[u, v]. Define dλ = deg pλ.
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In kdλ
, by Proposition 2.10, pλ(u, v) splits into distinct linear factors, each of the

form (aiu − biv), for 1 ≤ i ≤ dλ. Each form biF + aiG has order n − 1 over kdλ
.

Further, since the extension is Galois, biF + aiG is equivalent to b jF + a jG for all
1 ≤ i, j ≤ dλ. Either all of the forms are Type 1 or all of the forms are Type 2. We

define sλ = sdλ
(biF + aiG). Let s

1
dλ

λ denote an arbitrary dλ root of sλ.
With this notation,

Nr =
n−3∑
h=0

(qr)h + (qr)
n−3

2

∑
λ,dλ|r

dλs
r

dλ

λ .

Defining νλ to be a primitive dλ root of unity gives

Nr =
n−3∑
h=0

(qr)h + (qr)
n−3

2

l∑
λ=1

dλ−1∑
i=0

(ν i
λs

1
dλ

λ )r.

Using the special form of the zeta function given in Equation 5,

Z(u) =
n−3∏
h=0

(1 − qhu)−1
l∏

λ=1

dλ−1∏
i=0

(1 − q
n−3

2 ν i
λs

1
dλ

λ u)−1.

Finally, simplifying gives the following result.

Theorem 4.1 Let {F, G} be a nonsingular pair of quadratic forms defined over the
finite field Fq in n variables where n is odd. Then, the zeta function, Z(u), of the pair is

Z(u) =
n−3∏
h=0

(1 − qhu)−1
l∏

λ=1

(1 − q
n−3

2 dλ sλudλ )−1.

4.3 Number of Variables Even

In this section, we consider what turns out to be the more interesting case, n even.
If char k �= 2, we follow Weil’s work, [11], and consider k(u, y) defined by y2 =
det(uF + G). If char k = 2, we consider k(u, y) defined by y2 + y = Arf(uF + G).

In this Subsection (4.3), assume n is even and keep the notation from Section 3.

Lemma 4.2 ∑
(u,v)�=(0,0)∈k(2)

s(uF + vG) = χ(−1)
n
2 (q − 1)[NP − (q + 1)].

Proof We will prove the cases char k = 2 and char k �= 2 separately.
First, suppose char k �= 2. Given u, v ∈ k not both zero, let nu,v be the number of

solutions in k of
y2 = det(uF + vG).
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Then for all choices of u, v,

nu,v = χ
(

det(uF + vG)
)

+ 1 = χ(−1)
n
2 s(uF + vG) + 1.

Thus,

(6)
∑

(u,v)�=(0,0)∈k(2)

s(uF + vG) = χ(−1)
n
2

[( ∑
(u,v)�=(0,0)∈k(2)

nu,v

)
− (q2 − 1)

]
.

Summing over the choices for u, v, we have

∑
(u,v)�=(0,0)∈k2

nu,v = (q − 1)
(∑

u∈k

nu,1

)
+ (q − 1)n1,0

= (q − 1)[Np + NF].

Using Equation 4,

∑
(u,v)�=(0,0)∈k(2)

nu,v = (q − 1)[Np + NF] = (q − 1)NP.

Substituting this into Equation 6 gives,

∑
(u,v)�=(0,0)∈k(2)

s(uF + vG) = χ(−1)
n
2 [(q − 1)NP − (q2 − 1)]

= χ(−1)
n
2 (q − 1)[NP − (q + 1)].

Now, suppose char k = 2. Given u, v ∈ k, not both zero, let nu,v be the number of
solutions in k of

y2 + y = Arf(uF + vG).

Then

nu,v =

{
2 if uF + vG is Type 1

0 otherwise,

or equivalently

nu,v =

{
s(uF + vG) if uF + vG is Type 3,

s(uF + vG) + 1 otherwise.

Thus,

(7)
∑

(u,v)�=(0,0)∈k2

s(uF + vG) =
( ∑

(u,v)�=(0,0)∈k2

nu,v

)
− (q2 − 1) +

∑
u,v∈k

uF+vG is Type 3

(1).
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Summing over the choices for u, v, we have
∑

(u,v)�=(0,0)∈k2 nu,v is the number of

solutions in k(3) of y2 + y = Arf(uF + vG). That is,∑
(u,v)�=(0,0)∈k2

nu,v = (q − 1)[Np + (number of solutions of y2 + y = Arf(F))]

= (q − 1)

[
Np +

{
2 if F is Type 1

0 otherwise

]
.

Next we count the number of forms that are Type 3,

∑
u,v∈k

uF+vG is Type 3

(1) = (q − 1)

[
Ng +

{
1 if F is Type 3

0 otherwise

]
.

Substituting into Equation 7 and using Theorem 3.4 gives,∑
(u,v)�=(0,0)∈k2

s(uF + vG) = (q − 1)[Np + Ng + NF] − (q2 − 1)

= (q − 1)[NP − (q + 1)].

Since χ(−1)
n
2 = 1 when char k = 2, the result follows immediately.

By Corollary V.1.16 in [10] and the Hasse-Weil Theorem, there exist αi , with
|αi| = √

q, such that

NP − (q + 1) = −
2g∑

i=1

αi .

Here, g is the genus. Further, the number of places of degree one in the function field
defined over kr is equal to qr + 1 −∑2g

i=1 αr
i , (see V.1.16 in [10]).

Thus, by Lemma 4.2,

∑
(u,v)�=(0,0)∈k(2)

r

sr(uF + vG) =
(
χ(−1)

n
2
) r

(qr − 1)
(
−

2g∑
i=1

αr
i

)
.

By Equation 2,

Nr =
n−3∑
h=0

(qr)h +
(qr)

n−4
2

qr − 1

∑
(u,v)�=(0,0)∈k(2)

r

sr(uF + vG)

=
n−3∑
h=0

(qr)h − (qr)
n−4

2
(
χ(−1)

n
2
) r
( 2g∑

i=1

αr
i

)
.

Using the special form of the zeta function given in Equation 5 gives the following
result.
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Theorem 4.3 Let {F, G} be a nonsingular pair of quadratic forms defined over the
finite field Fq in n variables where n is even. Then, the zeta function, Z(u), of the pair is

Z(u) =
n−3∏
h=0

(1 − qhu)−1
2g∏

i=1

(
1 − χ(−1)

n
2 q

n−4
2 αiu

)
.
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[12] E. Witt, Über eine Invariante quadratischer Formen mod 2. J. Reine Angew. Math. 193(1954),

119–120.

Department of Mathematics
Whitman College
Walla Walla, Washington 99362
U.S.A.

https://doi.org/10.4153/CMB-2001-024-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2001-024-7

